JPH01245085A - Thin film el element - Google Patents

Thin film el element

Info

Publication number
JPH01245085A
JPH01245085A JP63069864A JP6986488A JPH01245085A JP H01245085 A JPH01245085 A JP H01245085A JP 63069864 A JP63069864 A JP 63069864A JP 6986488 A JP6986488 A JP 6986488A JP H01245085 A JPH01245085 A JP H01245085A
Authority
JP
Japan
Prior art keywords
light
thin film
zns
emitting layer
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63069864A
Other languages
Japanese (ja)
Inventor
Koyata Takahashi
小弥太 高橋
Akio Kondo
近藤 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63069864A priority Critical patent/JPH01245085A/en
Publication of JPH01245085A publication Critical patent/JPH01245085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To provide a thin film EL element having a luminescent layer expressed by a specific compositional formula, generating light having high color purity, exhibiting steep rise of luminance-voltage characteristic, formable into a film at a relatively low temperature and emitting EL luminance by the application of AC electric field. CONSTITUTION:The objective EL element having a luminescent layer expressed by the compositional formula of Sr1-x ZnxS:Euy (0.05<=x<=0.6, preferably 0.2<=x<=0.45; 0.0005<y<0.015) can be produced by adding ZnS to SrS up to about 34% and doping the mixture with Eu to prepare a luminescent layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、交流電界の印加によってEL(Electr
oluminescence)発光を呈するEL素子に
関するものであり、特に赤色発光を呈するEL素子に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides EL (Electrical
The present invention relates to an EL element that emits light (luminescence), and particularly relates to an EL element that emits red light.

(従来の技術) 一般的に薄膜EL素子は第1図に示すとおり、ガラス等
の透明基板1上に透明電極2を形成し、この透明電極上
に第一絶縁層3、発光層4、第二絶縁層5を順次形成し
、さらにその上に背面電極6を形成した二重絶縁構造を
有している。
(Prior Art) In general, a thin film EL device, as shown in FIG. It has a double insulation structure in which two insulation layers 5 are sequentially formed and a back electrode 6 is further formed thereon.

現在、この様な構造の薄膜EL素子として、発光層の母
材にZnSを用いたものが実用化されている。さらに近
年、EL素子の多色化を目的としてCaS、SrS等の
アルカリ土類金属硫化物を母材とした発光層をもつEL
素子が注目されていおり、特に赤色の発光を呈する発光
層の材料としては、ZnS : Sm、C5CaS :
 Eu。
Currently, a thin film EL element having such a structure using ZnS as the base material of the light emitting layer is in practical use. Furthermore, in recent years, with the aim of making EL devices multicolored, EL devices with light-emitting layers made of alkaline earth metal sulfides such as CaS and SrS as base materials have been developed.
The device is attracting attention, and materials for the light-emitting layer that emit red light include ZnS:Sm and C5CaS:
Eu.

S rS : Eu等が主に研究されている。しかしな
がら、ZnS:Sm、C発光層を有するEL素子は到達
輝度は高いものの、輝度−電圧特性の立上がりが悪く、
消費電力が大きいという問題点があり、CaS : E
u発光層を有するEL素子は輝度−電圧特性の立上がり
が良好で、色純度に関して極めて良いが、高輝度を得る
には、600℃以上の基数温度での蒸着が必要であり、
ELデイスプレィのような大面積の薄膜の形成は難しく
、更にSrS:Eu発光層を有するEL水素子輝度−電
圧特性の立上がりが良好であるが、発光色はほぼオレン
ジであり、高輝度を得るには500℃以上の基板温度で
の蒸着が必要で、EL素子作製時に素子が壊れやすいと
いう問題点があり、実用化に至っていないのが現状であ
る。
S rS: Eu etc. are mainly studied. However, although the EL element having the ZnS:Sm,C light-emitting layer achieves high luminance, the luminance-voltage characteristic has a poor rise.
There is a problem of high power consumption, and CaS: E
EL elements with a u-emitting layer have good brightness-voltage characteristics and are extremely good in terms of color purity, but in order to obtain high brightness, vapor deposition is required at a base temperature of 600°C or higher.
It is difficult to form a large-area thin film like an EL display, and furthermore, although the EL hydrogen atomic brightness-voltage characteristic with the SrS:Eu light-emitting layer has a good rise, the emitted light color is almost orange, and it is difficult to obtain high brightness. The method requires vapor deposition at a substrate temperature of 500° C. or higher, and there is a problem that the device is easily broken when manufacturing the EL device, so it has not been put into practical use at present.

(発明が解決しようとする問題点) 本発明の目的は、色純度のよい赤色の発光を呈し輝度−
電圧特性の立上がりが良好で、かつ比較的低温で成膜可
能な発光層を有するEL水素子提(共することにある。
(Problems to be Solved by the Invention) An object of the present invention is to emit red light with good color purity and have a luminance of -
The EL hydrogen element has a light-emitting layer that has good voltage characteristics and can be formed at a relatively low temperature.

(問題点を解決するための手段) 本発明者等は上記問題点を解決するために、鋭意検討を
行った結果、SrSにZnSが34%程度まで固溶し、
その前後の組成においてEuをドープして発光層を調製
しEL水素子作成すると比較的低温で成膜しても良好な
発光特性が得られることおよび適当なZ n S jQ
度に於てCRTの赤色に相当する純度の良い赤色発光が
得られることを見出し、本発明を完成した。
(Means for Solving the Problems) In order to solve the above problems, the inventors of the present invention conducted extensive studies and found that ZnS was solidly dissolved in SrS up to about 34%.
If a light-emitting layer is prepared by doping Eu with a composition before or after that and EL hydrogen atoms are created, good light-emitting properties can be obtained even if the film is formed at a relatively low temperature, and an appropriate Z n S jQ
The present invention was completed based on the discovery that highly pure red light corresponding to the red color of a CRT can be obtained at high temperatures.

すなわち本発明は、組成式が Sr   Zn  S:Euy 1−X   x (ただし、0.05≦X≦0.6゜ 0.0005<y <0.015) で表される発光層を有することを特徴とする薄膜EL素
子である。
That is, the present invention includes a light-emitting layer whose composition formula is SrZnS:Euy1-Xx (0.05≦X≦0.6°0.0005<y<0.015). This is a thin film EL device with special features.

本発明の薄膜EL索子は、第1図に示すとおりガラス等
の基板1上にIn  O、SnO2、ITOSZnO:
 A 1等の透明電極2を形成し、この透明電極2上に
Y  O、TiO,5iNsA l  O、S L A
 10 N SS t O2、Ta O、SrTiO3
等の単層あるいは多層の第一絶縁層3を形成し、さらに
その上層にSr   Zn  S:Euの発光層4、第
一絶縁層1−X   x と同様の材料からなる第二絶縁層5、A 等の背面γU
極6で構成されたものが例示できる。
As shown in FIG. 1, the thin film EL cable of the present invention is made of InO, SnO2, ITOSZnO:
A transparent electrode 2 such as A1 is formed, and Y O, TiO, 5iNsA l O, S LA
10 N SS t O2, Ta O, SrTiO3
A single or multilayer first insulating layer 3 is formed, and a light emitting layer 4 of SrZnS:Eu is formed on top of the first insulating layer 3, a second insulating layer 5 made of the same material as the first insulating layer 1-Xx, Back side γU of A etc.
An example is one composed of six poles.

本発明のEL索子におけるSr   Zn  S:1−
X   X Euの発光層において、Xが0.34以下ではほぼ10
0%のZnSがSrSに固溶し、それ以上では過剰のZ
nSの相分離が生じ、Xが0,6より大きな領域では、
分離したZnSが著しく多くなるために発光特性が低下
する。一方、Xが0.05以下では輝度向上の効果が少
ない。この領域においてCRTの赤色とほぼ同等の赤色
発光をして、しかも輝度が最も大きい。更に好ましい領
域は、0.2≦X≦0.45である。
Sr Zn S:1- in the EL cord of the present invention
X X In the Eu light-emitting layer, when X is 0.34 or less, the
0% ZnS is dissolved in SrS, and above that, excess Zn
In the region where nS phase separation occurs and X is larger than 0.6,
Since the amount of separated ZnS increases significantly, the light emitting characteristics deteriorate. On the other hand, when X is 0.05 or less, the effect of improving brightness is small. In this region, it emits red light, which is almost the same as the red color of a CRT, and has the highest brightness. A more preferable range is 0.2≦X≦0.45.

また、ドープするEuのNYが、0.0005以下の場
合、発光層の発光が弱くなり、0,2以上の場合、発光
特性が低下する傾向がある。
Further, when NY of the doped Eu is 0.0005 or less, the light emission of the light emitting layer becomes weak, and when it is 0.2 or more, the light emitting characteristics tend to deteriorate.

本発明のEL索子における発光層は蒸着法、スパッタリ
ング法、MOCVD法、ALE法等によって調製される
が、EuとSrS及びZnSを用いて、2!仮温度を1
50℃以上400℃以下に保って蒸着法あるいはスパッ
タリング法により薄膜を調製することにより、ZnSが
ZrSに充分固溶し、優れた発光特性を有する発光層が
得られるので好ましい。更に、調製後の発光層を真空中
あるいは不活性ガス雰囲気中、500℃以上で熱処理す
れば、発光層の結晶性の改善が為され、より優れた発光
特性を得ることができる。また本発明のEL水素子おけ
る発光層以外の層については従来の蒸着法、スパッタリ
ング法、MOCVD法、ALE法などにより調製するこ
とができる。
The light-emitting layer in the EL element of the present invention is prepared by a vapor deposition method, a sputtering method, an MOCVD method, an ALE method, etc., using Eu, SrS, and ZnS. Temporary temperature 1
It is preferable to prepare a thin film by a vapor deposition method or a sputtering method while maintaining the temperature at 50° C. or more and 400° C. or less, since ZnS is sufficiently dissolved in ZrS and a light emitting layer having excellent light emitting properties can be obtained. Furthermore, if the luminescent layer after preparation is heat-treated at 500° C. or higher in vacuum or in an inert gas atmosphere, the crystallinity of the luminescent layer can be improved and more excellent luminescent properties can be obtained. Further, layers other than the light-emitting layer in the EL hydrogen element of the present invention can be prepared by conventional vapor deposition methods, sputtering methods, MOCVD methods, ALE methods, and the like.

(実施例) 以下、実施例により本発明を更に具体的に説明するが、
本発明はこれらの実施例にのみ限定されるものではない
(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited only to these examples.

実施例1 第1図に示すEL水素子次の手順で作製した。Example 1 The EL hydrogen element shown in FIG. 1 was produced by the following procedure.

始めに、透明電極2をパターニングしたガラス基板1上
にSi   At   ON   の組成の5.5  
0.5 0.5 7.5 ターゲツトを用い、A r : N 2の比率を3=1
とした混合ガス中でスパッタリングを行うことにより、
厚さ200nmの第一絶縁層3を調製した。
First, on a glass substrate 1 on which a transparent electrode 2 was patterned, a film of Si At ON composition of 5.5 was deposited.
0.5 0.5 7.5 Using a target, the ratio of A r : N 2 is 3=1
By performing sputtering in a mixed gas of
A first insulating layer 3 having a thickness of 200 nm was prepared.

その後、SrSにZnSを0から50mo1%混合し、
さらにEuSを0.2mo1%混合したペレットを真空
中で電子ビーム加熱することにより、温度200℃に保
持した第一絶縁層3上に蒸むして、11000nの厚み
の発光層4を調製した。
After that, ZnS was mixed with SrS at 0 to 50 mo1%,
Furthermore, pellets containing 0.2 mo1% of EuS were heated in vacuum with an electron beam and steamed onto the first insulating layer 3 kept at a temperature of 200° C. to prepare a light emitting layer 4 with a thickness of 11000 nm.

その後、熱処理を650℃の温度で1時間、Arガス気
流中で行った後、前述の第一絶縁層3と同じ方法で厚さ
200nmの第二絶縁層5を調製し、さらにA からな
る背面電極6を電子ビーム蒸告法により調製し、薄膜E
L索子を得た。
Thereafter, heat treatment was performed at a temperature of 650° C. for 1 hour in an Ar gas stream, and then a second insulating layer 5 with a thickness of 200 nm was prepared in the same manner as the first insulating layer 3 described above, and a back surface made of A Electrode 6 was prepared by electron beam evaporation to form a thin film E.
Obtained L.

得られた薄膜EL索子の発光層中のEu6度はZ n 
S a度が変化してもほぼ0.2mo1%であった。第
2図にZnS濃度に対してEL素子の飽和輝度の変化を
示す。第2図よりEL素子の飽和輝度はZnS濃度34
 m o 196付近まで増加し、それ以上で急激に減
少している。第3図にZnS濃度31.50mo 1%
でのX線回折パターンを示す。ZnS濃度31mo1%
ではSrSとZnSの固溶体Sr   Z  Sの(2
00)面の−X  x 強い配向がみられ、分離したZnSに因るピーク強度は
極弱い。それに対してZn5a度50m01%ではSr
SとZnSの固溶体Sr   Z  Sr−X  x の(200)面と(111)面がみられ、さらに分離し
たZnSに因るピークとしてα−ZnSの(100)面
と(OO2)面がみられ、ZnSの分離が進んでいる。
The Eu6 degree in the light emitting layer of the obtained thin film EL cord is Z n
Even if the Sa degree changed, it was approximately 0.2 mo1%. FIG. 2 shows the change in saturation luminance of the EL element with respect to the ZnS concentration. From Figure 2, the saturation luminance of the EL element is at a ZnS concentration of 34.
It increases up to around m o 196 and rapidly decreases above that point. Figure 3 shows ZnS concentration 31.50mo 1%
The X-ray diffraction pattern is shown. ZnS concentration 31mo1%
Then, the solid solution SrZS of SrS and ZnS (2
A strong −X x orientation of the 00) plane is observed, and the peak intensity due to the separated ZnS is extremely weak. On the other hand, in Zn5a degree 50m01%, Sr
The (200) plane and (111) plane of Sr Z Sr-X x , a solid solution of S and ZnS, are seen, and the (100) plane and (OO2) plane of α-ZnS are also seen as peaks due to separated ZnS. , the separation of ZnS is progressing.

第4図に(200) 、(111)、(002)のピー
ク強度とZnS濃度の関係を示す。x−0,34の前後
で(200)のピーク強度は最大で、この面の配向性も
最もつよくなり、この様な配向性の向上がEL素子の輝
度の向上に貢献していると考えられる。またZn5(0
02)の強度がx>0.4で顕著に増加することから、
x >0.34での輝度の急激な低下は相分離による影
響と考えられる。
FIG. 4 shows the relationship between the peak intensities of (200), (111), and (002) and the ZnS concentration. The peak intensity of (200) is the highest around x-0,34, and the orientation on this plane is also the strongest, and it is thought that this improvement in orientation contributes to the improvement in the brightness of the EL element. . Also, Zn5(0
Since the intensity of 02) increases significantly when x>0.4,
The rapid decrease in brightness when x > 0.34 is considered to be an effect of phase separation.

第5図に!−0,33の場合の発光スペクトルを示す。In Figure 5! The emission spectrum in the case of −0,33 is shown.

比較として、S rS : Eu5CaS :EuのE
LおよびCRTの赤色(Y2O2S:Eu)のスペクト
ルも同時に示す。第6図は以上の材料のスペクトルを色
度座標に換算したものである。第6図よりx−0,33
の場合の発光色はほぼCRTの赤色に等しく、CaS 
: Euには劣るが、SrS:Euより優れている。さ
らに検討したところ、0.2≦X≦0.4の領域でCR
Tの赤色と同等の赤色発光をする薄膜EL索子が得られ
ることがわかった。
As a comparison, the E of SrS:Eu5CaS:Eu
The red (Y2O2S:Eu) spectra of L and CRT are also shown at the same time. FIG. 6 shows the spectra of the above materials converted into chromaticity coordinates. From Figure 6, x-0,33
In this case, the emitted light color is almost the same as the red of CRT, and CaS
: Inferior to Eu, but superior to SrS:Eu. After further consideration, CR in the area of 0.2≦X≦0.4
It was found that a thin film EL cord that emits red light equivalent to the red color of T can be obtained.

(発明の効果) 以上述べたとおり、本発明の薄膜EL素子は、CRTの
赤色と同等の赤色発光を呈する高輝度EL素子であり、
また発光層の成膜プロセスにおいては、150〜400
℃の基板温度で優れた発光特性を有する発光層を得るこ
とができ、この温度は基本的に低温であるために通常の
プラネタリ−型または公転ドーム型の蒸着機、あるいは
大型のスパッタリング装置等にて大面積の薄膜を形成す
ることができる。また、多色ELパネルを製造する場合
に、発光層の成膜プロセスの基板温度を200℃以下に
設定することも可能であり、その場合リフトオフ法によ
り発光層をパターニングすることができ、条件の複雑な
エッチソゲプロセスを経ることなくマルチカラーが実現
できる。
(Effects of the Invention) As described above, the thin film EL device of the present invention is a high-brightness EL device that emits red light equivalent to the red color of a CRT.
In addition, in the film formation process of the light-emitting layer, 150 to 400
A light-emitting layer with excellent light-emitting properties can be obtained at a substrate temperature of °C, and since this temperature is basically low, it cannot be used in ordinary planetary or orbiting dome-type vapor deposition equipment, or large-scale sputtering equipment. It is possible to form a thin film with a large area. In addition, when manufacturing a multicolor EL panel, it is possible to set the substrate temperature in the film formation process of the light emitting layer to 200°C or less, in which case the light emitting layer can be patterned by the lift-off method, and the conditions can be met. Multi-color can be achieved without going through a complicated etching process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄膜EL素子の構造の一例を示す図で
ある。 第2図は実施例で得られた薄膜EL素子を5kHzで交
流駆動をした場合の飽和輝度とZnS濃度の関係を示す
図である。 第3図は実施例で得られた薄膜EL素子の発光層のZ 
n S 7a度31.50mo1%でのX線回折パター
ンを示す図である。 第4図は実施例で得られた薄膜EL索子の発光層のZn
5fi度にたいして固溶体Sr   Z  Sr−x 
 x の(200)面と(111)面のピーク強度およびα−
ZnSの(002)面のピーク強度とZn濃度の関係を
示す図である。 第5図は実施例で得られた薄膜EL素子についてy、−
0,33の場合の発光スペクトルおよび、比較として、
SrS:Eu5CaS:EuのELおよびCRTの赤色
(Y2O2S:Eu)のスベクトルを示す図である。 第6図は第5図中に挙げた材料の発光スペクトルの色度
座標を示す図である。 図中、
FIG. 1 is a diagram showing an example of the structure of a thin film EL device of the present invention. FIG. 2 is a diagram showing the relationship between the saturated luminance and the ZnS concentration when the thin film EL device obtained in the example was driven with alternating current at 5 kHz. Figure 3 shows the Z of the light emitting layer of the thin film EL device obtained in the example.
It is a figure which shows the X-ray diffraction pattern at nS7a degree 31.50mo1%. Figure 4 shows the Zn of the light emitting layer of the thin film EL cord obtained in the example.
Solid solution Sr Z Sr-x for 5fi degree
The peak intensities of the (200) and (111) planes of x and α-
FIG. 3 is a diagram showing the relationship between the peak intensity of the (002) plane of ZnS and the Zn concentration. FIG. 5 shows y, - for the thin film EL device obtained in the example.
The emission spectrum in the case of 0.33 and as a comparison,
FIG. 2 is a diagram showing the EL of SrS:Eu5CaS:Eu and the red (Y2O2S:Eu) vector of CRT. FIG. 6 is a diagram showing the chromaticity coordinates of the emission spectra of the materials listed in FIG. 5. In the figure,

Claims (1)

【特許請求の範囲】[Claims] (1) 組成式が Sr_1_−_XZn_XS:Eu_Y (ただし、0.05≦x≦0.6、 0.0005<y<0.015) で表される発光層を有することを特徴とする薄膜EL素
子。
(1) A thin film EL device characterized by having a light-emitting layer whose composition formula is Sr_1_-_XZn_XS:Eu_Y (0.05≦x≦0.6, 0.0005<y<0.015) .
JP63069864A 1988-03-25 1988-03-25 Thin film el element Pending JPH01245085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069864A JPH01245085A (en) 1988-03-25 1988-03-25 Thin film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069864A JPH01245085A (en) 1988-03-25 1988-03-25 Thin film el element

Publications (1)

Publication Number Publication Date
JPH01245085A true JPH01245085A (en) 1989-09-29

Family

ID=13415091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069864A Pending JPH01245085A (en) 1988-03-25 1988-03-25 Thin film el element

Country Status (1)

Country Link
JP (1) JPH01245085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270056A (en) * 2008-05-09 2009-11-19 Sumitomo Metal Mining Co Ltd Yellow fluorophor and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270056A (en) * 2008-05-09 2009-11-19 Sumitomo Metal Mining Co Ltd Yellow fluorophor and method for producing the same

Similar Documents

Publication Publication Date Title
US5227252A (en) Electroluminescent device
US6043602A (en) Alternating current thin film electroluminescent device having blue light emitting alkaline earth phosphor
US6072198A (en) Electroluminescent alkaline-earth sulfide phosphor thin films with multiple coactivator dopants
Keir et al. Alkali metal coactivators in SrS: Cu, F thin-film electroluminescent devices
US6917158B2 (en) High-qualty aluminum-doped zinc oxide layer as transparent conductive electrode for organic light-emitting devices
JPH04363896A (en) Organic film electroluminescence element and its manufacture
US5612591A (en) Electroluminescent device
JPH0272592A (en) Film el element
JP4047095B2 (en) Inorganic electroluminescent device and manufacturing method thereof
CA2282193A1 (en) Electroluminescent phosphor thin films
JPH01245085A (en) Thin film el element
JPH0485388A (en) Organic electroluminescent element
JPH01263188A (en) Calcium tungstate luminescent thin layer and its production
JPH01245086A (en) Thin film el element and production thereof
Dimitrova et al. Red electroluminescence from ZnGaS: Mn thin films
JPH0419993A (en) Thin organic film luminescent element and manufacture thereof
JP3016323B2 (en) Electroluminescence element
JP3976892B2 (en) Thin film EL device
JP2828019B2 (en) ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD
JPH0294289A (en) Manufacture of thin film type electroluminescence element
JPH088063A (en) Thin-film blue electroluminescent element
JP3941126B2 (en) ELECTROLUMINESCENT DEVICE AND MANUFACTURING METHOD THEREOF
JPH01241793A (en) Thin film el element
JPH0367490A (en) Manufacture of sulfide phosphor thin film and thin film el element
JPS60172196A (en) Electroluminescent element and method of producing same