JPH01245070A - Foam coating resin powder composition for metal and production thereof - Google Patents

Foam coating resin powder composition for metal and production thereof

Info

Publication number
JPH01245070A
JPH01245070A JP7189388A JP7189388A JPH01245070A JP H01245070 A JPH01245070 A JP H01245070A JP 7189388 A JP7189388 A JP 7189388A JP 7189388 A JP7189388 A JP 7189388A JP H01245070 A JPH01245070 A JP H01245070A
Authority
JP
Japan
Prior art keywords
organic peroxide
coating
weight
polyethylene
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7189388A
Other languages
Japanese (ja)
Other versions
JPH0426626B2 (en
Inventor
Tokuji Ogawa
小川 徳治
Hiroki Katagiri
寛機 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7189388A priority Critical patent/JPH01245070A/en
Publication of JPH01245070A publication Critical patent/JPH01245070A/en
Publication of JPH0426626B2 publication Critical patent/JPH0426626B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition suitable for imparting metallic wires and plates with thermal insulation, sweating proofness and buffer, by incorporating a specific polyethylene resin with an organic peroxide and a foaming agent followed by kneading under specified conditions and by grinding the resultant product. CONSTITUTION:A blend comprising (A) 100pts.wt. of (i) an ethylene-vinyl acetate copolymer with a melt index of 4-60 or (ii) polyethylene with a long chain branching degree of the polymer chain and number of terminal methyl group of 3-18 per 10<3> carbon atoms, (B) 0.2-3.0pts.wt. of an organic peroxide with an one-hour half life temperature of 105-160 deg.C (e.g., dicumyl peroxide), and (C) 0.5-10pts.wt. of a foaming agent having a decomposition temperature higher than that of the component B is kneaded while keeping the temperature higher than the melting point of the component A bat lower than the decomposition temperature of the component B followed by grinding the resultant product, thus obtaining the objective composition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属表面への発泡コーティング用樹脂粉末組
成物に関し、さらに詳しくは、ポリエチレン系樹脂を主
成分として、金属線材又は板状物に断熱、結露防止、緩
衝、防振、遮音性等を付与するに好適な架橋発泡性コー
ティング用樹脂粉末組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a resin powder composition for foam coating on metal surfaces, and more particularly, it relates to a resin powder composition for foam coating on metal surfaces. The present invention relates to a crosslinked foamable coating resin powder composition suitable for imparting heat insulation, anti-condensation, buffering, vibration-proofing, sound-insulating properties, etc.

(従来の技術) ポリエチレン系樹脂粉末によるコーティングは、従来の
溶剤塗装に比較して危険な溶剤を用いないこと、塗装効
率が高いこと、−度で厚膜の塗装が可能であり、シャー
プなエツジ部の勅u性に優れること、耐久性に侵れるこ
と、安価でコーティング加工が容易である等から、皿や
ビンを乗せるラック、自転車や養殖カゴ、フェンス、パ
イプノ防食被覆として広く利用されている。
(Conventional technology) Compared to conventional solvent coating, coating with polyethylene resin powder does not use dangerous solvents, has high coating efficiency, can be coated with a thick film at -degrees, and has sharp edges. It is widely used as an anti-corrosion coating for racks for plates and bottles, bicycles, aquaculture cages, fences, and pipes because it has excellent corrosion resistance, is durable, is inexpensive, and can be coated easily. .

近年、金属との接着性を高めて防食性を改良したり、金
属表面に断熱性等の機能を持たせる工夫として、発泡コ
ーティングが注目され(特開昭49−7379号)てい
る。
In recent years, foam coatings have been attracting attention as a means to improve corrosion resistance by increasing adhesion to metals and to provide functions such as heat insulation to metal surfaces (Japanese Patent Application Laid-open No. 7379/1983).

又、最近では、自動車シートの枠線とスプリングバネ間
に発生する金属の糺み音や金属の接触音を消す方法とし
ても樹脂の発泡コーディングが種々検討されている。
In addition, various resin foam coatings have recently been studied as a method of eliminating the sound of metal pressing and metal contact that occurs between the frame line of an automobile seat and a spring spring.

例えば、塩化ビニル発泡ペーストによる方法、水酸基を
もつポリエステルまたはポリエーテル型プレポリマーと
インシアネートとの化学反応に基ずくポリウレタン発泡
による方法、ポリエチレン系樹脂に有機分解型発泡剤を
添加した粉状組成物を高温に予備加熱した金属表面に塗
着させ、100〜300℃で10分以内後加熱して発泡
被膜を塗着させる方法(特公昭53−21896号)な
どが知られている。
For example, a method using vinyl chloride foaming paste, a method using polyurethane foaming based on a chemical reaction between a polyester or polyether type prepolymer having hydroxyl groups and incyanate, and a powder composition in which an organic decomposable blowing agent is added to a polyethylene resin. There is a known method (Japanese Patent Publication No. 53-21896) in which a foamed film is applied by applying it to a metal surface that has been preheated to a high temperature and then heating it at 100 to 300° C. for less than 10 minutes.

(発明が解決すべき課題) しかし、塩化ビニル発泡ペーストによる方法は、金属と
の密着性を維持するために特殊な金属表面の前処理を必
要とする。ウレタン発泡による方法は、発泡を円滑、均
一に行なわせるためには、作業条件、環境条件を極力狭
い範囲で管理しなければならないこと、及び発泡の完了
までの作業に長時間を要するという問題点を持つ。特公
昭53−21896号による方法は、発泡セル構造を均
一微細にかつ発泡層の最大の特長である独立気泡性に高
い発泡被覆を行うには、コーティング条件の範囲が非常
に狭く、品質の安定した発泡被膜が得られていないのが
現状である。
(Problems to be Solved by the Invention) However, the method using vinyl chloride foam paste requires special pretreatment of the metal surface in order to maintain adhesion to the metal. The problem with the urethane foaming method is that in order to perform foaming smoothly and uniformly, working conditions and environmental conditions must be controlled within as narrow a range as possible, and it takes a long time to complete foaming. have. The method disclosed in Japanese Patent Publication No. 53-21896 requires a very narrow range of coating conditions to achieve a foam coating with a uniform and fine foam cell structure and high closed-cell properties, which is the greatest feature of foam layers, and the quality is stable. At present, it is not possible to obtain a foamed film with a high quality.

本出願人は、先にカーペットバッキング用組成物として
、ポリエチレン系樹脂を主成分とする架橋発泡用粉末ポ
リエチレン組成物を提案し、(特開昭62−17204
1 )発泡セル構造の均−性及び独立気泡性を高めて高
発泡倍率にしてカーペットをバッキングする技術を完成
した。
The present applicant had previously proposed a powder polyethylene composition for cross-linking and foaming containing a polyethylene resin as a main component as a composition for carpet backing.
1) We have completed a technology for backing carpets by increasing the uniformity and closed cell nature of the foam cell structure and achieving a high expansion ratio.

本発明者等は、上述の従来品の欠点を解決するため、特
に発泡被覆の品質安定化問題について架橋発泡用粉末ポ
リエチレン組成物を、更に鋭意研究した結果、架橋反応
性の高い特定のポリエチレン系樹脂を用いることにより
、容易に安定化した架橋発泡被膜が得られることを見い
出し、本発明を完成するに至った。
In order to solve the above-mentioned drawbacks of the conventional products, the present inventors conducted further intensive research into powder polyethylene compositions for cross-linking and foaming, especially regarding the problem of stabilizing the quality of foam coatings. The present inventors have discovered that a stabilized crosslinked foam coating can be easily obtained by using a resin, and have completed the present invention.

(課題解決の手段と効果) 本発明は (1)  メルトインデックスが4以上60以下の範囲
にあるエチレン酢酸ビニル共重合体、または重合体鎖の
長鎖分岐度及び末端メチル基が103炭素原子当りそれ
ぞれ3個以上及び18個以上のポリエチレン100重量
部と1時間の半減期温度が105℃以上160℃以下の
範囲にある有機過酸化物0.2〜3.0重量部と、前記
有機過酸化物と同等又はそれよりも高い分解温度を有す
る発泡剤0.5〜10重量部とからなり、かつ、粒径5
00μ以下であることを特徴とする金属への発泡コーテ
ィング用樹脂粉末組成物 (2)  メルトインデックスが4以上60以下の範囲
にあるエチレン酢酸ビニル共重合体、または重合体鎖の
長鎖分岐度及び末端メチル基が103炭素原子当りそれ
ぞれ3個以上及び18個以上のポリエチレン100重量
部と1時間の半減期温度が105℃以上160℃以下の
範囲にある有機過酸化物0.2〜3.0重量部と、前記
有機過酸化物と同等又はそれよりも高い分解温度を有す
る発泡剤0.5〜10重量部とを混合し、前記エチレン
酢酸ビニル共重合体、またはポリエチレンの融点以上、
前記有機過酸化物の分解温度未満に維持しつゝ混練した
後、粒径500μ以下に粉砕することを特徴とする金属
への発泡コーティング用樹脂粉末組成物の製造法 を提供する。
(Means and Effects for Solving the Problems) The present invention provides (1) an ethylene-vinyl acetate copolymer having a melt index in the range of 4 to 60, or a long chain branching degree of the polymer chain and a terminal methyl group per 103 carbon atoms. 100 parts by weight of polyethylene containing 3 or more polyethylenes and 18 or more polyethylenes, 0.2 to 3.0 parts by weight of an organic peroxide having a one-hour half-life temperature in the range of 105°C or more and 160°C or less, and the organic peroxide. 0.5 to 10 parts by weight of a blowing agent with a decomposition temperature equal to or higher than that of the foam, and with a particle size of 5.
Resin powder composition for foam coating on metal (2) characterized by having a melt index of 4 or more and 60 or less, or an ethylene vinyl acetate copolymer having a melt index in the range of 4 or more and 60 or less, or a long chain branching degree of the polymer chain and 100 parts by weight of polyethylene having 3 or more terminal methyl groups and 18 or more terminal methyl groups per 103 carbon atoms, respectively, and 0.2 to 3.0 parts of an organic peroxide having a one-hour half-life temperature in the range of 105°C to 160°C. parts by weight and 0.5 to 10 parts by weight of a blowing agent having a decomposition temperature equivalent to or higher than that of the organic peroxide, and the melting point of the ethylene-vinyl acetate copolymer or polyethylene is mixed,
Provided is a method for producing a resin powder composition for foam coating on metal, which comprises kneading the composition while maintaining the temperature below the decomposition temperature of the organic peroxide, and then pulverizing the composition to a particle size of 500 μm or less.

本発明の樹脂粉末組成物を用いることにより、発泡コー
ティング加工条件の範囲が大巾に広がり、均−微細で独
立気泡性の高い発泡コーティング被膜が容易に得られる
。本発明で肝要なこととしては、ポリエチレン系樹脂は
、有機過酸化物による架橋反応性の高いエチレン酢酸ビ
ニル共重合体あるいは特定の長鎖分岐度と末端メチル基
を有するポリエチレンであること、ポリエチレン系樹脂
に配合する有機過酸化物と発泡剤の分解温度の関係にお
いて有機過酸化物が発泡剤と同等あるいは発泡剤より低
い分解温度を有することが大切である。
By using the resin powder composition of the present invention, the range of foam coating processing conditions is widened, and a foam coating film with uniform, fine, and highly closed-cell properties can be easily obtained. What is important in the present invention is that the polyethylene resin is an ethylene vinyl acetate copolymer with high crosslinking reactivity with organic peroxides or polyethylene having a specific degree of long chain branching and a terminal methyl group; Regarding the relationship between the decomposition temperature of the organic peroxide blended into the resin and the blowing agent, it is important that the organic peroxide has a decomposition temperature equal to or lower than the blowing agent.

すなわち、発泡剤の分解に先立ち有機過酸化物が分解し
、ポリエチレン分子間に化学結合を生ビしめ、発泡に適
した溶融粘度を与えることである。
That is, the organic peroxide decomposes prior to the decomposition of the foaming agent, creating chemical bonds between polyethylene molecules and providing a melt viscosity suitable for foaming.

本発明で用いられるベースレジンは、メルトインデック
ス(以下MIと記す)が4以上60以下の範囲(JIS
 K6760に準じて測定する)にあるエチレン酢酸ビ
ニル共重合体あるいは重合体鎖の長鎖分岐度及び末端メ
チル基が103炭素原子当シそれぞれ3個以上及び18
個以上の、d リエチレン(好ましくは密度が0.91
〜0.9397cm3の範囲にある低密度ポリエチレン
)である。
The base resin used in the present invention has a melt index (hereinafter referred to as MI) in the range of 4 to 60 (JIS
The long chain branching degree of the ethylene vinyl acetate copolymer or polymer chain (measured according to K6760) and the terminal methyl group per 103 carbon atoms are 3 or more and 18, respectively.
d polyethylene (preferably with a density of 0.91
~0.9397 cm3).

また本発明にいうポリエチレンとしては前記ポリエチレ
ンに必要に応じてエチレン系共重合体、例、t ハエチ
レン酢酸ビニル(EVA)、エチレン−エチルアクリレ
ート(ERA)、エチレン−アクリル1(EAA)、エ
チレン−メチルアクリレート(EMA)、共重合体ある
いはアイオノマー樹脂の一種もしくは二種以上の重合体
を50%以下配谷したものも好適に適用しうる。ポリエ
チレン単独で弾力性が低い場合にポリエチレンとBVA
 、 ERA 、 EMAなどとのブレンド系を用いる
と適宜な緩衝性が与えられる。金属と強固な密着力を要
求される場合には、FAAあるいはアイオノマー樹脂な
どとのブレンド系が好ましく用いられる。MIが4未満
では、溶融流動性が低く、コーティング被膜の平滑性に
劣る外観となシ好ましくない。またMIが60を超える
と、溶融時の流動性が高過ぎて発泡セルが不均一となり
良好な発泡被膜が得られない。
In addition, the polyethylene referred to in the present invention may be an ethylene copolymer, such as ethylene vinyl acetate (EVA), ethylene-ethyl acrylate (ERA), ethylene-acrylic 1 (EAA), or ethylene-methyl, if necessary. A material containing 50% or less of one or more of acrylate (EMA), a copolymer, or an ionomer resin can also be suitably used. Polyethylene and BVA when polyethylene alone has low elasticity
, ERA, EMA, etc. can be used to provide appropriate buffering properties. When strong adhesion to metal is required, a blend system with FAA or ionomer resin is preferably used. If the MI is less than 4, the melt fluidity is low and the coating film has an appearance with poor smoothness, which is not preferable. If the MI exceeds 60, the fluidity during melting will be too high and the foamed cells will be non-uniform, making it impossible to obtain a good foamed coating.

ポリエチレン重′合体鎖の長鎖分岐度は、高分子学会綿
 培風館(株)発行の高分子の分子設計I(分子設計の
基礎)ページ109〜130に報告される“粘度とGP
Oによる長鎖分岐度の定量”によシ測定される。(以下
、本発明では長鎖分岐度をLOBと称する。) ポリエチレンの分岐度は、 A、 H,Wlllbou
rn 、 J @Polymer Sci、、 34.
569(1959)、に報告される赤外線分光分析技術
によりポリエチレン鎖103炭素原子当りの末端メチル
基数によって表わされ、ASTM D2238に規定さ
れた方法により、1378crn−亀。
The degree of long chain branching of polyethylene polymer chains is reported in “Molecular Design of Polymers I (Fundamentals of Molecular Design)” published by Watama Baifukan Co., Ltd., pages 109-130 of “Viscosity and GP
(Hereinafter, in the present invention, the degree of long chain branching is referred to as LOB.) The degree of branching of polyethylene is determined by A, H, Wlllbou.
rn, J@Polymer Sci,, 34.
569 (1959), expressed by the number of terminal methyl groups per 103 carbon atoms of the polyethylene chain, and according to the method specified in ASTM D2238, 1378 crn-tortoise.

1303 cm−”の赤外線吸収強度から測定される。It is measured from the infrared absorption intensity of 1303 cm-''.

この様にエチレン酢酸ビニル共重合体あるいは長鎖分岐
度及び末端メチル基数の多いポリエチレンは、有機過酸
化物による架橋反応性が特に高く、発泡コーティング加
工時の発泡特性が大巾に改善される。
As described above, ethylene vinyl acetate copolymer or polyethylene having a high degree of long chain branching and a large number of terminal methyl groups has particularly high crosslinking reactivity with organic peroxides, and the foaming properties during foam coating processing are greatly improved.

すなわち、発泡剤の分解に先立ち、ポリエチレン系樹脂
を効率的に架橋することから、樹脂の溶融粘弾性が高く
なシ、均一微細な独立気泡が生成し、かつ発泡剤の有効
利用率が高く、高発泡倍率の被覆が可能となる。
That is, since the polyethylene resin is efficiently crosslinked prior to the decomposition of the blowing agent, the melt viscoelasticity of the resin is high, uniform fine closed cells are generated, and the effective utilization rate of the blowing agent is high. Enables coating with high expansion ratio.

本発明で用いる有機過酸化物は、発泡の際に発泡セルの
膜強度を与えるべく樹脂の溶融粘度を上げる様に作用す
るものであシ、1時間の半減期が105℃以上160℃
以下のものでちる。これが105℃未満の場合には、コ
ーティング加工時に架橋反応が早く起りすぎ、良好な発
泡被膜の外観が得られないばかりか、本組成物を製造す
る際の加熱混練時に早期架橋が発生し好ましくない。
The organic peroxide used in the present invention acts to increase the melt viscosity of the resin to provide film strength to the foamed cells during foaming, and has a half-life of 105°C or more and 160°C per hour.
Use the following items. If this temperature is less than 105°C, the crosslinking reaction will occur too quickly during coating processing, and not only will a good appearance of the foamed film not be obtained, but also premature crosslinking will occur during heating and kneading during the production of this composition, which is undesirable. .

一方、160℃を超えると架橋前に発泡剤の分解が起り
、発泡セルの膜強度が不充分となり、均一な発泡ヒル、
独立気泡性の高い発泡被膜が得られない。好ましい有機
過酸化物としては、1時間の半減期温度が115℃〜1
50℃の範囲である。具体例として、・ククミルA−オ
キサイド(137℃)、1.3−ビス(ターシャリブチ
ルパーオキシイソプロビル)ベンゼン(141℃)、 
2,5−ジメチル−2,5−ジ(ターシャリブチルパー
オキシ)ヘキサン(138℃)、2.5−・ジメチル−
2,5−ジ(ターシャIJ フチルバーオキシ)ヘキシ
ン・−3(148℃)、1.1−ビス(ターシャリブチ
ルパーオキシ)3゜3 、5−トリメチルシクロヘキサ
ン(116℃)等であるが有機過酸化物の分解残査に不
快臭の残らない1,3−ビス(ターシャリプチルノミ−
オキシイソプロピル)ベンゼンが好適である。゛()内
数字は、半減基が1時間となる温度であシ、以下分解温
度と称する。
On the other hand, if the temperature exceeds 160°C, the foaming agent decomposes before crosslinking, and the membrane strength of the foamed cells becomes insufficient, resulting in a uniform foamed hill,
A foam coating with high closed cell properties cannot be obtained. Preferred organic peroxides have a half-life temperature of 115°C to 1 hour.
The temperature range is 50°C. Specific examples include Cucumyl A-oxide (137°C), 1,3-bis(tert-butylperoxyisopropyl)benzene (141°C),
2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (138°C), 2,5-dimethyl-
Although organic 1,3-bis(tertiarybutyl) does not leave any unpleasant odor in the residue of peroxide decomposition.
oxyisopropyl)benzene is preferred. The number in parentheses is the temperature at which the half-reduced group lasts for 1 hour, hereinafter referred to as the decomposition temperature.

有機過酸化物の配合量は、個々の活性によシ異るが、通
常ベースレジン100重量部に対し、0.2〜3.0重
量部、好ましくは0.5〜1.5重量部の範囲で選ばれ
る。配合量が0.2重量部未満では、架橋度不足となり
発泡コーティング時の溶融粘度が低く、発泡セルが粗大
となシ本発明に適合しない。
The amount of organic peroxide blended varies depending on the individual activity, but is usually 0.2 to 3.0 parts by weight, preferably 0.5 to 1.5 parts by weight, per 100 parts by weight of the base resin. selected within the range. If the amount is less than 0.2 parts by weight, the degree of crosslinking will be insufficient, the melt viscosity during foam coating will be low, and the foam cells will become coarse, which is not compatible with the present invention.

一方、3重量部を超えると必要以上の配合量となシ、経
済的でないばかシか、溶融粘度が高くなシすぎ、樹脂の
流動性が著しく阻害され、発泡の障害となってくる。
On the other hand, if it exceeds 3 parts by weight, the amount will be more than necessary, it will be uneconomical, the melt viscosity will be too high, and the fluidity of the resin will be significantly inhibited, which will impede foaming.

本発明で用いる発泡剤は、加熱によって分解しガスが発
生する分解型有機発泡剤である。分解温度は、本発明で
用いる有機過酸化物と同等か又はそれよりも高い分解温
度を有するもので、好ましくは120〜210℃の範囲
のものである。そして好ましい発泡剤の粒径は、50μ
以下のものでちる。
The blowing agent used in the present invention is a decomposable organic blowing agent that decomposes upon heating and generates gas. The decomposition temperature is equivalent to or higher than that of the organic peroxide used in the present invention, and is preferably in the range of 120 to 210°C. The preferred particle size of the blowing agent is 50μ.
Use the following items.

発泡剤の粒径が50μを超えると、局部的に大きな気泡
を生じ不均一発泡となる傾向を生ずる場合がある。この
場合は発泡被膜の外観が劣るものとなる。発泡剤粉末は
、一般に粒径に分布を有しているが、本発明でいう粒径
は全体の中で重量的に最も多く占めている粒径範囲の中
央値(代表値)として表わしたものである。粒径の測定
方法としては、市販の沈降法を用いる粒度分布測定装着
により容易に測定される。
If the particle size of the foaming agent exceeds 50 μm, large bubbles may be generated locally, which may tend to result in non-uniform foaming. In this case, the appearance of the foamed coating will be poor. Foaming agent powder generally has a distribution in particle size, but the particle size in the present invention is expressed as the median value (representative value) of the particle size range that occupies the largest proportion by weight of the entire powder. It is. The particle size can be easily measured using a particle size distribution measuring device using a commercially available sedimentation method.

発泡剤の具体例としては、アゾジカルゼンアミド(20
0〜210℃)、4.4′−オキシビスベンゼンスルホ
ニルヒドラジッド(155〜160℃)、ジニトロンペ
ンタメチレンテトラミン(200〜205℃)等である
が、アゾジカルゼンアミドに発泡助剤を加え、分解温度
を150〜200℃に調節したものが好適である。()
内数字は、分解温度を示し、流動パラフィン中で2℃/
分の割合で昇温させた時に最も激しく分解ガスを発生す
る温度として定義される。
Specific examples of blowing agents include azodicarzenamide (20
0-210°C), 4,4'-oxybisbenzenesulfonyl hydrazide (155-160°C), dinitrone pentamethylenetetramine (200-205°C), etc.; , one whose decomposition temperature is adjusted to 150 to 200°C is suitable. ()
The numbers inside indicate the decomposition temperature, which is 2°C/2°C in liquid paraffin.
It is defined as the temperature at which the most violent decomposition gas is generated when the temperature is increased at a rate of 100 min.

分解温度が120℃未満のものでは、本発明の組成物を
押出機でもって練込む際に発泡し、好ましくないばかり
か発泡コーティング時にも均一な発泡セルが得られない
If the decomposition temperature is lower than 120° C., the composition of the present invention will foam when kneaded with an extruder, which is not only undesirable but also makes it impossible to obtain uniform foam cells during foam coating.

210℃を超えた分解温度では、架橋発泡に長時間を要
し、好ましくない。最も好ましい分解温度は150〜2
00℃の範囲である。
A decomposition temperature higher than 210°C is undesirable because it takes a long time for crosslinking and foaming. The most preferable decomposition temperature is 150-2
It is in the range of 00°C.

発泡助剤としては、金属石ケン類ないし金属酸化物があ
げられる。本発明の組成物には、アゾジカルゼンアミド
に亜鉛華、三塩基性硫酸鉛等の無機塩、ステアリン酸亜
鉛、ステアリン酸鉛、ステアリン酸マグネシウム等の金
属石ケンおよび尿素化合物の一種又は二種以上の混合が
好ましい。発泡助剤の添加量としては、発泡剤と1:1
〜1:0.1の範囲で配合して用いる。
Examples of foaming aids include metal soaps and metal oxides. The composition of the present invention includes azodicarzenamide, inorganic salts such as zinc white and tribasic lead sulfate, metal soaps such as zinc stearate, lead stearate, and magnesium stearate, and one or two kinds of urea compounds. The above mixing is preferred. The amount of foaming aid added is 1:1 with the foaming agent.
It is used by blending in the range of ~1:0.1.

本発明の樹脂粉末組成物は、ぼりエチレン系樹脂粉末と
有機過酸化物、発泡剤を単にトライブレンドするだけで
も可能であるが 粉末組成物を長時間使用中にポリエチ
レン系樹脂粉末と発泡剤粉末が分離し、その初期発泡性
との間に有意差が生じる欠点がある場合がある。従2て
、本発明では、好ましくはこれらの混合組成を押出機中
で架橋発泡しない様にポリエチレン系樹脂の融点以上で
有機過酸化物の分解温度以上に維持して溶融混線して造
粒し、次いで公知の方法で粉砕される。粉砕は例えば機
械的に粉砕機で粉砕する方法が一般的である。ポリエチ
レン系樹脂の融点は、示差走査熱量計で8℃/分の昇温
速度で融解曲線を測定した時のピーク温度である。本発
明の樹脂粉末組成物に、さらに必要により、他の添加剤
、例えば着色顔料、抗酸化剤や耐候剤の樹脂安定剤、帯
電防止剤、滑剤等を適宜配合することも可能である。
The resin powder composition of the present invention can be produced by simply tri-blending the polyethylene resin powder, organic peroxide, and blowing agent. There may be a drawback that the foam separates and there is a significant difference in its initial foamability. Therefore, in the present invention, these mixed compositions are preferably maintained at a temperature higher than the melting point of the polyethylene resin and higher than the decomposition temperature of the organic peroxide in an extruder so as not to cross-link and foam, and then melted and mixed to form granules. , and then ground in a known manner. A common method of pulverization is, for example, mechanically pulverizing with a pulverizer. The melting point of the polyethylene resin is the peak temperature when a melting curve is measured using a differential scanning calorimeter at a heating rate of 8° C./min. If necessary, other additives, such as coloring pigments, antioxidants, weathering agents, resin stabilizers, antistatic agents, lubricants, etc., may be appropriately blended into the resin powder composition of the present invention.

本発明の樹脂粉末組成物の粒径は、500μ以下であシ
、好ましくは70〜250μの範囲のものを用いると良
好な塗膜が得られる。粉末の粒径は、各種コーティング
方法によシ異り、粒径が大きすぎるとコーティングムラ
が生じ、平滑な被膜が得られず外観が悪くなる。例えば
、静電塗装法では比較的細かい粒径の粉末が使用され、
特に150μ以下のものが好んで用いられる。散布法お
よび流動浸漬塗装法では350μ程度の粗い粉末も使用
し得るが70〜250μの範囲の粉末が好んで用いられ
る。
The particle size of the resin powder composition of the present invention should be 500 microns or less, preferably in the range of 70 to 250 microns, to obtain a good coating film. The particle size of the powder varies depending on the various coating methods; if the particle size is too large, uneven coating will occur, and a smooth coating will not be obtained, resulting in poor appearance. For example, electrostatic coating uses powder with a relatively fine particle size;
In particular, those of 150μ or less are preferably used. Powders as coarse as 350 microns may be used in the scattering method and the fluidized dip coating method, but powders in the range of 70 to 250 microns are preferably used.

樹脂粉末は、一般に粒径に分布を有し、本発明でいう粒
径とは全体の中で重量的に最も多くを占める粒径を代表
値として表わしだものである。粒径の測定方法としては
、標準フルイ(JIS Z8801に規定される)によ
るふるい分は法が用いられる。
Resin powder generally has a distribution in particle size, and the particle size in the present invention is expressed as a representative value of the particle size that occupies the largest proportion by weight in the whole. As a method for measuring the particle size, the sieving method using a standard sieve (defined in JIS Z8801) is used.

本発明の粉末組成物を適用する金属の被塗物としては、
鉄、鋼、亜鉛、ニッケル、アルミニウム、銅及びこれら
金属の合金等であり、軟鋼の線材や板状物が広く利用さ
れるものである。
Metal objects to which the powder composition of the present invention is applied include:
These metals include iron, steel, zinc, nickel, aluminum, copper, and alloys of these metals, and mild steel wires and plates are widely used.

本発明に於ける金属への発泡コーティングは、樹脂粉末
組成物を金属表面に塗着させ、発泡剤の分解温度以上に
樹脂を加熱して溶融、架橋発泡せしめる。金属表面に塗
着させる具体的方法としては、流動浸漬塗装法、静電温
浸法、静電吹き付は法等が用いられる。
In the foam coating on metal in the present invention, a resin powder composition is applied to the metal surface, and the resin is heated above the decomposition temperature of the foaming agent to melt and crosslink and foam. As a specific method for coating the metal surface, a fluidized dip coating method, an electrostatic dipping method, an electrostatic spraying method, etc. are used.

(実施例) 以下実施例をあげて本発明をさらに詳細に説明するが、
本発明は、この実施例に限定されるものではない。
(Example) The present invention will be explained in more detail with reference to Examples below.
The invention is not limited to this example.

なお、各実施例において得られた発泡コーティング被膜
につき、(1)被膜の外観、(2)発泡倍率、(3)気
泡セル構造及び均一性、(4)遮音性はそれぞれ下記の
方法によった。
For the foamed coating films obtained in each example, (1) film appearance, (2) foaming ratio, (3) cell structure and uniformity, and (4) sound insulation properties were determined by the following methods. .

(1)被膜の外観;肉眼観察で、被膜表面に50μ以上
の大きさの気泡の脱泡跡が見られないものを良好とし、
大きな脱泡跡の存在するものを不良とした。
(1) Appearance of the coating: If no trace of defoaming of air bubbles with a size of 50μ or more is observed on the coating surface by naked eye observation, it is considered good.
Those with large traces of defoaming were judged to be defective.

(2)発泡倍率;発泡倍率をB、発泡波°膜の密度ρ′
、樹脂密度ρとした時、B=ρ/ρ′として求めた。
(2) Foaming ratio: The foaming ratio is B, and the density of the foamed wave membrane is ρ'
, when the resin density is ρ, it was determined as B=ρ/ρ'.

(3)気泡セル構造及び均一性;被膜断面を顕微鐘で観
察し、気泡の大きさ、発泡セルの分布、均一性を調べた
。気泡の大きさが500μ以下で均一に分布しているも
のを良好とし、粗大な気泡、特に空洞の発生や連通的な
気泡の発生が多い場合には不良とした。
(3) Cell structure and uniformity: The cross section of the film was observed using a microscope to examine the size of the bubbles, the distribution and uniformity of the foam cells. A case where the bubble size was 500 μm or less and was uniformly distributed was considered good, and a case where there were many occurrences of coarse bubbles, particularly cavities or continuous bubbles, was judged as poor.

(4)遮音性;コーティング被膜に直径4■の鋼線を打
ち付けたときに甲高い金属音が発生する場合は、遮音性
不良とし、金属音が消えて低い音になった場合は遮音性
良好とした。
(4) Sound insulation: If a high-pitched metallic sound is generated when a steel wire with a diameter of 4 mm is nailed to the coating, the sound insulation is considered to be poor, and if the metallic sound disappears and becomes a low sound, the sound insulation is considered to be good. did.

実施例1,2,3.4 ベースレジンのポリエチレントシて、 (A ) ; MI = 25 f、、、’ 10分、
LOB = 11個/1030、末端メチル基数229
個/1030 [B);MI=50r710分、LOB=14個/ 1
0” O。
Examples 1, 2, 3.4 Base resin polyethylene (A); MI = 25 f,...' 10 minutes,
LOB = 11/1030, number of terminal methyl groups 229
pieces/1030 [B); MI=50r710 minutes, LOB=14 pieces/1
0” O.

末端メチル基数=30個/10”0 [0);MI=1ot/lo分、LOB=4.5個71
030゜末端メチル基数=22個/10”0 (D);Mx=s’、/10分、LOB=5.5個/1
03C1末端メチル基数=24個/10”0 を用い、これに有機過酸化物として、1.1−ビス(タ
ーシャリブチルノぞ−オキシイソプロビル)ベンゼン(
化薬スーリー製、1時間の半減期 温度=141℃、商
品名、パーカドツクスー14)、を1重量%と発泡剤と
してアゾジカルゼンアミド(水和化成製、商品名、ビニ
ホールSW”?、公憤温度=170℃、粒径=15μ)
を4重量%、黒色顔料としてカーはンブラックを0.5
重量%配合し、ドラム型ブレンダーで予備混合し、田辺
鉄工型の40洞φ押出機を用い樹脂温度130℃で溶融
混練し、直径約3鴫の粒子に造粒した。次にホンカワミ
クロン製ビクトリーミル粉砕機を用い機械的に粉砕し、
350μの篩で分級し、74〜350μの範囲に分布し
た粒径250μの発泡コーティング用樹脂粉末組成物を
調整した。この粉末組成物を、流動槽中で流動させ、こ
の中に300℃×4分間予熱した厚さ1.6国、大きさ
40X100■の銅板を5秒間浸漬したのち、180℃
で1分間焼付けを行い、次いて自然冷却し、厚さ約1.
5咽の発泡被膜を得た。
Number of terminal methyl groups = 30 pieces/10"0 [0); MI = 1ot/lo minute, LOB = 4.5 pieces 71
030° Number of terminal methyl groups = 22 pieces/10"0 (D); Mx = s', /10 minutes, LOB = 5.5 pieces/1
03C1 number of terminal methyl groups = 24/10''0 was used, and 1,1-bis(tert-butylnozo-oxyisopropyl)benzene (
Made by Kayaku Thule, 1 hour half-life Temperature = 141°C, trade name, Parkadotsu 14), 1% by weight and azodicarzenamide (made by Hydration Kasei, trade name, Vinyhole SW"?, common temperature) as a blowing agent. = 170℃, particle size = 15μ)
4% by weight, and 0.5% of carton black as a black pigment.
% by weight, premixed using a drum-type blender, melt-kneaded using a Tanabe Tekko type 40-hole φ extruder at a resin temperature of 130° C., and granulated into particles with a diameter of about 3 mm. Next, it is mechanically crushed using a Honkawa Micron Victory Mill crusher.
The resin powder composition for foam coating was classified using a 350μ sieve and had a particle size of 250μ distributed in the range of 74 to 350μ. This powder composition was fluidized in a fluidized bath, and a copper plate of thickness 1.6 mm and size 40 x 100 cm, which had been preheated at 300°C for 4 minutes, was immersed therein for 5 seconds, and then heated to 180°C.
Baked for 1 minute, then naturally cooled to a thickness of about 1.
A foam coating of the fifth throat was obtained.

この発泡被膜について、外観の観察、発泡倍率、気泡セ
ル構造及び均一性、遮音性等の被膜性能を試験し、その
結果を第−表は示す。又、発泡被膜の架橋度を、デカリ
ンネ溶分として測定したところ、40〜60%の不溶分
率が得られた。第−表から明らかな様に、いずれの場合
も良好な外観を示し、十分高い発泡倍率を示しており、
また気泡セルが均一微細で遮音性の高い発泡コーティン
グ被膜が得られている。
This foamed coating was examined for its appearance, foaming ratio, cell structure and uniformity, and coating performance such as sound insulation, and the results are shown in Table 1. Further, when the degree of crosslinking of the foamed coating was measured as a decalinne soluble content, an insoluble content of 40 to 60% was obtained. As is clear from Table 1, in all cases, the appearance was good and the foaming ratio was sufficiently high.
In addition, a foamed coating film with uniform and fine bubble cells and high sound insulation properties has been obtained.

以下余白 比較例1,2,3.4 実施例1で用いた。[リエチレンの代わシに(E] ;
 MI=2(1/10分、LOB=3.5個/103C
1末端メチル基数=1(is’/1030[F ] ;
 MI=79710分、LCB=0.5個/1θ30゜
末端メチル基数= 17 r/1030CG〕;MI=
1.5f/10分、LOB = 5.3([11030
、末端メチル基数= 23 t/1030[H] ; 
Mx=25F、/10分、LOB=0個/1030、末
端メチル基数=12f/1030 (ダウケミカル族、商品名、ダウレックス2552)を
用いた以外は、実施例1と同様にして、発泡コーティン
グ用樹脂粉末組成物を調整し、実施例1と同一条件で、
発泡被膜を得た。この発泡被膜の性能を試験し、その結
果を第2表に示す。
The following margin comparison examples 1, 2, 3.4 were used in Example 1. [In place of lyethylene (E);
MI=2 (1/10 min, LOB=3.5 pieces/103C
Number of 1-terminal methyl groups = 1 (is'/1030[F];
MI=79710 min, LCB=0.5 pieces/1θ30° number of terminal methyl groups=17 r/1030CG]; MI=
1.5f/10min, LOB = 5.3([11030
, number of terminal methyl groups = 23 t/1030 [H];
Foam coating was carried out in the same manner as in Example 1, except that Mx = 25F, /10 minutes, LOB = 0 pieces / 1030, number of terminal methyl groups = 12f / 1030 (Dow Chemical Group, trade name, Dowlex 2552) was used. A resin powder composition was prepared, and under the same conditions as in Example 1,
A foamed coating was obtained. The performance of this foam coating was tested and the results are shown in Table 2.

以下余白 ポリエチレンの種類、[E)、 CF)、 (Hlの発
泡塗膜の架柵度をデカリンネ溶分として測定したところ
、5%以下の不溶分率で殆んど架橋していないものであ
った。一方、〔G〕の発泡塗膜はデカリンネ溶分率が5
0%であシ、架橋性の高いものであるが樹脂MIが低く
、発泡不完全及び塗膜の平滑性に劣り、表面に凹凸の激
しい塗膜となった。
The following are the types of margin polyethylene: [E), CF), (Hl) When the degree of crosslinking of the foamed coating film was measured as the decalinne soluble content, it was found that there was almost no crosslinking with an insoluble content of 5% or less. On the other hand, the foamed coating film [G] had a decalinne solubility of 5.
At 0%, the crosslinkability was high, but the resin MI was low, foaming was incomplete, the coating film was poor in smoothness, and the coating film had a highly uneven surface.

(El、rF)、(H)の発泡塗膜は、殆んど架橋して
いないため、発泡時の気泡保持安定性が悪く、粗大セル
となり、発泡不均一で連続気泡の多い遮音性の低い塗膜
である。
The foamed coating films of (El, rF) and (H) have almost no crosslinking, so they have poor bubble retention stability during foaming, resulting in coarse cells, non-uniform foaming, and poor sound insulation with many open cells. It is a coating.

実施例5,6,7.8 実施例1で用いたポリエチレン(Alに、エチレン−酢
酸ビニル共重合体(EVA;脂化成製 EM−5822
、Mt = 22 )、エチレン−エチルアクリレート
共重合体(EEA;日本ユニカー製 DPDJ 802
6 、  しMt=17)、エチレン−アクリル酸共重
合体(BAA;三菱油化製 A−210M、MI=9)
、エチレン系アイオノマー樹脂(三井ポリケミカル製 
サーリン1652 、 MI=5 )、を各々25重量
%配合した以外は、実施例1と同様にして発泡コーティ
ング用樹脂粉末組成物を調整し、実施例1と同一条件で
発泡被膜を得た。
Examples 5, 6, 7.8 Polyethylene (Al used in Example 1) and ethylene-vinyl acetate copolymer (EVA; manufactured by Fukaisei Co., Ltd. EM-5822)
, Mt = 22), ethylene-ethyl acrylate copolymer (EEA; DPDJ 802 manufactured by Nippon Unicar)
6, Mt=17), ethylene-acrylic acid copolymer (BAA; Mitsubishi Yuka A-210M, MI=9)
, ethylene ionomer resin (manufactured by Mitsui Polychemicals)
A resin powder composition for foam coating was prepared in the same manner as in Example 1, except that 25% by weight of each of Surlyn 1652 (MI=5) was blended, and a foam coating was obtained under the same conditions as in Example 1.

この発泡被膜の性能を試験し、その結果を第3表に示す
The performance of this foam coating was tested and the results are shown in Table 3.

良好な発泡4IL膜が得られており、更に実施例5゜6
.7は、塗膜表面が軟かく、クツション性に優れており
、耐衝撃性の高いものでちる。実施例7゜8の発泡被膜
は、銅板との密着力に優れたものであった。
A good foamed 4IL film was obtained, and Example 5゜6
.. 7 has a soft coating surface, excellent cushioning properties, and high impact resistance. The foam coating of Example 7.8 had excellent adhesion to the copper plate.

以下余白 実施例9 有機過酸化物としてジクミルパーオキサイド(日本油脂
製、)ξ−クミルD 分解温度=137℃)を用いた以
外は実施例1と同様に評価し、その結果を第4表にまと
めて示す。
Below is the blank space Example 9 Evaluation was carried out in the same manner as in Example 1 except that dicumyl peroxide (manufactured by NOF Corporation, ) ξ-cumyl D (decomposition temperature = 137°C) was used as the organic peroxide, and the results are shown in Table 4. are summarized in

実施例10 実施例9の有機過酸化物の配合量を%とじ、発泡剤の種
類をビニホールSE”30 (永和化成製、アゾジカル
ゼンアミド系、粒径15μ、分解温度=142℃)を用
いた以外は、実施例9と同様に評価し、その結果を第4
表にまとめて示す。
Example 10 The blending amount of the organic peroxide in Example 9 was changed to %, and the blowing agent was changed to Vinyhole SE"30 (manufactured by Eiwa Kasei, azodicarzenamide type, particle size 15μ, decomposition temperature = 142°C). The evaluation was carried out in the same manner as in Example 9, except that
They are summarized in the table.

実施例11 実施例9の有機過酸化物の配合量を2倍とし、発泡剤の
種類を4,4′−オキシビスにンゼンスルホニルヒドラ
ジット(永和化成製、ネオセルぜンI”1000.粒径
25μ、分解温度=155℃)に代えた以外は、実施例
9と同様に評価し、その結果を第4表にまとめて示す。
Example 11 The amount of organic peroxide compounded in Example 9 was doubled, and the type of blowing agent was 4,4'-oxybis-benzenesulfonylhydrazide (Eiwa Kasei, Neocelzen I" 1000. Particle size 25 μm). , decomposition temperature = 155°C) was evaluated in the same manner as in Example 9, and the results are summarized in Table 4.

実施例12.13 実施例1の配合組成内容のうち、発泡剤を試典のアゾジ
カルぜンアミド(粒径10μ)に代え助剤として酸化亜
鉛を配合し、分解温度を160℃に調整し、発泡剤配合
量を1%、8%に°代えた以外は実施例1と同様に評価
し、その結果を実施例12゜13として第4表にまとめ
て示す。
Example 12.13 Among the composition contents of Example 1, zinc oxide was added as an auxiliary agent in place of the sample azodicarzenamide (particle size 10μ) as the foaming agent, and the decomposition temperature was adjusted to 160 ° C. The evaluation was carried out in the same manner as in Example 1 except that the amount of the agent was changed to 1% and 8%, and the results are summarized in Table 4 as Examples 12 and 13.

実施例14 実施例1の配合組成内容のうち、発泡剤を試薬のアゾジ
カルゼンアミド(粒径35μ)に代え、助剤に酸化亜鉛
を配合し、分解温度を160℃に調整し、発泡剤の粒径
を粗くした以外は、実施例1と同様に評価し、その結果
を第4表にまとめて示す。
Example 14 Among the formulation contents of Example 1, the blowing agent was replaced with the reagent azodicarzenamide (particle size 35μ), zinc oxide was blended as an auxiliary agent, the decomposition temperature was adjusted to 160°C, and the blowing agent The evaluation was carried out in the same manner as in Example 1, except that the particle size was made coarser, and the results are summarized in Table 4.

比較例5,6 実施例1の配合組成内容で、有機過酸化物の配合量を0
.1重量%、5TL量%に代え実施例と同様に評価し、
その結果を比較例5.6として第4表にまとめて示す。
Comparative Examples 5 and 6 The composition of Example 1 was used, but the amount of organic peroxide was 0.
.. Evaluated in the same manner as in the example except for 1% by weight and 5TL amount%,
The results are summarized in Table 4 as Comparative Example 5.6.

比較例5では、栗橋度不足のため、粗大セルとなり、脱
泡表面の多い発泡被膜となシ、比較例6では、充分すぎ
る架橋のため、発泡不完全な発泡倍率の低い被膜となっ
た。
In Comparative Example 5, the lack of Kurihashi degree resulted in coarse cells, resulting in a foamed coating with a large number of defoamed surfaces, and in Comparative Example 6, due to excessive crosslinking, the resulting coating was incompletely foamed and had a low expansion ratio.

比較例7 実施例10の配合組成内容のうち、有機過酸化物を2.
5−ジメチル−2,5−ジ(ターシャリブチルパーオギ
シ)ヘキシン−3(日本油脂製、バーヘキシン23B1
分解温度=148℃)に代え、1重量%を用いた以外は
、実施例10と同様に評価し、その結果を第4表に示す
。有機過酸化物と発泡剤の分解温度の関係において、発
泡剤の分解温度が低いため、有機過酸化物の分解以前に
発泡剤が分解し、良好な発泡被膜が得られていない。
Comparative Example 7 Among the composition contents of Example 10, 2.0% of the organic peroxide was added.
5-dimethyl-2,5-di(tert-butylperoxy)hexine-3 (Nihon Yushi Co., Ltd., Verhexin 23B1
The evaluation was carried out in the same manner as in Example 10, except that 1% by weight was used instead of (decomposition temperature = 148°C), and the results are shown in Table 4. Regarding the relationship between the decomposition temperatures of the organic peroxide and the blowing agent, since the decomposition temperature of the blowing agent is low, the blowing agent decomposes before the organic peroxide decomposes, making it impossible to obtain a good foamed coating.

比較例8,9 実施例1の組成内容で発泡剤の配合量を0.3重量%、
15重量%とじ、実施例1と同様に評価し、その結果を
比較例8,9として第4表にまとめて示す。
Comparative Examples 8 and 9 The composition of Example 1 was used, but the amount of blowing agent was 0.3% by weight,
The samples were bound at 15% by weight and evaluated in the same manner as in Example 1, and the results are summarized in Table 4 as Comparative Examples 8 and 9.

比較例10 実施例1で調整された樹脂組成物の粒子を様械的に粉砕
して840μのフルイで分級し、500〜840μの範
囲に分布した粒径700μの発泡コーティング用樹脂粉
末組成物を調整し、実施例1と同様に評価した。発泡セ
ルが均一微細で、遮音性の高い −被膜性能を示したが
、被膜の外観、特に表面は、粉末粒子が粗いため凹凸の
激しいもめであり、外観不良なる発泡被膜となった。
Comparative Example 10 The particles of the resin composition prepared in Example 1 were mechanically crushed and classified using an 840μ sieve to obtain a resin powder composition for foam coating with a particle size of 700μ distributed in the range of 500 to 840μ. It was adjusted and evaluated in the same manner as in Example 1. Although the foamed cells were uniform and fine and the film exhibited high sound insulation properties, the appearance of the film, especially the surface, was highly uneven due to the coarse powder particles, resulting in a foamed film with poor appearance.

実施例15 実施例1で用いた低密度ポリエチレンの代シに、エチレ
ン酢酸ビニル共重合体(EVA;態化成製、EM−58
22、MI=22 、酢酸ビニル濃度=8%)を用いた
以外は、実施例1と同様に評価し、その結果を第4表に
まとめて示す。得られた発泡被膜は、弾力性に優れたも
のであシ、かつ、遮音性の高いものであった。
Example 15 In place of the low density polyethylene used in Example 1, ethylene vinyl acetate copolymer (EVA; manufactured by Seikasei Co., Ltd., EM-58) was used.
22, MI=22, vinyl acetate concentration=8%) was evaluated in the same manner as in Example 1, and the results are summarized in Table 4. The obtained foam coating had excellent elasticity and high sound insulation properties.

実施例16 実施例1の発泡コーティング用樹脂粉末組成物を149
μのフルイで再分級し、149μ以下の粉末を調整した
。この粉末組成物を用いて厚さ0.8mmのみがき鋼板
、亜鉛板、アルミニウム板、真鍮板および厚さ0.3−
のステンレス板(SUS430 )、ブリキ板に静電塗
装法によシ塗着させた。静電塗装は、サメス社製、スタ
ージキット型静電粉体塗装装誼を使用し、電圧60KV
、電流150μA、スプレーガンの一次圧力0−5 K
l/ctrr’の条件で粉末組成物を塗着させ、次に2
00℃に加熱したオーブン中で5分間加熱し、膜厚1.
0団の外観良好な架橋発泡被覆板を得た。
Example 16 The resin powder composition for foam coating of Example 1 was added to 149
The powder was reclassified using a μ sieve to prepare a powder with a particle size of 149μ or less. This powder composition can be used to prepare polished steel plates with a thickness of 0.8 mm, zinc plates, aluminum plates, brass plates with a thickness of 0.3 mm.
It was applied to a stainless steel plate (SUS430) and a tin plate using an electrostatic coating method. For electrostatic painting, we used Sturge kit type electrostatic powder coating equipment made by Sames, and the voltage was 60KV.
, current 150 μA, spray gun primary pressure 0-5 K
The powder composition was applied under the conditions of l/ctrr', and then 2
Heated in an oven heated to 00°C for 5 minutes until the film thickness was 1.
A cross-linked foam coated plate with a good appearance was obtained.

以下余白Margin below

Claims (2)

【特許請求の範囲】[Claims] (1)メルトインデックスが4以上60以下の範囲にあ
るエチレン酢酸ビニル共重合体、または重合体鎖の長鎖
分岐度及び末端メチル基が10^3炭素原子当りそれぞ
れ3個以上及び18個以上のポリエチレン100重量部
と1時間の半減期温度が105℃以上160℃以下の範
囲にある有機過酸化物0.2〜3.0重量部と、前記有
機過酸化物と同等又はそれよりも高い分解温度を有する
発泡剤0.5〜10重量部とからなり、かつ、粒径50
0μ以下であることを特徴とする金属への発泡コーティ
ング用樹脂粉末組成物
(1) Ethylene-vinyl acetate copolymer with a melt index in the range of 4 to 60, or a long chain branching degree of the polymer chain and a terminal methyl group of 3 or more and 18 or more per 10^3 carbon atoms, respectively. 100 parts by weight of polyethylene, 0.2 to 3.0 parts by weight of an organic peroxide whose half-life temperature for 1 hour is in the range of 105°C to 160°C, and a decomposition rate equal to or higher than that of the organic peroxide. 0.5 to 10 parts by weight of a blowing agent having a temperature, and a particle size of 50
Resin powder composition for foam coating on metal, characterized by having a particle size of 0 μ or less
(2)メルトインデックスが4以上60以下の範囲にあ
るエチレン酢酸ビニル共重合体、または重合体鎖の長鎖
分岐度及び末端メチル基が10^3炭素原子当りそれぞ
れ3個以上及び18個以上のポリエチレン100重量部
と1時間の半減期温度が105℃以上160℃以下の範
囲にある有機過酸化物0.2〜3.0重量部と、前記有
機過酸化物と同等又はそれよりも高い分解温度を有する
発泡剤0.5〜10重量部とを混合し、前記エチレン酢
酸ビニル共重合体、またはポリエチレンの融点以上、前
記有機過酸化物の分解温度未満に維持しつゝ混練した後
、粒径500μ以下に粉砕することを特徴とする金属へ
の発泡コーティング用樹脂粉末組成物の製造法
(2) An ethylene vinyl acetate copolymer with a melt index in the range of 4 to 60, or a long chain branching degree of the polymer chain and a terminal methyl group of 3 or more and 18 or more per 10^3 carbon atoms, respectively. 100 parts by weight of polyethylene, 0.2 to 3.0 parts by weight of an organic peroxide whose half-life temperature for 1 hour is in the range of 105°C to 160°C, and a decomposition rate equal to or higher than that of the organic peroxide. After mixing with 0.5 to 10 parts by weight of a blowing agent having a temperature and kneading while maintaining the temperature to be above the melting point of the ethylene vinyl acetate copolymer or polyethylene and below the decomposition temperature of the organic peroxide, A method for producing a resin powder composition for foam coating on metal, characterized by pulverizing it to a diameter of 500μ or less
JP7189388A 1988-03-28 1988-03-28 Foam coating resin powder composition for metal and production thereof Granted JPH01245070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7189388A JPH01245070A (en) 1988-03-28 1988-03-28 Foam coating resin powder composition for metal and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7189388A JPH01245070A (en) 1988-03-28 1988-03-28 Foam coating resin powder composition for metal and production thereof

Publications (2)

Publication Number Publication Date
JPH01245070A true JPH01245070A (en) 1989-09-29
JPH0426626B2 JPH0426626B2 (en) 1992-05-07

Family

ID=13473670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7189388A Granted JPH01245070A (en) 1988-03-28 1988-03-28 Foam coating resin powder composition for metal and production thereof

Country Status (1)

Country Link
JP (1) JPH01245070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393865A (en) * 1989-09-06 1991-04-18 Somar Corp Foaming powder coating and coated article of resin foam using same coating
CN108239444A (en) * 2016-02-25 2018-07-03 倪海霞 A kind of thermal insulation coat finishing technique of decorative substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393865A (en) * 1989-09-06 1991-04-18 Somar Corp Foaming powder coating and coated article of resin foam using same coating
CN108239444A (en) * 2016-02-25 2018-07-03 倪海霞 A kind of thermal insulation coat finishing technique of decorative substrate
CN108239444B (en) * 2016-02-25 2019-11-19 山东世安化工有限公司 A kind of thermal insulation coat finishing technique of decorative substrate

Also Published As

Publication number Publication date
JPH0426626B2 (en) 1992-05-07

Similar Documents

Publication Publication Date Title
CN101717548B (en) High-polarity polypropylene material and application thereof as inner and outer decorative parts of automobile
EP0938510B1 (en) Silane-grafted materials for solid and foam applications
JPS62153326A (en) Crosslinkable expandable polyolefin resin composition having antistatic property
US6528550B1 (en) Crosslinked foam of ethylene vinyl acetate copolymer and acid copolymer
WO1999035183A1 (en) Polymer articles including maleic anhydride
JP3548632B2 (en) Polypropylene resin composition, foam and production method thereof
US20080262116A1 (en) Cross-Linked Polypropylene Resins, Method of Making Same, and Articles Formed Therefrom
EP1354912B1 (en) Silane-crosslinking expandable polyolefin resin composition and crosslinked foam
US6797737B1 (en) Crosslinked foam of ethylene vinyl acetate copolymer and acid copolymer
CA1274344A (en) Method for the preparation of cross-linked polyethylene foams and foams produced by the method
JPH01245070A (en) Foam coating resin powder composition for metal and production thereof
EP1198511B1 (en) Crosslinked foam of ethylene vinyl acetate copolymer and acid copolymer
JPS6140707B2 (en)
JPH05507510A (en) Antistatic polyolefin foams and films and methods of making foams and antistatic compositions
JPH03110140A (en) Member with foamed film
JPH10279844A (en) Surface treating material
JPH11279313A (en) Resin composition for expansion molding, preparation of this composition and expansion molded body prepared by expansion molding this composition
JP4300901B2 (en) Polyolefin resin cross-linked foam
JPS61133240A (en) Polypropylene resin composition for high expansion
JPH0676504B2 (en) Soft foamable resin composition for injection molding
JPH0841234A (en) Flame-retardant polyolefin resin foam
JPH05339414A (en) Azodicarbonamide foaming agent composition
JP3022027B2 (en) High-concentration aluminum powder-containing resin composition and its production method
JPH0324495B2 (en)
JPS6020942A (en) Production of electrically conductive crosslinked polyolefin foam

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term