JPH01244309A - Eccentricity amount measuring circuit of rotary shaft - Google Patents

Eccentricity amount measuring circuit of rotary shaft

Info

Publication number
JPH01244309A
JPH01244309A JP7260688A JP7260688A JPH01244309A JP H01244309 A JPH01244309 A JP H01244309A JP 7260688 A JP7260688 A JP 7260688A JP 7260688 A JP7260688 A JP 7260688A JP H01244309 A JPH01244309 A JP H01244309A
Authority
JP
Japan
Prior art keywords
circuit
eccentricity
output
signal
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7260688A
Other languages
Japanese (ja)
Other versions
JPH07119596B2 (en
Inventor
Yoshinori Anami
阿南 義憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7260688A priority Critical patent/JPH07119596B2/en
Publication of JPH01244309A publication Critical patent/JPH01244309A/en
Publication of JPH07119596B2 publication Critical patent/JPH07119596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To prevent the indication of the eccentricity amount from changing even when an output signal indicating said eccentricity amount is changed by external disturbances, by selecting signals of a lower level one from those two, i.e. the measured output signals of eccentricity amount and outputted signals of eccentricity amount from a sample hold circuit. CONSTITUTION:A first peak hold circuit 4 and a second peak hold circuit 5 hold a peak value of electric signals indicating the eccentricity amount of a rotary shaft 6. A signal selecting circuit 9 compares outputs V1, V2 of the respective peak hold circuits 4, 5, and generates the output signals of a higher level as Vout. A sampling pulse generator 8c generates a sampling pulse Vr3 every time it detects a protrusion 7 on the rotary shaft 6. A sample hold circuit 13 holds the output of the selecting circuit 9 by the sampling pulse Vr3. A lower level selecting circuit 14 selects an output of a lower level one from those two, i.e. the outputs from the selecting circuit 9 and sample hold circuit 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はタービン発電機などC回転軸の偏心量を測定
するための回転軸の偏心量測定回路に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a rotating shaft eccentricity measuring circuit for measuring the eccentricity of a C rotating shaft of a turbine generator or the like.

〔従来の技術〕[Conventional technology]

第5図は例えば特°公昭5’6−48802号公報に示
された偏心量測定回路であり、この偏心量測定回路はピ
ーク間振幅検出回路(1)に、回転軸(6)の突起(7
)を検知してその回転周期に同期したリセットパルス信
号Vrl、 Vr2をそれぞれ発生するリセットパルス
発生器(8a)、(8b)と、ピークホールド回路(4
)の偏心量信号Vlのピーク値をホールドする第3のピ
ークホールド回路(5)と、偏心量信号v1及び第3の
ピークホールド回路(5)の出力たる偏心量信号v2の
うちいずれか高レベルの信号を選択するためのダイオー
ド(10)、(11)、抵抗(12)からなる信号選択
回路(9) とを備えたものであり、前記第1及び第2
のピークホールド回路(2) 、(4)は、第3のピー
クホールド回路(5)が成る測定周期の偏心量信号をホ
ールドした状態でリセットパルス信号Vrlによりリセ
ットされ、第3のピークホールド回路(5)は、前記第
2のピークホールド回路(4)が次の測定周期の偏心量
信号を生じている状態でリセットされるようになってい
る。
FIG. 5 shows an eccentricity measuring circuit shown in, for example, Japanese Patent Publication No. 5'6-48802. This eccentricity measuring circuit has a peak-to-peak amplitude detection circuit (1) connected to a protrusion (6) on the rotating shaft (6). 7
), and generate reset pulse signals Vrl and Vr2 synchronized with the rotation period, respectively, and a peak hold circuit (4).
), the third peak hold circuit (5) holds the peak value of the eccentricity signal Vl of A signal selection circuit (9) comprising diodes (10), (11) and a resistor (12) for selecting the first and second signals.
The peak hold circuits (2) and (4) are reset by the reset pulse signal Vrl in a state where the third peak hold circuit (5) holds the eccentricity signal of the measurement period, and the third peak hold circuit (5) is reset by the reset pulse signal Vrl. 5) is reset in a state in which the second peak hold circuit (4) is generating an eccentricity signal for the next measurement cycle.

第6図におけるa z fは、第5図の回路動作を説明
するための各部の波形図であって、ピーク間振幅検出回
路(1)への入力信号Vinは、第6図のaに示されて
いる。第6図のす、cにそれぞれ示されるようなリセッ
トパルス信号Vrl、Vr2は回転軸の回転周期に同期
して発生され、まず第6図のeに示すようにリセットパ
ルス信号Vr2が信号v1をホールドしている第3のピ
ークホールド回路(5)をリセットさせ、この回路(5
)が再び信号v1をピークホールドした後、第6図のd
に示すようにリセットパルス信号Vrlが前記第1及び
第2のピークホールド回路(2) 、  (4)をリセ
ットさせる。前の周期の信号v1をホールドした出力v
2がホールド回路(5)から生じているとき、ピーク聞
損幅検出回路(1)は次の周期の偏心量信号v1を生ず
る。信号選択回路(9)は信号v1とv2とのうち高レ
ベルにある信号v2を選択して第6図のfに示すような
出力Voutを生ずる。以下、入力信号Vinのピーク
間振幅の低下に従って同様な動作がくりかえされ出力V
outは、人力信号の減少に一周期だけ遅れて追従し、
全体として第6図のfに示すようになるわけである。
a z f in FIG. 6 is a waveform diagram of each part for explaining the circuit operation of FIG. 5, and the input signal Vin to the peak-to-peak amplitude detection circuit (1) is shown in a of FIG. 6. has been done. Reset pulse signals Vrl and Vr2 as shown in FIG. 6, a and c, respectively, are generated in synchronization with the rotation period of the rotating shaft, and first, as shown in FIG. The third peak hold circuit (5) that is holding the peak is reset, and this circuit (5)
) peak-holds the signal v1 again, then d in Figure 6
As shown in , the reset pulse signal Vrl resets the first and second peak hold circuits (2) and (4). Output v that holds the signal v1 of the previous cycle
2 is generated from the hold circuit (5), the peak hearing loss width detection circuit (1) generates the eccentricity amount signal v1 of the next cycle. The signal selection circuit (9) selects the signal v2 which is at a high level among the signals v1 and v2, and produces an output Vout as shown at f in FIG. Thereafter, the same operation is repeated as the peak-to-peak amplitude of the input signal Vin decreases, and the output V
out follows the decrease in the human input signal with a delay of one cycle,
The overall result is as shown in Fig. 6(f).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の偏心量測定回路は以上のように構成されているの
で、例えばタービン発電機の偏心量測定においてはター
ビンの熱膨張により偏心量検出センサと被測定物(回転
軸)との距離が階段状に変化すると、第7図のaに見ら
れる如く偏心入力信号VinのDC成分であるオフセッ
ト量Vaもステップ状に変化する。そして、このオフセ
ット量Vaの変化に伴ない、偏心量出力Voutは、偏
心量が一定にもかかわらず、回転軸の一周期分に第7図
のfに示す如く見かけ上、高い出力を示すため安定した
偏心量を測定できないといった問題点があった。
Conventional eccentricity measurement circuits are configured as described above, so when measuring the eccentricity of a turbine generator, for example, the distance between the eccentricity detection sensor and the object to be measured (rotating shaft) is stepped due to thermal expansion of the turbine. 7, the offset amount Va, which is the DC component of the eccentric input signal Vin, also changes stepwise. As the offset amount Va changes, the eccentricity output Vout apparently shows a high output for one period of the rotating shaft, as shown in f in FIG. 7, even though the eccentricity is constant. There was a problem that it was not possible to measure the amount of eccentricity stably.

この発明は上記のような問題点を解消するためになされ
たもので、偏心量人力信号のDCオフセット変化量を偏
心量出力信号にてキャンセルさせて外乱による偏心量の
指示上昇をなくすことができる回転軸の偏心量測定回路
を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to cancel the DC offset change amount of the eccentricity human input signal with the eccentricity output signal, thereby eliminating the increase in the eccentricity command due to disturbance. The purpose is to obtain a circuit for measuring eccentricity of a rotating shaft.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る回転軸の偏心量測定回路は、測定された
偏心量出力信号を一定のサンプリング周期毎に読み込み
出力するサンプリングホールド回路と、測定された偏心
量出力信号と該サンプリングホールド回路より出力され
る偏心量出力信号のうち何れか低レベルの偏心量出力信
号を選択出力する低レベル出力選択回路とを備えたもの
である。
The eccentricity measurement circuit of a rotating shaft according to the present invention includes a sampling and holding circuit that reads and outputs a measured eccentricity output signal at regular sampling intervals, and a sampling and holding circuit that reads and outputs a measured eccentricity output signal at regular sampling intervals, and a sampling and holding circuit that reads and outputs a measured eccentricity output signal and outputs the measured eccentricity output signal from the sampling and hold circuit. and a low-level output selection circuit that selects and outputs one of the eccentricity output signals having a low level among the eccentricity output signals.

〔作用〕[Effect]

この発明によれば、低レベル出力選択回路に入力される
各偏心量出力信号間にはサンプリング時間分だけ信号入
力時間差があるため、たとえ偏心量出力信号がDCオフ
セットによりステップ状に変化していても、各偏心量出
力信号にはその変化分が時間差をおいて表われるので、
何れか一方の出力信号より低レベルの出力信号を選択出
力することができ、よって偏心量出力信号は外乱による
指示上昇の無い信号出力となる。
According to this invention, since there is a signal input time difference corresponding to the sampling time between each eccentricity output signal input to the low-level output selection circuit, even if the eccentricity output signal changes in a stepwise manner due to a DC offset. Also, since the change appears with a time difference in each eccentricity output signal,
An output signal having a lower level than either of the output signals can be selectively output, so that the eccentricity output signal becomes a signal output without an increase in indication due to disturbance.

(実施例〕 以下、この発明の一実施例を図について説明する。第1
図は本実施4例による回転軸の偏心量測定回路の全体構
成図、第2図は本実施例の動作を説明するタイムチャー
トである。各図中とも第5図、第6図と同符号は同一、
又は相当部分を示し、その詳細な動作説明は省略する。
(Example) Hereinafter, an example of the present invention will be explained with reference to the drawings.
The figure is an overall configuration diagram of a circuit for measuring eccentricity of a rotating shaft according to the fourth embodiment, and FIG. 2 is a time chart illustrating the operation of this embodiment. In each figure, the same reference numerals as in Figures 5 and 6 are the same.
or a corresponding portion thereof, and a detailed explanation of the operation thereof will be omitted.

第1図において、(8c)は回転軸(6)に突設された
突起を検出する毎にサンプルホールド信号(Vr3)を
出力するサンプルホールド信号発生器、(13)はサン
プルホールド信号(V r 3 )が人力される毎に、
選択回路(9)から出力される偏心量出力信号Vout
を読み込み、出力するサンプルホールド回路、(14)
は選択回路(9)から出力される偏心量出力信号Vou
tとサンプリング時間をおいてサンプルホールド回路(
13)から出力される偏心量出力信号Vsoutより低
レベルの偏心量出力信号Vout−1を選択出力する低
レベル選択回路である。
In FIG. 1, (8c) is a sample hold signal generator that outputs a sample hold signal (Vr3) every time a protrusion protruding from the rotating shaft (6) is detected, and (13) is a sample hold signal generator (Vr3) that outputs a sample hold signal (Vr3). 3) Every time it is done manually,
Eccentricity output signal Vout output from the selection circuit (9)
sample hold circuit that reads and outputs (14)
is the eccentricity output signal Vou output from the selection circuit (9)
Sample and hold circuit (
13) is a low level selection circuit that selects and outputs an eccentricity output signal Vout-1 having a lower level than the eccentricity output signal Vsout outputted from the eccentricity output signal Vsout.

次に上記構成による本実施例の動作を第2図のタイムチ
ャートを参照して説明する。今、タービン発電機の回転
軸の偏心量測定時に、タービンの熱膨張により偏心量検
出センサと回転軸との距離が階段的に変化した場合、そ
の変化は第2図のaに示すように偏心量人力信号Vin
のDCオフセット変化となって、偏心量入力信号Vin
のDCレベルはステップ状に定常変化する。このように
ステップ状に変化した偏心量入力信号Vinは、変化時
点で、第2及び第3のピークホールド回路(4)、(5
)で入力信号のピーク値としホールドされる(第2図の
d、e)。そして、選択回路(9)の偏心量出力信号V
outに通常の高レベル信号(Vp−Vv)にDCオフ
セット変化Vaが重畳される。この偏心量出力信号Vo
utはサンプルホールド回路(13)に、サンプリング
パルス発生器(8C)より出力されるサンプリングパル
スにて、時刻tslからts2にかけて読み込まれVs
outとして低レベル選択回路へ入力される。この低レ
ベル選択回路(14)には、上記選択回路(9)よりサ
ンプリング時間tsl〜ts2前に偏心量出力信号Vo
utが入力される為、偏心量出力信号Vou tの高レ
ベル部位が人力されている時に ゛はサンプリングホー
ルドされた偏心量出力信号Vsoutの低レベル部位が
入力され、又は偏心量出力信号Vsoutの高レベル部
位が入力された時点では、偏心量出力信号Voutは低
レベルとなる。そのため低レベル選択回路(14)は常
にオフセット成分をキャンセルした低レベルの偏心量出
力信号Vout−1を選択出力することができる。この
発明は上記実施例に限定されるものでなく、下記の各図
に示される偏心量測定回路を用いても同様の効果を奏す
る。
Next, the operation of this embodiment with the above configuration will be explained with reference to the time chart of FIG. Now, when measuring the eccentricity of the rotating shaft of a turbine generator, if the distance between the eccentricity detection sensor and the rotating shaft changes stepwise due to thermal expansion of the turbine, the change will be caused by the eccentricity as shown in a in Figure 2. Quantity human power signal Vin
As a result, the eccentricity input signal Vin
The DC level changes steadily in a stepwise manner. The eccentricity input signal Vin that has changed stepwise in this way is transmitted to the second and third peak hold circuits (4) and (5) at the time of change.
) is held as the peak value of the input signal (d, e in Figure 2). Then, the eccentricity output signal V of the selection circuit (9)
A DC offset change Va is superimposed on a normal high level signal (Vp-Vv) at out. This eccentricity output signal Vo
ut is read into the sample hold circuit (13) from time tsl to ts2 by the sampling pulse output from the sampling pulse generator (8C), and Vs
It is input to the low level selection circuit as out. The low level selection circuit (14) receives the eccentricity output signal Vo from the selection circuit (9) before the sampling time tsl to ts2.
Since ut is input, when the high level part of the eccentricity output signal Vout is manually input, the low level part of the sampled and held eccentricity output signal Vsout is input, or the high level part of the eccentricity output signal Vsout is input. At the time when the level portion is input, the eccentric amount output signal Vout becomes a low level. Therefore, the low level selection circuit (14) can always select and output the low level eccentricity output signal Vout-1 with the offset component canceled. The present invention is not limited to the above-mentioned embodiments, and the same effects can be obtained by using eccentricity measurement circuits shown in the following figures.

第3図の偏心量測定回路は第1図の回路のリセットパル
ス発生回路を変形したもので、突起(7)を検出する1
台のリセットパルス発生器(8)のリセットパルスVr
3を遅延回路(15)で所定時間だけ遅延させてVr2
を形成しまた遅延回路(16)で所定時間だけ遅延させ
てVrlを形成するようにした点を除いて第1図、第2
図について説明したと同様に動作する。第4図には、他
の変形例に係る偏心量測定回路を示す。(2a)は入力
信号Vinのプラス側をピークホールドする回路、(4
a)は入力信号のマイナス側をピークホールドする回路
、(3)は(2a)と(4a)の出力を差演算する比較
回路、(5a)は第1のサンプルホールド回路、(6)
は回転軸、(7)は突起、(8)はリセットパルス発生
器、(9a)は第2のサンプルホールド回路、(14)
はLowセレクター、(lla)、(12a)は遅延回
路である。この回路はピーク間振幅検出回路(1)とリ
セットパルス発生回路(8)を除き第1図及び第2図に
ついて説明したのと同様に動作する。また上記実施例で
は回転軸(6)の突起(7)は、突起の代りに溝であっ
てもよく、上記実施例と同様の効果を奏する。
The eccentricity measuring circuit shown in Fig. 3 is a modification of the reset pulse generating circuit of the circuit shown in Fig. 1.
Reset pulse Vr of the reset pulse generator (8)
3 by a predetermined time using a delay circuit (15), and Vr2
1 and 2, except that Vrl is formed by forming Vrl by a predetermined time delay in a delay circuit (16).
It operates in the same way as described for the figure. FIG. 4 shows an eccentricity measurement circuit according to another modification. (2a) is a circuit that peak-holds the positive side of the input signal Vin, (4
a) is a circuit that peak-holds the negative side of the input signal, (3) is a comparison circuit that calculates the difference between the outputs of (2a) and (4a), (5a) is the first sample-and-hold circuit, (6)
is the rotating shaft, (7) is the protrusion, (8) is the reset pulse generator, (9a) is the second sample hold circuit, (14)
is a Low selector, and (lla) and (12a) are delay circuits. This circuit operates in the same manner as described in connection with FIGS. 1 and 2, except for the peak-to-peak amplitude detection circuit (1) and the reset pulse generation circuit (8). Further, in the above embodiment, the protrusion (7) of the rotating shaft (6) may be a groove instead of a protrusion, and the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば被測定偏心センサー人
力信号のDCオフセット量の変化が外乱として入力され
るためこの外乱を偏心量とみなさない様外乱を除去した
回路で、安定度のよい偏心量測定回路が得られる。
As described above, according to the present invention, since the change in the DC offset amount of the human input signal of the eccentricity sensor to be measured is input as a disturbance, the circuit eliminates the disturbance so that this disturbance is not regarded as the eccentricity amount, and the eccentricity sensor has good stability. A quantity measuring circuit is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による回転軸の偏心量測定回
路を示すブロック図、第2図は第1図における偏心入力
信号のDCオフセット変動が生じた場合のタイムチャー
ト、第3図及び第4図は、それぞれ本発明の他の実施例
による測定回路、第5図は従来の偏心量測定回路の一例
を示すブロック図、第6図のは第5図の動作タイムチャ
ート、第7図は従来の偏心量測定回路において偏心人力
信号のDCオフセット変動が生じた場合のタイムチャー
トを示す。 図において、(4)は第2のピークホールド回路、(5
)は第3のピークホールド回路、(6)は回転軸、(7
)は突起、(8c)はサンプリングパルス発生器、(9
)は信号選択回路、(13)はサンプルホールド回路、
(14)は低レベル選択回路。 なお、図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram showing a circuit for measuring eccentricity of a rotating shaft according to an embodiment of the present invention, FIG. 2 is a time chart when a DC offset fluctuation of the eccentric input signal in FIG. 1 occurs, and FIG. 4 is a measuring circuit according to another embodiment of the present invention, FIG. 5 is a block diagram showing an example of a conventional eccentricity measuring circuit, FIG. 6 is an operation time chart of FIG. 5, and FIG. 7 is a block diagram showing an example of a conventional eccentricity measuring circuit. 1 shows a time chart when a DC offset fluctuation of an eccentric human input signal occurs in a conventional eccentricity measuring circuit. In the figure, (4) is the second peak hold circuit, (5
) is the third peak hold circuit, (6) is the rotation axis, (7
) is the protrusion, (8c) is the sampling pulse generator, (9
) is a signal selection circuit, (13) is a sample hold circuit,
(14) is a low level selection circuit. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 回転軸上に突起を突設するとともに、回転軸の偏心量を
示す電気信号のピーク値をホールドして偏心量信号とし
て出力する第1のピークホールド回路と、上記偏心量信
号をホールドする第2のピークホールド回路と、上記第
1のピークホールド回路の出力と第2のピークホールド
回路の出力のうち何れか高レベルの出力を選択出力する
信号選択回路とを備えた回転軸の偏心量測定回路におい
て、上記回転軸上の突起検出毎にサンプリングパルスを
発生するサンプリングパルス発生器と、該サンプリング
パルスにより上記信号選択回路出力をサンプルホールド
するサンプリングホールド回路と、該サンプリングホー
ルド回路出力と上記信号選択回路出力のうち何れか低レ
ベルの出力を選択出力する低レベル出力選択回路とを備
えたことを特徴とする回転軸の偏心量測定回路。
A first peak hold circuit having a protrusion protruding from the rotating shaft and holding the peak value of an electric signal indicating the eccentricity of the rotating shaft and outputting it as an eccentricity signal; and a second peak holding circuit holding the eccentricity signal. A rotating shaft eccentricity measurement circuit comprising: a peak hold circuit; and a signal selection circuit that selects and outputs a higher level output from the output of the first peak hold circuit and the output of the second peak hold circuit. a sampling pulse generator that generates a sampling pulse every time a protrusion on the rotating shaft is detected; a sampling hold circuit that samples and holds the output of the signal selection circuit using the sampling pulse; and an output of the sampling and hold circuit and the signal selection circuit. A circuit for measuring eccentricity of a rotating shaft, comprising: a low-level output selection circuit that selects and outputs one of the low-level outputs.
JP7260688A 1988-03-25 1988-03-25 Rotation axis eccentricity measurement circuit Expired - Lifetime JPH07119596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7260688A JPH07119596B2 (en) 1988-03-25 1988-03-25 Rotation axis eccentricity measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7260688A JPH07119596B2 (en) 1988-03-25 1988-03-25 Rotation axis eccentricity measurement circuit

Publications (2)

Publication Number Publication Date
JPH01244309A true JPH01244309A (en) 1989-09-28
JPH07119596B2 JPH07119596B2 (en) 1995-12-20

Family

ID=13494218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7260688A Expired - Lifetime JPH07119596B2 (en) 1988-03-25 1988-03-25 Rotation axis eccentricity measurement circuit

Country Status (1)

Country Link
JP (1) JPH07119596B2 (en)

Also Published As

Publication number Publication date
JPH07119596B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US4521735A (en) Battery voltage level detecting apparatus
US4437057A (en) Frequency detection system
JPH01244309A (en) Eccentricity amount measuring circuit of rotary shaft
US7260481B1 (en) Vector detecting device and living-body complex impedance measuring apparatus having the vector detecting device
US5001363A (en) Circuit for measuring rotary shaft off-sets
US4973962A (en) Signal level detect circuits
US10866079B2 (en) Position sensing device
JP2005091206A (en) Instrument and method for measuring pulse width
KR930002785B1 (en) Eccentricity amount measuring circuit of rotary shaft
JP2627758B2 (en) Signal generator
JP2589817Y2 (en) LCR tester
JP2980465B2 (en) Eccentricity measuring device
JP3239338B2 (en) Ripple noise voltage measuring device
KR0178858B1 (en) Frequency and phase error detecting apparatus
JPS61148315A (en) Variation measuring circuit
SU1628050A1 (en) Ac stabilizer
JP2001013233A (en) Jitter signal generator
RU1837393C (en) Method of analog-to-digital conversion accomplished with double integration
KR0119811Y1 (en) Multi-mode distinction circuit
JPH0629722Y2 (en) AE measuring device
SU1398101A1 (en) Two frequency-to-code converter
JPS63234101A (en) Variation quantity measuring instrument
JP2518582B2 (en) Electronic electricity meter
JP2655841B2 (en) Synchronous signal generator
JPH0572001A (en) Measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13