JPH01243528A - Surface treatment - Google Patents

Surface treatment

Info

Publication number
JPH01243528A
JPH01243528A JP6978588A JP6978588A JPH01243528A JP H01243528 A JPH01243528 A JP H01243528A JP 6978588 A JP6978588 A JP 6978588A JP 6978588 A JP6978588 A JP 6978588A JP H01243528 A JPH01243528 A JP H01243528A
Authority
JP
Japan
Prior art keywords
aluminum
etching solution
metal
surface treatment
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6978588A
Other languages
Japanese (ja)
Inventor
Keiji Horioka
啓治 堀岡
Toshiya Muraguchi
要也 村口
Haruo Okano
晴雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6978588A priority Critical patent/JPH01243528A/en
Publication of JPH01243528A publication Critical patent/JPH01243528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Abstract

PURPOSE:To enhance the performance of an element by a method wherein at least one kind out of hydrogen fluoride, ammonium fluoride and hydrofluorosilicic acid and a weak-acid nonaqueous solvent are used as an etching solution in order to remove an impurity without corroding a metal wiring part. CONSTITUTION:A substrate to be treated having a wiring layer 12 of a metal (e.g., aluminum) or a metal alloy (e.g., an aluminum alloy) which has been treated by dry etching or the like and to which an impurity containing a metal has adhered on the surface is immersed in an etching solution; its impurity 14 is removed. During this process, as this etching solution, an etching solution which contains at least one kind out of hydrogen fluoride, ammonium fluoride and hydrofluorosilicic acid and a weakly acidic nonaqueous solvent (e.g., an organic fatty acid such as glacial acetic acid or the like or phenol) and whose water content is 20% or lower in terms of its volume ratio is used. Then, the impurity 14 such as aluminum oxide, aluminum hydroxide or the like can be removed without corroding the wiring layer 12. By this setup, the performance of an element can be enhanced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、被処理基体の表面の不純物を除去する表面処
理方法に係わり、特に半導体集積回路素子に用いられる
金属配線の表面に残存する酸化物等を除去する表面処理
方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a surface treatment method for removing impurities from the surface of a substrate to be treated, and in particular to a method for treating metal wiring used in semiconductor integrated circuit elements. The present invention relates to a surface treatment method for removing oxides etc. remaining on the surface.

(従来の技術) 従来、半導体集積回路素子の製造工程においては、素子
間の配線形成に次のような工程が用いられる。即ち、ア
ルミニウム等の金属薄膜を堆積した後、その上にレジス
トパターンを形成する。
(Prior Art) Conventionally, in the manufacturing process of semiconductor integrated circuit elements, the following process is used to form wiring between elements. That is, after depositing a metal thin film such as aluminum, a resist pattern is formed thereon.

次いで、レジストをマスクに反応性イオンエツチング(
RI E)等を用いた微細加工によって金属薄膜にパタ
ーンを転写した後、プラズマ灰化によりレジストを除去
する。
Next, reactive ion etching (
After the pattern is transferred to the metal thin film by microfabrication using RIE) or the like, the resist is removed by plasma ashing.

レジスト除去後の表面を観察すると、残存した金属薄膜
の端から垂直に立った残留物が生じる場合がある。これ
は、RIEの際にイオン衝撃のためにスパッタされたア
ルミニウムがレジストの側壁に再付着したものであり、
レジスト中の炭素やプラズマ灰化の雰囲気ガスの酸素と
反応して酸化アルミニウムや水酸化アルミニウム等の安
定な化合物を形成している。このような残留物は脆く剥
がれ易いため、工程が進むにつれウェハ全体に再付着し
たゴミとなり、集積回路素子の特性を著しく悪化させる
When observing the surface after removing the resist, there may be residues standing vertically from the edges of the remaining metal thin film. This is due to aluminum sputtered due to ion bombardment during RIE re-attaching to the side walls of the resist.
It reacts with carbon in the resist and oxygen in the atmospheric gas during plasma ashing to form stable compounds such as aluminum oxide and aluminum hydroxide. Since such residue is brittle and easily peeled off, it becomes dust that re-adheres to the entire wafer as the process progresses, significantly deteriorating the characteristics of the integrated circuit elements.

一方、多層配線工程では、アルミニウム等の第1層配線
を形成した後、酸化シリコン等を層間絶縁膜として堆積
し、これにコンタクトホールを開け、さらに第2層目の
配線材料を堆積させる。その際、下地の第1層配線であ
るアルミニウム表面に存在する自然酸化膜が配線抵抗を
増大させる要因となっている。
On the other hand, in the multilayer wiring process, after forming a first layer wiring made of aluminum or the like, silicon oxide or the like is deposited as an interlayer insulating film, a contact hole is opened in this, and a second layer wiring material is deposited. At this time, a natural oxide film existing on the surface of aluminum, which is the underlying first layer wiring, becomes a factor that increases the wiring resistance.

従って、これらの酸化物や炭化物は、何等かの洗浄工程
で除去する必要がある。従来、その除去方法として用い
られているのは、希弗酸水溶液を使って溶かす方法であ
る。しかし、アルミニウム自身は酸化物や炭化物よりも
酸に溶解し易いので、洗浄工程でその一部が腐蝕される
問題がある。また、最近では配線用のアルミ合金として
アルミニウムーシリコン−銅等の合金が用いられる場合
がある。銅の添加は電流に伴いアルミニウム原子が移動
するエレクトロマイグレーション現象を防止する効果が
あり、配線の信頼性が向上する。しかし、一方で弗酸水
溶液のような電解質水溶液中では、アルミニウムと銅の
酸化還元電位の差が大きいため、局部的に電池が形成さ
れ、アルミニウムの溶解が極めて速く進行する問題が生
じていた。
Therefore, these oxides and carbides must be removed by some kind of cleaning process. Conventionally, the method used to remove it is to dissolve it using a dilute aqueous hydrofluoric acid solution. However, since aluminum itself is more easily dissolved in acid than oxides or carbides, there is a problem in that part of it is corroded during the cleaning process. Furthermore, recently, alloys such as aluminum-silicon-copper are sometimes used as aluminum alloys for wiring. Addition of copper has the effect of preventing electromigration, in which aluminum atoms move with electric current, and improves the reliability of wiring. However, in an electrolyte aqueous solution such as a hydrofluoric acid aqueous solution, there is a large difference in redox potential between aluminum and copper, which causes a problem in that batteries are formed locally and the dissolution of aluminum progresses extremely quickly.

また、アルゴン等の不活性ガスを用いてエツチング残留
物や自然酸化膜等をスパッタ除去する方法も試みられて
いるが、下地の素子に強い電界がかかるため、例えばM
OSトランジスタやMOSキャパシタの誘電体膜が絶縁
破壊する等、特性が劣化する問題がある。
Additionally, attempts have been made to remove etching residues and natural oxide films by sputtering using an inert gas such as argon, but since a strong electric field is applied to the underlying element, for example, M
There is a problem of deterioration of characteristics, such as dielectric breakdown of the dielectric films of OS transistors and MOS capacitors.

(発明が解決しようとする課題) このように従来の表面処理方法では、反応性が高く腐蝕
し易いアルミニウム等の金属配線を損なわずに、表面に
付着した酸化物や炭化物を除去することは困難であった
(Problem to be solved by the invention) As described above, with conventional surface treatment methods, it is difficult to remove oxides and carbides attached to the surface without damaging metal wiring such as aluminum, which is highly reactive and prone to corrosion. Met.

本発明は、上記事情を考慮してなされたもので、その目
的とするところは、金属配線を損なわずに表面に付着し
た酸化物や炭化物を除去することができ、ドライエツチ
ング後の洗浄処理に適した表面処理方法を提供すること
にある。
The present invention was made in consideration of the above circumstances, and its purpose is to be able to remove oxides and carbides attached to the surface without damaging the metal wiring, and to be suitable for cleaning treatment after dry etching. The objective is to provide a suitable surface treatment method.

[発明の構成] (課題を解決するための手段) 本発明の骨子は、エツチング液として、アルミニウム等
の金属を侵さず、酸化物や炭化物を選択的に溶解するも
のを用いることにある。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to use an etching solution that does not attack metals such as aluminum and selectively dissolves oxides and carbides.

即ち本発明は、ドライエツチング等により加工され、表
面に金属を含む不純物が付着した金属(例えばアルミニ
ウム)若しくは金属合金(例えばアルミニウム合金)の
配線層を有する被処理基体を、エツチング液に浸漬して
不純物を除去する表面処理方法において、前記エツチン
グ液として、弗化水素、弗化アンモニウム及び珪弗酸の
少なくとも1種と弱酸性の非水溶媒(例えば氷酢酸等の
有機脂肪酸又はフェノール)を含み、且つ望ましくは含
水量が体積比20%以下のエツチング液を用いるように
した方法である。
That is, in the present invention, a substrate to be processed, which has been processed by dry etching or the like and has a wiring layer of a metal (for example, aluminum) or a metal alloy (for example, an aluminum alloy) on the surface of which impurities containing metal have adhered, is immersed in an etching solution. In the surface treatment method for removing impurities, the etching solution contains at least one of hydrogen fluoride, ammonium fluoride, and silicofluoric acid and a weakly acidic nonaqueous solvent (for example, an organic fatty acid such as glacial acetic acid or phenol), Preferably, the method uses an etching solution having a water content of 20% or less by volume.

(作 用) アルミニウムのドライエツチング後に生じる残留物の主
成分である酸化アルミニウム(AN 203 )又は水
酸化アルミニウム(An)(OH)3 )は、弗化水素
、弗化アンモニウム及び珪弗化酸等と反応して、例えば
次式の反応式に従って 八Ω20.+12HF→2H3AρF6 +3H20八
Ω(OH)3  + 6 HF −H3AgF2 +3
H20アルミ、弗酸又はその水和物を作る。この化合物
は、水や有機カルボン酸等の極性溶媒に溶解する性質が
ある。
(Function) Aluminum oxide (AN 203 ) or aluminum hydroxide (An) (OH) 3 ), which is the main component of the residue generated after dry etching aluminum, contains hydrogen fluoride, ammonium fluoride, silicofluoric acid, etc. For example, according to the following reaction formula, 8Ω20. +12HF→2H3AρF6 +3H208Ω(OH)3 + 6 HF -H3AgF2 +3
Make H20 aluminum, hydrofluoric acid or its hydrate. This compound has the property of being soluble in polar solvents such as water and organic carboxylic acids.

一方、金属アルミニウムは分子状弗化水素とは反応せず
、溶液中の水素イオンと反応して溶解する。
On the other hand, metal aluminum does not react with molecular hydrogen fluoride, but reacts with hydrogen ions in the solution and dissolves.

1)+3H+ →AΩ ”+  (3/2)H2↑また
、A、1)−3i−CuのようにAgと比べて電極電位
の高い金属が共存する場合、電解質溶液中では局部電池
が形成されてAgの電位が高くなるため、 Ap   −>  A、Q”+3e− の反応が促進されて、AIの溶解が進むと同時にCu表
面では 2H”+2e−=  H2↑ の反応により水素が生成する。
1) +3H+ →AΩ ”+ (3/2)H2↑Also, when a metal with a higher electrode potential than Ag, such as A,1)-3i-Cu, coexists, a local battery is formed in the electrolyte solution. Since the potential of Ag becomes high, the reaction Ap -> A, Q"+3e- is promoted, and at the same time as the dissolution of AI progresses, hydrogen is generated on the Cu surface by the reaction 2H"+2e-=H2↑.

これらの金属アルミニウムの腐蝕反応はいずれも溶液中
の水素イオンとの反応である。従って、弗化水素の電離
を抑えれば、アルミニウムの腐蝕を抑えることができる
。溶液中では弗化水素は次式 %式% の平衡関係にあるが、酸性溶液中では平衡が左側にかた
よる。即ち、有機カルボン酸等の非水極性溶媒であるH
FやNH4F、H2S i F6の解離が抑えられる。
All of these corrosion reactions of metal aluminum are reactions with hydrogen ions in a solution. Therefore, if the ionization of hydrogen fluoride is suppressed, corrosion of aluminum can be suppressed. In a solution, hydrogen fluoride has an equilibrium relationship expressed by the following formula, %, but in an acidic solution, the equilibrium shifts to the left. That is, H, which is a non-aqueous polar solvent such as an organic carboxylic acid,
Dissociation of F, NH4F, and H2S i F6 is suppressed.

従って本発明によれば、エツチング液として、弗化水素
、弗化アンモニウム及び珪弗酸の少なくとも1種と弱酸
性の非水溶媒を用いることにより、酸化アルミニウムや
水酸化アルミニウム等の不純物を、アルミニウム等から
なる金属配線の腐蝕を伴わずに除去することができる。
Therefore, according to the present invention, impurities such as aluminum oxide and aluminum hydroxide can be removed from aluminum by using at least one of hydrogen fluoride, ammonium fluoride, and silicic acid and a weakly acidic non-aqueous solvent as an etching solution. It is possible to remove the metal wiring without corrosion.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例方法を採用したアルミニウム
配線の形成工程を示す断面図である。まず、第1図(a
)に示す如く、表面に予め絶縁層としてシリコン酸化膜
11を形成したシリコンウェハ(図示せず)上に、Ag
−8i(1%)合金からなる厚さ1μmの薄膜12をス
パッタ蒸着により形成する。その後、第1図(b)に示
す如く、薄膜12上にフォトレジストを用いて配線パタ
ーンに対応したマスク13を形成する。
FIG. 1 is a cross-sectional view showing the process of forming aluminum interconnections using a method according to an embodiment of the present invention. First, Figure 1 (a
), Ag was deposited on a silicon wafer (not shown) on which a silicon oxide film 11 was previously formed as an insulating layer.
A thin film 12 of 1 μm thick made of -8i (1%) alloy is formed by sputter deposition. Thereafter, as shown in FIG. 1(b), a mask 13 corresponding to the wiring pattern is formed on the thin film 12 using a photoresist.

次いで、第1図(C)に示す如く、RIE法によって薄
膜12を選択エツチングする。このエツチングには平行
平板型のドライエツチング装置を使用し、エツチングに
用いたガスは塩素、容器内圧力は5 Pa、カソードに
印加した高周波電力(13,5MHz )の密度はIW
/c(であった。次いで、酸素ガス中でプラズマ灰化法
によりレジストマスク13を除去し、走査型電子顕微鏡
で観察を行うと、第1 図(d)に示す如く、アルミニ
ウム配線(薄膜12)の端部から垂直に立った残存物1
4が残っていることが確認された。
Next, as shown in FIG. 1(C), the thin film 12 is selectively etched by RIE. A parallel plate dry etching device was used for this etching, the gas used for etching was chlorine, the pressure inside the container was 5 Pa, and the density of the high frequency power (13.5 MHz) applied to the cathode was IW.
/c (.Next, the resist mask 13 was removed by plasma ashing in oxygen gas and observed with a scanning electron microscope. As shown in FIG. 1(d), the aluminum wiring (thin film 12 ) remnant 1 standing vertically from the edge of
It was confirmed that 4 remained.

次に、上記試料に本発明を適用して不純物の洗浄処理を
行う。まず、弗化水素(HF)49%の水溶液を純度9
9.9%の氷酢酸(CH3C00I+)に溶解し、IF
に対してCH3C0OHの希釈率40倍の溶液を調整し
、エツチング液とした。第1図(d)に示す試料をこの
エツチング液に10分間浸漬し、次にエチルアル、コー
ルで洗浄した後、乾燥した。第1図(e)にその結果を
示すように、残存物14は完全に除去され、Aρ合金薄
膜12自体の腐蝕は観察されなかった。
Next, the present invention is applied to the sample to perform impurity cleaning treatment. First, a 49% aqueous solution of hydrogen fluoride (HF) with a purity of 9
Dissolved in 9.9% glacial acetic acid (CH3C00I+) and IF
A solution of CH3C0OH at a dilution rate of 40 times was prepared and used as an etching solution. The sample shown in FIG. 1(d) was immersed in this etching solution for 10 minutes, then washed with ethyl alcohol and alcohol, and then dried. As shown in FIG. 1(e), the residue 14 was completely removed, and no corrosion of the Aρ alloy thin film 12 itself was observed.

第2図はこのエツチング液による残存物14の除去所要
時間及びAp自体の腐蝕速度と、CH3C0OHによる
希釈率との関係を示す特性図である。希釈率10倍の場
合、除去に必要な時間は1分である。これに対し、AI
の腐蝕速度は 100人/分であり、除去中に腐蝕され
るAllは100人に過ぎない。また、希釈率640倍
の場合、残存物除去のためには100分を要するが、A
[の腐蝕速度も3人/分と小さいため、腐蝕されるAJ
)は300人に過ぎず、実質的に腐蝕を無視できる。
FIG. 2 is a characteristic diagram showing the relationship between the time required to remove the residue 14 using this etching solution, the corrosion rate of Ap itself, and the dilution rate with CH3C0OH. At a dilution rate of 10 times, the time required for removal is 1 minute. On the other hand, AI
The corrosion rate is 100 people/min, and only 100 people of All are corroded during removal. In addition, when the dilution rate is 640 times, it takes 100 minutes to remove the residue, but A
[Since the corrosion rate is as low as 3 people/min, the AJ
) is only 300 people, and corrosion can be virtually ignored.

これに対し、第3図は、HFの水溶液を用いた時の希釈
率に対する残存物14の除去時間及びAjの腐蝕速度の
関係を示す特性図である。同じ希釈率の場合、残存物の
除去時間はClh C00tl溶液の場合と略等しいが
、lの腐蝕速度は10倍程度大きく、除去中の腐蝕が無
視できないものとなる。
On the other hand, FIG. 3 is a characteristic diagram showing the relationship between the dilution rate, the removal time of the residue 14, and the corrosion rate of Aj when an HF aqueous solution is used. For the same dilution rate, the removal time of the residue is approximately the same as for the Clh C00tl solution, but the corrosion rate of 1 is about 10 times greater, making the corrosion during removal not negligible.

第4図はエツチング液中の水分の含有量とA、Qの腐蝕
速度の関係を示したが、含水量20%を越えると腐蝕速
度が急速に大きくなる。従って、本発明の有効性が発揮
されるのは含水量が20%以下の場合である。なお、第
2図乃至第4図ではAfiの腐蝕速度をプロットしてい
るがAΩ合金の場合もこれと略同様となる。
FIG. 4 shows the relationship between the water content in the etching solution and the corrosion rate of A and Q. When the water content exceeds 20%, the corrosion rate increases rapidly. Therefore, the effectiveness of the present invention is exhibited when the water content is 20% or less. In addition, although the corrosion rate of Afi is plotted in FIGS. 2 to 4, it is approximately the same in the case of AΩ alloy.

かくして本実施例によれば、RIEで加工された後のA
9合金からなる配線層を有する試料を、HFとCH,C
0OHを含むエツチング液で処理することにより、配線
層の腐蝕を招くことなく表面に付着した残存物を確実に
除去することができる。従って、配線層の信頼性向上を
はかることができ、半導体集積回路素子の特性向上等に
寄与することが可能となる。
Thus, according to this embodiment, A after being processed by RIE
A sample with a wiring layer made of 9 alloys was prepared using HF, CH, and C.
By processing with an etching solution containing 0OH, it is possible to reliably remove the residue adhering to the surface without causing corrosion of the wiring layer. Therefore, it is possible to improve the reliability of the wiring layer, and it is possible to contribute to improving the characteristics of semiconductor integrated circuit elements.

次に、本発明を多層配線形成に適用した例について第5
図を用いて説明する。まず、先の実施例と同様にして第
5図(a)に示す如く、シリコン酸化膜51上にアルミ
ニウムの第1層配線52を形成する。次いで、CVD法
を用いて第5図(b)に示す如く、シリコン酸化膜53
を層間絶縁膜として堆積した後、RIE法を用いてコン
タクトホール54を開ける。
Next, we will discuss the fifth example of applying the present invention to multilayer wiring formation.
This will be explained using figures. First, as in the previous embodiment, a first layer wiring 52 of aluminum is formed on a silicon oxide film 51, as shown in FIG. 5(a). Next, as shown in FIG. 5(b), a silicon oxide film 53 is formed using the CVD method.
After depositing as an interlayer insulating film, a contact hole 54 is opened using the RIE method.

次いで、第2層目の配線材料を堆積させる前に、アルミ
ニウムからなる第1層配線52の表面に存在する自然酸
化膜55を除去するため、珪弗酸5%の酢酸溶液を用い
、3分間浸漬処理した。その後、エタノールで洗浄した
後、スパッタ蒸着容器に入れ、第2層目のアルミニウム
膜56を堆積した。乾燥後、スパッタ容器に導入するま
での処理は、再度自然酸化膜が成長することを防ぐため
、乾燥窒素で取扱った。
Next, before depositing the second layer wiring material, in order to remove the natural oxide film 55 present on the surface of the first layer wiring 52 made of aluminum, an acetic acid solution containing 5% silicic acid was used for 3 minutes. Soaked. Thereafter, after cleaning with ethanol, it was placed in a sputter deposition container, and a second layer of aluminum film 56 was deposited thereon. After drying, the sample was treated with dry nitrogen until it was introduced into the sputtering container in order to prevent the natural oxide film from growing again.

このように形成した第1層と第2層の配線の間の抵抗を
測定した。その結果、接触抵抗は0.1Ω/μm2以下
であった。これに対し、自然酸化膜の除去を行わなかっ
た場合は、2Ω/μm2であり、本処理によって接触抵
抗を1/20以下に低減できることが確認された。
The resistance between the first and second layer wirings formed in this manner was measured. As a result, the contact resistance was 0.1Ω/μm2 or less. On the other hand, when the natural oxide film was not removed, the contact resistance was 2Ω/μm2, and it was confirmed that the contact resistance could be reduced to 1/20 or less by this treatment.

ここで、本実施例で珪弗酸を用いた理由は、層間絶縁膜
53として用いる気相成長5i02膜がエツチングされ
ることを防止するためである。珪弗酸はHFと5in2
の反応で生じた化合物であるため、5in2を殆ど溶解
しない。また、エツチング液に浸漬した後、水を用いず
エタノールで洗浄するのは、水洗中に残留した弗化水素
による腐蝕を防止する効果を有する。その後の乾燥は、
250℃以上の温度で乾燥窒素中で30分以上行うこと
が望ましい。
Here, the reason why silicofluoric acid is used in this embodiment is to prevent the vapor-phase grown 5i02 film used as the interlayer insulating film 53 from being etched. Silicic acid is HF and 5in2
Since it is a compound produced by the reaction, it hardly dissolves 5in2. Furthermore, washing with ethanol without using water after immersion in the etching solution has the effect of preventing corrosion due to hydrogen fluoride remaining during washing. The subsequent drying is
It is desirable to carry out the process in dry nitrogen at a temperature of 250° C. or higher for 30 minutes or longer.

また、本実施例では第2層目の金属配線層としてアルミ
ニウムを用いたが、例えばタングステン等に用いる場合
にも有効である。タングステン薄膜は、6弗化タングス
テン(WF6)ガスからCVD法により金属上に選択的
に成長できるが、アルミニウム上の自然酸化膜はこのよ
うな選択成長の妨げとなる。本発明を用いて予め自然酸
化膜を除去した後、このような選択成長を行うとその効
果は絶大である。
Further, although aluminum is used as the second metal wiring layer in this embodiment, it is also effective when using tungsten or the like, for example. A tungsten thin film can be selectively grown on a metal using a CVD method using tungsten hexafluoride (WF6) gas, but a natural oxide film on aluminum hinders such selective growth. If the present invention is used to remove the native oxide film in advance and then such selective growth is performed, the effect is tremendous.

なお、本発明は上述した各実施例方法に限定されるもの
ではない。例えば、エツチング剤としては弗化水素や珪
弗酸以外に、弗化アンモニウム等又はこれらの混合物を
用いてもよい。つまり、FとHを含み水溶液中で酸性と
なる化合物であればよい。さらに、溶媒としてはCH3
COO11以外にフェノール等の有機酸、カルボン酸、
その他種々の非水酸性溶媒を用いることができる。また
本実施例では、アルミニウムをエツチング加工後に02
プラズマで灰化法を用いて一旦エッチングマスクを除去
した後に不純物を除去している。この方法は、少なくと
もマスクの側壁に付着した不純物に対しては表と裏の両
面から溶解が進む点で有利である。
Note that the present invention is not limited to the methods of each embodiment described above. For example, as the etching agent, in addition to hydrogen fluoride and silicic acid, ammonium fluoride or a mixture thereof may be used. That is, any compound that contains F and H and becomes acidic in an aqueous solution may be used. Furthermore, as a solvent, CH3
In addition to COO11, organic acids such as phenol, carboxylic acids,
Various other non-hydroxy acidic solvents can be used. In addition, in this example, after etching aluminum, 02
Impurities are removed after the etching mask is removed using a plasma ashing method. This method is advantageous in that at least impurities attached to the side walls of the mask are dissolved from both the front and back sides.

しかし、プラズマ灰化時に不純物がより硬化して、溶解
し難くなる場合もある。ドライエツチングの条件やアル
ミニウム合金の組成、エツチングマスクの材質等によっ
て、適宜これらの工程の順序を入替えてもよい。また、
配線層はアルミニウムやアルミニウム合金に限るもので
はなく、残存物の除去としての希弗酸水溶液等の洗浄液
では腐蝕が生じる金属又は合金に適用することが可能で
ある。
However, impurities may harden further during plasma ashing and become difficult to dissolve. The order of these steps may be changed as appropriate depending on the dry etching conditions, the composition of the aluminum alloy, the material of the etching mask, etc. Also,
The wiring layer is not limited to aluminum or aluminum alloys, but can be applied to metals or alloys that are corroded by cleaning solutions such as dilute hydrofluoric acid aqueous solution for removing residual materials.

その他、本発明の要旨を逸脱しない範囲で、種々変形し
て実施することができる。
In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上詳述したように本発明によれば、金属自体の腐蝕を
伴わずに表面の薄い金属酸化物や炭化物を除去すること
ができる。従って、本発明を集積回路素子の製造に応用
すれば、ゴミの発生量が低下して良品率が向上し、また
多層配線の配線間の抵抗が低減され、素子の性能が向上
する。
[Effects of the Invention] As detailed above, according to the present invention, thin metal oxides and carbides on the surface can be removed without corroding the metal itself. Therefore, if the present invention is applied to the manufacture of integrated circuit devices, the amount of dust generated will be reduced, the yield rate will be improved, and the resistance between interconnects in multilayer wiring will be reduced, improving the performance of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる配線形成工程を示す
断面図、第2図はC)I3COOHを溶媒として用いた
場合の付着物の除去時間及びApの腐蝕速度を示す特性
図、第3図はH2Oを溶媒として用いた場合の付着物の
除去時間及びAlの腐蝕速度を示す特性図、第4図はエ
ツチング液中の水分の含有量とApの腐蝕速度との関係
を示す特性図、第5図は本発明の他の実施例に係わる多
層配線形成工程を示す断面図である。 11.51.53・・・シリコン酸化膜、12・・・ア
ルミニウム合金薄膜、13・・・フォトレジストマスク
、14・・・残存物、52・・・アルミニウム合金薄膜
(第1層配線)、54・・・コンタクトホール、55・
・・自然酸化膜、56・・・第2層配線。 出願人代理人 弁理士 鈴江武彦 91図 第1図 1貰りSt! @ #1M?!−開(r)−−側壁イづ
しlシt′去、アロ1h吋悶(づケう−H20/(H2
0+CH3CO0H)(’/Q)→第4図 第5図
FIG. 1 is a cross-sectional view showing the wiring forming process according to an embodiment of the present invention, FIG. Figure 3 is a characteristic diagram showing the removal time of deposits and the corrosion rate of Al when H2O is used as a solvent, and Figure 4 is a characteristic diagram showing the relationship between the water content in the etching solution and the corrosion rate of Ap. , and FIG. 5 are cross-sectional views showing a multilayer wiring forming process according to another embodiment of the present invention. 11.51.53...Silicon oxide film, 12...Aluminum alloy thin film, 13...Photoresist mask, 14...Residue, 52...Aluminum alloy thin film (first layer wiring), 54・・・Contact hole, 55・
...Natural oxide film, 56...Second layer wiring. Applicant's agent Patent attorney Takehiko Suzue 91 Figure 1 Figure 1 Get St! @ #1M? ! -Open (r)--Side wall Izushil t' left, Arro 1h agony (Zukeu-H20/(H2
0+CH3CO0H)('/Q)→Figure 4Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)表面に金属元素を含む不純物が付着した金属若し
くは金属合金の配線層を有する被処理基体を、弗化水素
、弗化アンモニウム及び珪弗酸の少なくとも1種と弱酸
性の非水溶媒を含むエッチング液に浸漬して、前記不純
物を除去することを特徴とする表面処理方法。
(1) A substrate to be processed having a metal or metal alloy wiring layer on which impurities containing metal elements have adhered is treated with at least one of hydrogen fluoride, ammonium fluoride, and silicofluoric acid and a weakly acidic non-aqueous solvent. A surface treatment method characterized by removing the impurities by immersion in an etching solution containing the impurities.
(2)前記配線層は、アルミニウム又はアルミニウム合
金からなることを特徴とする請求項1記載の表面処理方
法。
(2) The surface treatment method according to claim 1, wherein the wiring layer is made of aluminum or an aluminum alloy.
(3)前記エッチング液は、含水量が体積比20%以下
であることを特徴とする請求項1記載の表面処理方法。
(3) The surface treatment method according to claim 1, wherein the etching solution has a water content of 20% or less by volume.
(4)前記弱酸性の非水溶媒として、氷酢酸等の有機脂
肪酸又はフェノールを用いたことを特徴とする請求項1
記載の表面処理方法。
(4) Claim 1 characterized in that an organic fatty acid such as glacial acetic acid or phenol is used as the weakly acidic non-aqueous solvent.
Surface treatment method described.
(5)エッチングマスクを用いてドライエッチングによ
り選択的にエッチング加工され、表面にアルミニウムを
含む不純物が付着したアルミニウム若しくはアルミニウ
ム合金の配線層を有する被処理基体を、エッチング液に
浸漬して表面の不純物を除去する表面処理方法において
、前記エッチング液として、弗化水素、弗化アンモニウ
ム及び珪弗酸の少なくとも1種と弱酸性の非水溶媒を含
み、且つ含水量が体積比で20%以下のものを用い、前
記被処理基体を前記エッチングマスクを除去する前又は
除去した後に前記エッチング液に浸漬することを特徴と
する表面処理方法。
(5) A substrate to be processed having a wiring layer of aluminum or aluminum alloy that has been selectively etched by dry etching using an etching mask and has impurities including aluminum attached to the surface is immersed in an etching solution to remove impurities on the surface. In the surface treatment method for removing, the etching solution contains at least one of hydrogen fluoride, ammonium fluoride, and silicic acid, and a weakly acidic nonaqueous solvent, and has a water content of 20% or less by volume. A surface treatment method characterized in that the substrate to be treated is immersed in the etching solution before or after removing the etching mask.
JP6978588A 1988-03-25 1988-03-25 Surface treatment Pending JPH01243528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6978588A JPH01243528A (en) 1988-03-25 1988-03-25 Surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6978588A JPH01243528A (en) 1988-03-25 1988-03-25 Surface treatment

Publications (1)

Publication Number Publication Date
JPH01243528A true JPH01243528A (en) 1989-09-28

Family

ID=13412761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6978588A Pending JPH01243528A (en) 1988-03-25 1988-03-25 Surface treatment

Country Status (1)

Country Link
JP (1) JPH01243528A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295898A (en) * 1993-02-24 1994-10-21 Advanced Chem Syst Internatl Inc Selective removal of organometallic compound, residue of organosilicic compound and damaged/oxide
US6162727A (en) * 1998-11-25 2000-12-19 Advanced Micro Devices, Inc. Chemical treatment for preventing copper dendrite formation and growth
KR100319881B1 (en) * 1999-02-03 2002-01-10 윤종용 Aqueous cleaning solution for removing contaminants from surface of integrated circuit substrate and cleaning method using thereof
US7624742B1 (en) 2004-04-05 2009-12-01 Quantum Global Technologies, Llc. Method for removing aluminum fluoride contamination from aluminum-containing surfaces of semiconductor process equipment
US7671001B2 (en) 2003-10-29 2010-03-02 Mallinckrodt Baker, Inc. Alkaline, post plasma etch/ash residue removers and photoresist stripping compositions containing metal-halide corrosion inhibitors
JP2012516560A (en) * 2009-01-30 2012-07-19 ケンブリッジ ディスプレイ テクノロジー リミテッド Method for forming source and drain electrodes of organic thin film transistor by electroless plating

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295898A (en) * 1993-02-24 1994-10-21 Advanced Chem Syst Internatl Inc Selective removal of organometallic compound, residue of organosilicic compound and damaged/oxide
US6162727A (en) * 1998-11-25 2000-12-19 Advanced Micro Devices, Inc. Chemical treatment for preventing copper dendrite formation and growth
KR100319881B1 (en) * 1999-02-03 2002-01-10 윤종용 Aqueous cleaning solution for removing contaminants from surface of integrated circuit substrate and cleaning method using thereof
US7671001B2 (en) 2003-10-29 2010-03-02 Mallinckrodt Baker, Inc. Alkaline, post plasma etch/ash residue removers and photoresist stripping compositions containing metal-halide corrosion inhibitors
US7624742B1 (en) 2004-04-05 2009-12-01 Quantum Global Technologies, Llc. Method for removing aluminum fluoride contamination from aluminum-containing surfaces of semiconductor process equipment
JP2012516560A (en) * 2009-01-30 2012-07-19 ケンブリッジ ディスプレイ テクノロジー リミテッド Method for forming source and drain electrodes of organic thin film transistor by electroless plating

Similar Documents

Publication Publication Date Title
TWI572745B (en) Etchant composition for copper-containing metal film and etching method using the same
KR101082993B1 (en) Separation-material composition for photo-resist and manufacturing methods of semiconductor device
US7919445B2 (en) Aqueous solution for removing post-etch residue
US7264742B2 (en) Method of planarizing a surface
US5476816A (en) Process for etching an insulating layer after a metal etching step
US5378653A (en) Method of forming aluminum based pattern
US5700740A (en) Prevention of corrosion of aluminum interconnects by removing corrosion-inducing species
JP3236225B2 (en) Semiconductor device and manufacturing method thereof
JP2663704B2 (en) Corrosion prevention method for Al alloy
JPH01243528A (en) Surface treatment
TW200304586A (en) Composite for stripping photoresist and the manufacturing method of semiconductor device using the same
KR101621546B1 (en) Manufacturing method of an array substrate for liquid crystal display
JP4559565B2 (en) Method for forming metal wiring
JPH09213703A (en) Manufacture of semiconductor device
JP2002162755A (en) Method of manufacturing semiconductor device
Su et al. Copper Oxide Passivation Effect on Electromigration Lifetime of Plasma Etched Copper Lines
JP4482217B2 (en) Semiconductor device cleaning agent and semiconductor device cleaning method
JP3701193B2 (en) Manufacturing method of semiconductor device
JP2000183287A (en) Etching method of dielectric thin film and semiconductor device
WO1998039799A1 (en) Post-treating method for plasma etching
TW200817849A (en) System using ozonated acetic anhydride to remove photoresist materials
US20040018743A1 (en) Method for removing photoresist after metal layer etching in a semiconductor device
JP3475666B2 (en) Dry etching method
JP2002246393A (en) Method of forming metal wiring
JPH08264508A (en) Etching method