JPH01243413A - Thin film forming equipment - Google Patents

Thin film forming equipment

Info

Publication number
JPH01243413A
JPH01243413A JP63070997A JP7099788A JPH01243413A JP H01243413 A JPH01243413 A JP H01243413A JP 63070997 A JP63070997 A JP 63070997A JP 7099788 A JP7099788 A JP 7099788A JP H01243413 A JPH01243413 A JP H01243413A
Authority
JP
Japan
Prior art keywords
grid
glow discharge
cathode
shutter
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63070997A
Other languages
Japanese (ja)
Other versions
JP2678286B2 (en
Inventor
Katsunobu Sayama
勝信 佐山
Hisao Haku
白玖 久雄
Tatsuro Usuki
臼杵 辰朗
Shinya Tsuda
津田 信哉
Shoichi Nakano
中野 昭一
Yukinori Kuwano
桑野 幸徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63070997A priority Critical patent/JP2678286B2/en
Publication of JPH01243413A publication Critical patent/JPH01243413A/en
Application granted granted Critical
Publication of JP2678286B2 publication Critical patent/JP2678286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To prevent the deterioration of interface characteristics, and improve element characteristics, by installing, in the vicinity of a grid, a shutter whose potential is kept equal to the grid, and which is maintained in a closed state until glow discharge is stabilized, and turned into an open state after the glow discharge has been stabilized. CONSTITUTION:A grid 8 is arranged between a cathode 2 and an anode 3, and grounded. A shutter 10, which is arranged in the vicinity of the grid 8 and grounded, is provided with a plurality of thin metal plate 11 of continuous length in a rectangular direction to each wire 9. The shutter 10 is closed; high frequency voltage is applied between the cathode 2 and the grid 8 by a power supply 6; RF glow discharge is generated between the cathode 2 and the grid 8. After the discharge is stabilized, the shutter is opened, and a thin film is formed on the substrate 4. Thereby high energy particles are prevented from colliding against the substrate 4, so that the deterioration of film quality can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高周波(RF)グロー放電によるプラズマC
VD法により、基板上に半導体薄膜等の薄膜を形成する
薄膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides plasma C by radio frequency (RF) glow discharge.
The present invention relates to a thin film forming apparatus that forms a thin film such as a semiconductor thin film on a substrate by a VD method.

〔従来の技術〕[Conventional technology]

一般ニ、アモルファスシリコン薄膜などの薄膜を形成す
る手法として、RFグロー放電によるプラズマCVD法
が知られており、これは、反応室内に配設されたカソー
ド、アノード間にRFグロー放電を発生させ、このRF
グロー放電により、反応ガスのプラズマを生成し、アノ
ードに装着保持された薄膜形成用基板上に薄膜を形成す
るものである。
In general, a plasma CVD method using RF glow discharge is known as a method for forming thin films such as amorphous silicon thin films.This method generates RF glow discharge between a cathode and an anode arranged in a reaction chamber, This RF
A glow discharge generates plasma of a reactive gas, and a thin film is formed on a thin film forming substrate mounted and held on an anode.

ところが、この場合、成膜中に放電により発生する電子
、イオンなどの高エネルギ粒子が、基板や基板上の薄膜
に衝突し、基板上に形成される薄膜の膜質の低下を招く
という不都合がある。
However, in this case, high-energy particles such as electrons and ions generated by discharge during film formation collide with the substrate and the thin film on the substrate, causing a disadvantage in that the quality of the thin film formed on the substrate deteriorates. .

そこで従来、サード シンポジウム オン プラズマ 
プロセシング、 1981  、 「アナリシスオブ 
シラン グロー ディスチャージ バイマス ヌベクト
ロスコピイJ (Third Symposiumon
 Plasma Processing 、 1981
 、 [ANALYSIS 0FSILANE  OL
□’tlV DISCI(AI[E  BY MASS
 SPP;CT’RO8COPY J (Herl)e
rt A、Weakliem )  に報告されている
ように、カソード、アノード間にメツシュ状のグリッド
を設ける。いわゆるトライオード法の採用により、成膜
中の高エネルギ粒子の衝突を抑えることが行なわれてい
る。
Conventionally, the Third Symposium on Plasma
Processing, 1981, “Analysis of
Silan Glow Discharge Bimas Nubectroscopy J (Third Symposium
Plasma Processing, 1981
, [ANALYSIS 0FSILANE OL
□'tlV DISCI(AI[E BY MASS
SPP;CT'RO8COPY J (Herl)e
A mesh-like grid is provided between the cathode and the anode as reported in rt A, Weakliem). Collisions of high-energy particles during film formation are suppressed by employing the so-called triode method.

ところで、このようなトライオード方式の几ドグロー放
電プラズマCVD法に用いる装置は、たとえば第5図に
示すように構成されており、同図において、(1)は反
応ガスが供給される反応室、(2)。
By the way, an apparatus used in such a triode-type forced glow discharge plasma CVD method is configured as shown in FIG. 2).

(31は反応室(11に平行に配設された平板状のカソ
ード及びアノード、(41はアノード(3)に装着され
た薄膜形成用基板、(5)はカソード12+とアノード
C31との間に配設されアースされたメツシュ状のグリ
ッド、(6)はカソード(2)、グリッド(5)間に高
周波電圧を印加してグロー放電を発生させる高周波電源
、(7)はアノード(3)に直流バイアス電圧を印加す
るバイアス電源である。
(31 is a flat cathode and anode arranged in parallel to the reaction chamber (11), (41 is a thin film forming substrate attached to the anode (3), (5) is between the cathode 12+ and the anode C31) (6) is a high-frequency power source that applies high-frequency voltage between the cathode (2) and the grid (5) to generate a glow discharge; (7) is a direct current to the anode (3); This is a bias power supply that applies a bias voltage.

そして、第5図に示す装置により薄膜を形成する場合、
電源(6)によシ、カソードC2)、グリッド(5)間
に高周波電圧が印加されて几Fグロー放電が発生され・
、反応ガスがデフズマ化されて成膜ラジカルが生成され
、基板(4)上に成膜ラジカルによる薄膜が形成される
とともに、バイアス電源(7)によりアノード(31に
バイアス電圧が印加され、アース電位のグリッドr5)
によシ、几Fグロー放電によって発生する電子、イオン
などの高エネルギ粒子が緩和され、基板(41あるいは
基板+41上に形成される薄膜への高エネルギ粒子の衝
突が抑制される。
When forming a thin film using the apparatus shown in FIG.
A high frequency voltage is applied between the power supply (6), the cathode C2), and the grid (5), and a glow discharge is generated.
, the reaction gas is defsumed and film-forming radicals are generated, and a thin film is formed by the film-forming radicals on the substrate (4).A bias voltage is applied to the anode (31) by the bias power supply (7), and the earth potential is grid r5)
Therefore, high-energy particles such as electrons and ions generated by the F glow discharge are relaxed, and collision of high-energy particles with the thin film formed on the substrate (41 or substrate +41) is suppressed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、RFグロー放電の発生当初は、高エネルギ粒子
が非常に多く存在し、しかもこれらの高エネルギ粒子に
は中性のものも含まれているため、前記したようにグリ
ッドr51を設けただけでは、放電発生直後の中性粒子
を含む高密度の高エネルギ粒子の基板(41への衝突を
、十分に抑制することができず、基板(4)上に形成さ
れる薄膜の膜質の劣化を防止することができないという
問題点がある。
However, at the beginning of the RF glow discharge, there are a large number of high-energy particles, and these high-energy particles also include neutral particles, so simply providing the grid r51 as described above will not work. , it is not possible to sufficiently suppress the collision of high-density, high-energy particles including neutral particles on the substrate (41) immediately after the discharge occurs, thereby preventing deterioration of the film quality of the thin film formed on the substrate (4). The problem is that it cannot be done.

さらに、積層構造のデバイスを作成した場合−は、各層
を形成する際のRFグロー放電発生直後の高エネルギ粒
子の衝撃の影響が下層に及び、たとえばテクニカル ダ
イジェスト オプ ファースト インターナショナル 
フォトボルタイックサイエンス アンド エンジニアリ
ング コンファレンス、 +984 、頁719〜72
2 (Technical Digestof  is
む International  Photovol
taic  5cience  and F;ngi−
neering Confercnce 、 1984
 、 p、719〜722〕に報告されているように、
各層の界面特性の劣化を招き、デバイス特性の低下の原
因になる。
Furthermore, when creating a device with a layered structure, the impact of high-energy particles immediately after the RF glow discharge occurs during the formation of each layer affects the underlying layer, for example, Technical Digest Op First International
Photovoltaic Science and Engineering Conference, +984, pp. 719-72
2 (Technical Digestof is
International Photovol
taic 5science and F; ngi-
Neering Conference, 1984
, p. 719-722].
This causes deterioration of the interfacial characteristics of each layer, causing deterioration of device characteristics.

そこで、本発明は前記の点に留意してなされ、トライオ
ード方式の几Fグロー放電プラズマCVD法による薄膜
形成の際に、RFグロー放電の発生直後の中性粒子を含
む高エネルギ粒子の基板あるいは基板上の成長薄膜への
衝突を防止し、得られる薄膜の膜質の劣化を防止するこ
とを目的とする。
Therefore, the present invention has been made with the above-mentioned points in mind. When forming a thin film by a triode type F glow discharge plasma CVD method, a substrate or a substrate of high energy particles containing neutral particles immediately after generation of RF glow discharge. The purpose is to prevent collisions with the grown thin film above and to prevent deterioration of the quality of the resulting thin film.

〔課題を解決するだめの手段〕[Failure to solve the problem]

つぎに、前記目的を達成するだめの手段を、実施例に対
応する第1図を用いて説明する。
Next, means for achieving the above object will be explained using FIG. 1 which corresponds to an embodiment.

すなわち、本発明では、反応ガスが供給される反応室(
1)と、 前記反応室(1)に平行に配設された平板状のカソード
(2)及、びアノード(3)と、 前記アノード(3)に装着された薄膜形成用基板(41
と、 前記カソード(2)と前記アノ−トイ31との間に配設
されたグリッドr81と、 前記カソード(2)、グリッド181間に高周波電圧を
印加してグロー放電を発生させる高周波電源r61と、
前記アノード(3)にバイアス電圧を印加するバイアス
電源c力と、 前記グリッド【8)の近傍に該グリッド(8)と同電位
に設けられ、前記グロー放電が安定するまで閉状態に保
持され、前記グロー放電が安定したのち開放されるシャ
ッタaOとを備えるという技術的手段を講じている。
That is, in the present invention, a reaction chamber (
1), a flat cathode (2) and an anode (3) arranged in parallel to the reaction chamber (1), and a thin film forming substrate (41) attached to the anode (3).
a grid r81 disposed between the cathode (2) and the anno-toy 31; and a high frequency power supply r61 that applies a high frequency voltage between the cathode (2) and the grid 181 to generate glow discharge. ,
a bias power source c which applies a bias voltage to the anode (3); and a bias power source C provided near the grid (8) at the same potential as the grid (8) and maintained in a closed state until the glow discharge is stabilized; A technical measure is taken to include a shutter aO that is opened after the glow discharge is stabilized.

〔作用〕[Effect]

しだがって、本発明によると、カソード(2)、グリッ
ド(8)間に発生されるR I/グロー放電が安定する
までの間、シャッタ00が閉状態に保持されるだめ、R
Fグロー放電の放電開始直後における中性粒子を含む高
エネルギ粒子の基板(4)への衝突が、ンヤツタ00に
より防止され、基板(4)上に成長する薄膜の膜質の劣
化が防止される。
Therefore, according to the present invention, until the R I/glow discharge generated between the cathode (2) and the grid (8) is stabilized, the shutter 00 is held in the closed state.
Immediately after the start of the F glow discharge, high-energy particles including neutral particles are prevented from colliding with the substrate (4), and the quality of the thin film grown on the substrate (4) is prevented from deteriorating.

〔実施例〕〔Example〕

つぎに、本発明を、そのl実施例を示した第1図ないし
第4図とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIGS. 1 to 4 showing an embodiment thereof.

全体の構成を示す第1図において、第5図と同一記号は
同一もしくは相当するものを示し、第1図において、(
8)は複数個のワイヤ(9)が等間隔(2MM)に配列
されて形成されたグリッドであり、カソード(21とア
ノード(31との間に配設され、アースされている。
In FIG. 1 showing the overall configuration, the same symbols as in FIG. 5 indicate the same or equivalent parts, and in FIG.
8) is a grid formed by arranging a plurality of wires (9) at equal intervals (2 MM), and is disposed between the cathode (21) and the anode (31) and is grounded.

さらに、叫はグリッド(8)の下側近傍に設けられアー
スされたシャッタであり、各ワイヤ(91の方向に直角
方向に長尺の薄い金属板O1) (幅1.5 am )
が複数個配設されて形成され、閉状態では、第2図(a
)。
Furthermore, the shutter is a grounded shutter provided near the bottom of the grid (8), and each wire (a thin metal plate O1 long in the direction perpendicular to the direction of 91) (width 1.5 am)
is formed by arranging a plurality of
).

(b)に示すように、各金属板0刀が順次に配列されて
カソードC21,アノードr31間を遮蔽し、開状態で
は、第3(2)(A) 、 (b)に示すように、何枚
かずつに組分けされた各金属板til+が各組ごとに重
合されてカソードC2)、アノード(3)が開放される
As shown in (b), each metal plate 0 is sequentially arranged to shield between the cathode C21 and the anode R31, and in the open state, as shown in 3(2)(A) and (b), The metal plates til+, which are divided into several groups, are superposed one by one, and the cathode C2) and anode (3) are opened.

このとき、シャッタα0の開、閉は外部操作により行わ
れ、たとえば各金属板011に各組ごとに操作ワイヤが
それぞれ係合され、各操作ワイヤを反応室(1)の外部
から手動によりあるいは機械的に引っ張ることにより、
各組ごとの金属板0υが移動され、ンヤツタαGが開、
閉されるようになっている。
At this time, the opening and closing of the shutter α0 is performed by an external operation. For example, each set of operating wires is engaged with each metal plate 011, and each operating wire is connected from outside the reaction chamber (1) manually or mechanically. By pulling the
The metal plate 0υ of each group is moved, and Nyatsuta αG is opened.
It is set to be closed.

そして、基板(4)上に薄膜を形成する場合、まずシャ
ッタflGを閉じておき、電源(61によシカソード(
21,グリッド+81間に高周波電圧を印加し、カソー
ド(2I、グリッド+81間にRFグロー放電を発生さ
せ、放電が安定するまでの間、シャッタ0υを第2図(
a)。
When forming a thin film on the substrate (4), the shutter flG is first closed, and the power source (61) is connected to the cathode (
A high frequency voltage is applied between the cathode (2I) and the grid +81 to generate an RF glow discharge between the cathode (2I) and the grid +81.
a).

(b)に示すように閉状態に保持し、カソード(2)、
7ノード(31間を遮蔽する。
The cathode (2) is held in the closed state as shown in (b);
7 nodes (shielding between 31 nodes.

つぎに、RFグロー放電の発生から、放電が安定するま
での時間が経過したのち、シャッタa1を第3図(a)
 、 (b)に示すように開状態にし、RFグロー放電
によシ生成される成膜ラジカルが基板(41上に到達し
得る状態にし、基板(4)上への薄膜の形成を行う。
Next, after the time from the occurrence of the RF glow discharge until the discharge becomes stable, the shutter a1 is opened as shown in Fig. 3(a).
, as shown in (b), the film formation radicals generated by the RF glow discharge can reach the substrate (41), and a thin film is formed on the substrate (4).

このように、RFグロー放電が安定するまでの間、シャ
ッタaOを閉状態に保持することにより、中性粒子を含
む高エネルギ粒子の基板(4)への衝突が防止されるた
め、基板(4)上に成長する薄膜の膜質の劣化が防止さ
れる。
In this way, by keeping the shutter aO closed until the RF glow discharge stabilizes, high-energy particles including neutral particles are prevented from colliding with the substrate (4). ) Deterioration of the film quality of the thin film grown on the film is prevented.

ところで、前記した装置を用い、下表に示す反応条Ni
n構造のアモルファスシリコン太it池の作成を行い、
得られた太陽電池の収集効率を測定した結果、第4図中
の実線に示すようになった。
By the way, using the above-mentioned apparatus, the reaction conditions shown in the table below were prepared using Ni.
Created an n-structured amorphous silicon fat pond,
The collection efficiency of the obtained solar cell was measured, and the results were as shown by the solid line in FIG.

ただし、この場合、基板(4)として、上面に透光性導
電酸化膜を形成したガラス基板を用い、裏面電極として
、アルミニウム蒸着膜を用いている。
However, in this case, a glass substrate with a transparent conductive oxide film formed on its upper surface is used as the substrate (4), and an aluminum vapor-deposited film is used as the back electrode.

なお、p、i、nの各層形成時に、RFグロー放電が安
定するまでの間、シャッタ(11を閉じておき、安定後
シャッタ00を開放するのは、前記したとおりである。
As described above, when forming each of the p, i, and n layers, the shutter (11) is closed until the RF glow discharge stabilizes, and then the shutter 00 is opened after stabilization.

そして、比較のため、前記した反応条件と同一条件下で
、第5図の従来装置を用いて作成したアモルファスシリ
コン太陽電池の収集効率の測定も行い、これを第4図中
の破線に示す。
For comparison, the collection efficiency of an amorphous silicon solar cell produced using the conventional apparatus shown in FIG. 5 was also measured under the same reaction conditions as described above, and this is shown by the broken line in FIG. 4.

このように、第4図から明らかなように、第1図に示す
本発明の実施例の装置により作成した太陽電池の方が、
従来装置により作成した太陽電池に比べ、300〜60
0 nmの短波長側における収集効率が増大しており、
短波長感度の向上が見られ、これはシャッタ叫を設けた
ことにより、i層形成の際に、下層のp層に加わるダメ
ージが従来装置の場合に比べて低減することが可能とな
シ、その結果、1層の膜質の劣化を防止できただめであ
る。
In this way, as is clear from FIG. 4, the solar cell produced by the apparatus of the embodiment of the present invention shown in FIG.
300 to 60 compared to solar cells made using conventional equipment.
The collection efficiency on the short wavelength side of 0 nm is increased,
An improvement in short-wavelength sensitivity was observed, and this is due to the fact that the damage to the underlying p-layer during the i-layer formation can be reduced compared to conventional equipment due to the provision of a shutter function. As a result, the deterioration of the film quality of one layer could not be prevented.

したがって、前記実施例によると、几Fグロー放電が安
定するまでの間、シャッタaOを閉状態に保持し、RF
グロー放電の安定後シャッタallを開くようにしただ
め、放電開始直後における中性粒子を含む高エネルギ粒
子の基板(4)への衝突を、シャッタaOにより防止す
ることができ、基板(4)上に成長する薄膜の膜質の劣
化を防止することができ、非晶質薄膜太陽電池などの積
層構造の光起電力素子を作成する場合K、従来に比べ、
各層の界面特性の劣化を防止して素子特性の向上を図る
ことが可能となる。
Therefore, according to the embodiment, the shutter aO is kept closed until the F glow discharge is stabilized, and the RF
By opening the shutters all after the glow discharge has stabilized, the shutter aO can prevent high-energy particles including neutral particles from colliding with the substrate (4) immediately after the start of the discharge. When creating photovoltaic elements with a laminated structure such as amorphous thin film solar cells, it is possible to prevent deterioration of the film quality of the thin film that grows.
It becomes possible to prevent deterioration of the interface characteristics of each layer and improve the device characteristics.

さらに、前記実施例において、シャッタ(10を導電性
材料により形成し、かつシャッタ00をグリッド(8)
に近接して同電位に設けただめ、放電の乱れを防止する
ことができ、従来と同様に安定したRFグロー放電を得
ることができ、従来と同等の再現性1歩留り及び均一性
を維持することができる。
Further, in the embodiment, the shutter (10) is formed of a conductive material, and the shutter (00) is formed of a grid (8).
By placing them close to each other and at the same potential, it is possible to prevent disturbances in the discharge, and it is possible to obtain stable RF glow discharge as before, maintaining the same reproducibility, yield, and uniformity as before. be able to.

なお、グリッドC8)、シャッタI′1Gの構成は、前
記したものに限らないのは言うまでもない。
It goes without saying that the configurations of the grid C8) and the shutter I'1G are not limited to those described above.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので、以
下に記載するような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

1’LFグロー放電開始直後における中性粒子を含む高
エネルギ粒子の基板への衝突を、ンヤツタにより防止す
ることができるため、基板上に成長する薄膜の膜質の劣
化を防止することができ、非晶質薄膜太陽電池などの積
層構造の光起電力素子を作成する場合に、従来に比べ、
各層の界面特性の劣化を防止して素子特性の向上を図る
ことが可能となり、その効果は極めて大きい。
Immediately after the start of 1'LF glow discharge, high-energy particles including neutral particles can be prevented from colliding with the substrate, making it possible to prevent the deterioration of the film quality of the thin film grown on the substrate. Compared to conventional methods, when creating photovoltaic elements with a stacked structure such as crystalline thin-film solar cells,
It becomes possible to prevent deterioration of the interface characteristics of each layer and improve the device characteristics, and the effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の薄膜形成装置の1実施例
を示し、第1図は正面図、第2図(a) 、 (h)は
閉状態におけるシャッタの底面図及び正面図、第3図(
EL) 、 (b)は開状態におけるシャッタの底面図
及び正面図、第4図は収集効率特性図、第5図は従来例
の正面図である。 +11・・・反応室、C2)・・・カソード、C3)・
・・アノード、(4)・・・基板、(6)・・・高周波
電源、(7)・・・バイアス電源、C81・・・グリッ
ド、aO・・・シャッタ。
1 to 4 show one embodiment of the thin film forming apparatus of the present invention, FIG. 1 is a front view, FIGS. 2(a) and 2(h) are a bottom view and a front view of the shutter in the closed state, Figure 3 (
EL), (b) is a bottom view and a front view of the shutter in an open state, FIG. 4 is a collection efficiency characteristic diagram, and FIG. 5 is a front view of a conventional example. +11...Reaction chamber, C2)...Cathode, C3)・
... Anode, (4) ... Substrate, (6) ... High frequency power supply, (7) ... Bias power supply, C81 ... Grid, aO ... Shutter.

Claims (1)

【特許請求の範囲】[Claims] (1)反応ガスが供給される反応室と、 前記反応室に平行に配設された平板状のカソード及びア
ノードと、 前記アノードに装着された薄膜形成用基板と、前記カソ
ードと前記アノードとの間に配設されたグリッドと、 前記カソード、グリッド間に高周波電圧を印加してグロ
ー放電を発生させる高周波電源と、前記アノードにバイ
アス電圧を印加するバイアス電源と、 前記グリッドの近傍に該グリッドと同電位に設けられ、
前記グロー放電が安定するまで閉状態に保持され、前記
グロー放電が安定したのち開放されるシャッタと を備えたことを特徴とする薄膜形成装置。
(1) A reaction chamber to which a reaction gas is supplied, a flat cathode and an anode arranged in parallel to the reaction chamber, a thin film forming substrate attached to the anode, and a connection between the cathode and the anode. a high-frequency power source that applies a high-frequency voltage between the cathode and the grid to generate glow discharge; a bias power source that applies a bias voltage to the anode; a grid disposed in the vicinity of the grid; set at the same potential,
A thin film forming apparatus comprising: a shutter that is held in a closed state until the glow discharge is stabilized, and is opened after the glow discharge is stabilized.
JP63070997A 1988-03-24 1988-03-24 Thin film forming equipment Expired - Fee Related JP2678286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63070997A JP2678286B2 (en) 1988-03-24 1988-03-24 Thin film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63070997A JP2678286B2 (en) 1988-03-24 1988-03-24 Thin film forming equipment

Publications (2)

Publication Number Publication Date
JPH01243413A true JPH01243413A (en) 1989-09-28
JP2678286B2 JP2678286B2 (en) 1997-11-17

Family

ID=13447707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63070997A Expired - Fee Related JP2678286B2 (en) 1988-03-24 1988-03-24 Thin film forming equipment

Country Status (1)

Country Link
JP (1) JP2678286B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222991A (en) * 2010-03-25 2011-11-04 Toray Ind Inc Plasma cvd device and thin-film substrate manufacturing method
JP2015099866A (en) * 2013-11-20 2015-05-28 国立大学法人名古屋大学 Manufacturing device and manufacturing method of group iii nitride semiconductor device; and manufacturing method of semiconductor wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124223A (en) * 1982-01-20 1983-07-23 Hitachi Ltd Plasma treating device
JPS60160117A (en) * 1984-01-30 1985-08-21 Nec Corp Plasma chemical vapor deposition (cvd) device
JPS6189628A (en) * 1984-10-09 1986-05-07 Agency Of Ind Science & Technol Plasma cvd equipment
JPS61144817A (en) * 1984-12-19 1986-07-02 Hitachi Ltd Electrode for film-forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124223A (en) * 1982-01-20 1983-07-23 Hitachi Ltd Plasma treating device
JPS60160117A (en) * 1984-01-30 1985-08-21 Nec Corp Plasma chemical vapor deposition (cvd) device
JPS6189628A (en) * 1984-10-09 1986-05-07 Agency Of Ind Science & Technol Plasma cvd equipment
JPS61144817A (en) * 1984-12-19 1986-07-02 Hitachi Ltd Electrode for film-forming device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222991A (en) * 2010-03-25 2011-11-04 Toray Ind Inc Plasma cvd device and thin-film substrate manufacturing method
JP2015099866A (en) * 2013-11-20 2015-05-28 国立大学法人名古屋大学 Manufacturing device and manufacturing method of group iii nitride semiconductor device; and manufacturing method of semiconductor wafer

Also Published As

Publication number Publication date
JP2678286B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US7001831B2 (en) Method for depositing a film on a substrate using Cat-PACVD
JP4797083B2 (en) Thin film solar cell module
JPH0341978B2 (en)
JP2002343993A (en) Thin film polycrystalline solar battery and formation method therefor
WO1999039385A1 (en) Method for hydrogen passivation and multichamber hollow cathode apparatus
JP2002093721A (en) Method and apparatus for forming deposition film
CA1214253A (en) Upstream cathode assembly
JPH01243413A (en) Thin film forming equipment
CA1196604A (en) Substrate shield for preventing the deposition of nonhomogeneous films
JPH0622205B2 (en) Plasma CVD equipment
JP2009177224A (en) Thin-film solar cell module
JPH0576173B2 (en)
CA1188399A (en) Reduced capacitance electrode assembly
US5563425A (en) Photoelectrical conversion device and generating system using the same
JPS5875839A (en) Sputtering device
JP2008004813A (en) Silicon-based thin film photoelectric conversion element and manufacturing method and manufacturing apparatus therefor
JP3406959B2 (en) Method for forming deposited film by microwave plasma CVD method
Takano et al. Excitation frequency effects on stabilized efficiency of large-area amorphous silicon solar cells using flexible plastic film substrate
JP2000096226A (en) Magnetron sputtering system and film forming method using the system
US20040250763A1 (en) Fountain cathode for large area plasma deposition
Ito et al. Development of ionized cluster beam source for practical use
JP2000096224A (en) Magnetron sputtering system and film forming method using the system
JPH0376165A (en) Manufacture of continuous solar cells
JPH06267870A (en) Method and device for forming deposit film
JP2744505B2 (en) Silicon sputtering equipment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees