JPH01243327A - Abnormality monitoring device for opening/closing equipment - Google Patents

Abnormality monitoring device for opening/closing equipment

Info

Publication number
JPH01243327A
JPH01243327A JP63069500A JP6950088A JPH01243327A JP H01243327 A JPH01243327 A JP H01243327A JP 63069500 A JP63069500 A JP 63069500A JP 6950088 A JP6950088 A JP 6950088A JP H01243327 A JPH01243327 A JP H01243327A
Authority
JP
Japan
Prior art keywords
abnormality
gas
output
airtight container
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63069500A
Other languages
Japanese (ja)
Other versions
JP2644813B2 (en
Inventor
Yoichi Oshita
陽一 大下
Takeshi Hashimoto
橋本 斌
Yukio Kurosawa
黒沢 幸夫
Kiyoshi Okumura
奥村 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63069500A priority Critical patent/JP2644813B2/en
Publication of JPH01243327A publication Critical patent/JPH01243327A/en
Application granted granted Critical
Publication of JP2644813B2 publication Critical patent/JP2644813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/26Means for detecting the presence of an arc or other discharge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H33/563Gas reservoirs comprising means for monitoring the density of the insulating gas

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

PURPOSE:To perform highly reliable abnormality monitoring for an opening/ closing equipment by generating an abnormality detecting signal in the case of detecting two or more abnormal phenomena among heating, cracked gas, partial discharge and the like following abnormal current-carrying. CONSTITUTION:When local heating and cracked gas are detected, operation of judgement circuit 12 and 13 allows as AND-gate 20 to function. When the cracked gas and partial discharge are detected, operation of the circuit 13 and an OR-gate 19 permits an AND-gate 22 to function. When the partial discharge and the local heating are detected, operation of the gate 19 and the circuit 13 causes an AND-gate 21 to function. When all of the local heating, the cracked gas and the partial discharge are detected, operation of the circuit 12 and 13 and the gate 19 leads to function of the gates 20, 21 and 22, thereby generating an output signal. Another OR-gate disposed in a final step can generate an output signal when either one of the gates 20, 21 and 22 operates.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は開閉機器の異常検出装置に係り、特に異常検出
信頼度の向上に好適な異常判定論理回路の構成を備えた
開閉機器の異常検出装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an abnormality detection device for switching equipment, and in particular, an abnormality detection device for switching equipment equipped with an abnormality determination logic circuit configuration suitable for improving reliability of abnormality detection. Regarding equipment.

〔従来の技術〕[Conventional technology]

電力輸送の高品質化のため開閉機器を含む送変電機器の
高信頼度化が望まれている。その−手法として1機器に
生じた異常を事前に検知し1重大事故を未然に防止する
予防保全技術がある。開閉機器に接触不良などの通電異
常があると、局所過熱、部分放電、それらに伴なう絶縁
ガスの分解などの現象が現われる。従来技術によるこれ
らの現象の検出方式として次のようなものがある。局所
過熱では、特開昭56−31323号公報に記載のよう
に容器表面温度を測定するもの、ガスの分解では実公昭
57−363号公報、部分放電の検出では特開昭59−
2518号公報等に記載のものが提案されている。その
他にも容器の中にセンサを挿入して異常検出するものを
含め多くの手法があるがここでは省略する。これらの方
式に共通していえるとは実際に開閉機器が設置される変
電所現地では環境がらくるノイズにより異常検出精度に
限界があることである。更に、特開昭55−41113
号公報に記載のように一台の装置に多数のセンサを搭載
し、複数の現象を監視するものもあるが、一つの現象に
外乱が生じると一つの警報が出るため誤動作の頻度が増
す可能性がある。このため、特開昭59−10125号
に記載のように−っの現象である部分放電を、電気パル
スと超音波パルスを検出する2つのセンサの組み合わせ
で検出判定し精度向上を図っているものもあるがまだ充
分とはいえない。すなわち、異なる原因による同種の現
象が起きたとき、これを異常とみなして誤動作し、異常
信号を発生する可能性があるためである。例えば、真夏
の直射日光でタンク温度が異常に上昇すると温度センサ
が働らき、遮断器が正常な遮断動作をしたときでも遮断
電流アーク放電で分解ガスが発生し分解ガスセンサが動
作し、またサージ性の過電圧等で遮断器近傍の接地線等
で火花放電が発生すると部分放電センサが誤動作する。
In order to improve the quality of power transport, it is desired that power transmission and substation equipment, including switching equipment, be made highly reliable. As a method for this purpose, there is a preventive maintenance technology that detects abnormalities that occur in equipment in advance and prevents serious accidents from occurring. If there is an abnormality in electrical conduction such as poor contact in switching equipment, phenomena such as local overheating, partial discharge, and accompanying decomposition of insulating gas will occur. Conventional techniques for detecting these phenomena include the following. For local overheating, the surface temperature of the container is measured as described in JP-A No. 56-31323, for gas decomposition as described in Utility Model Publication No. 57-363, and for detection of partial discharge as described in JP-A-59-
The method described in Publication No. 2518 and the like has been proposed. There are many other methods, including one that detects abnormalities by inserting a sensor into the container, but they are omitted here. What these methods have in common is that there is a limit to the accuracy of abnormality detection due to environmental noise at the substation site where switchgear equipment is actually installed. Furthermore, JP-A-55-41113
As described in the publication, there are devices that are equipped with multiple sensors to monitor multiple phenomena, but if a disturbance occurs in one phenomenon, a single alarm is issued, which can increase the frequency of malfunctions. There is sex. For this reason, as described in JP-A-59-10125, partial discharge, which is a phenomenon of -, is detected and judged by a combination of two sensors that detect electric pulses and ultrasonic pulses, aiming to improve accuracy. There are some, but it is still not sufficient. That is, when the same type of phenomenon occurs due to a different cause, there is a possibility that this will be regarded as an abnormality and the device will malfunction and generate an abnormal signal. For example, if the tank temperature rises abnormally due to direct sunlight in midsummer, the temperature sensor will be activated, and even if the circuit breaker is operating normally, decomposition gas will be generated due to the interruption current arc discharge, and the decomposition gas sensor will be activated. If a spark discharge occurs in the ground wire near the circuit breaker due to overvoltage, etc., the partial discharge sensor will malfunction.

この様に通電異常に伴なう現象を個別に監視すると異な
る原因に基づく同種の現象が起きたとき誤動作を生む可
能性がある。
In this way, if phenomena associated with power supply abnormalities are individually monitored, malfunctions may occur when similar phenomena occur due to different causes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の開閉機器の異常検出装置においては、予防保全シ
ステムが作動し警報を出すと、該当機器を送電系統から
切離して異常有無を点検しなければならず、誤動作の影
響は大きいにもかかわらず、信頼性の面ではまだ充分な
ものとはいえない問題があった。
With conventional abnormality detection devices for switchgear equipment, when the preventive maintenance system activates and issues an alarm, the equipment must be disconnected from the power grid and inspected for abnormalities. In terms of reliability, there was still a problem that it could not be said to be satisfactory.

本発明の目的は、より高信頼度で異常検出できる開閉機
器の異常検出装置を提供することにある。
An object of the present invention is to provide an abnormality detection device for switching equipment that can detect abnormalities with higher reliability.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、通電異常に伴なう局所過熱、部分放電、絶
縁ガスの分解などの現象のうち、2つ以上の現象が同時
に検出されたときに異常警報を出すように構成すること
により、達成される6〔作用〕 開閉機器の通電部に何らかの理由で接触不良等の通電異
常が発生すると初期にはその周辺で数十度の温度上、昇
が生ずる。送電系統の運用状態により通電電流が変化す
るとそれに応じて導体が熱膨張、熱収縮を繰返し、通電
部の異常は数日〜数ケ月を要して次第に進展して局所温
度は数百度に達する。開閉機器に絶縁性ガスとして一般
的に封入されるSFsガスでは200〜400℃で分解
が始まり、5OzFz、HF、SO2等の分解ガスを生
成し始める。さらに異常が進展すると通電電接面で通電
電流の局所集中から電極材料の溶解が起こり火花の発生
を伴う部分放電が間欠的に起こり始める。部分放電アー
クにさらされたSFaガスの分解速度が増すとともに、
通電部の異常が加速度的に進展し、数十時間〜数日で通
電不能に陥り地絡等の重大事故に至る。このように通電
異常の進展過程は数ケ月の時間を要すためこの間に異常
を検出できれば地絡を未然に防止することが可能である
The above objective can be achieved by configuring the system to issue an abnormality alarm when two or more phenomena such as local overheating, partial discharge, and decomposition of insulating gas due to abnormal energization are detected at the same time. 6 [Function] When a current-carrying abnormality such as a poor contact occurs for some reason in the current-carrying part of a switching device, the temperature around the part initially rises by several tens of degrees. When the current flowing through the power transmission system changes depending on the operational status of the power transmission system, the conductor repeatedly thermally expands and contracts in response, and the abnormality in the current-carrying part gradually develops over several days to several months, and the local temperature reaches several hundred degrees. SFs gas, which is generally sealed as an insulating gas in switchgear equipment, begins to decompose at 200 to 400°C, and begins to generate decomposed gases such as 5OzFz, HF, and SO2. As the abnormality progresses further, the electrode material melts due to local concentration of the current flowing at the current-carrying contact surface, and partial discharges accompanied by the generation of sparks begin to occur intermittently. As the decomposition rate of SFa gas exposed to partial discharge arc increases,
Abnormalities in the current-carrying parts develop at an accelerating rate, and in a few tens of hours to a few days, the current cannot be applied, leading to serious accidents such as ground faults. As described above, the development process of an energization abnormality takes several months, so if an abnormality can be detected during this time, it is possible to prevent a ground fault from occurring.

上述のように開閉機器の通電異常進展過程では初期には
局所過熱、中期には局所過熱とガス分解、末期には局所
過熱、ガス分解と部分放電の現象を並行して発生するの
で、それらの検出装置が正常に作動していれば最終様相
に至る迄に必ず複数の現象が検出可能である。
As mentioned above, in the process of abnormal energization of switching equipment, local overheating occurs in the early stage, local overheating and gas decomposition in the middle stage, and local overheating, gas decomposition, and partial discharge phenomena occur in parallel in the final stage. If the detection device is operating normally, it will always be possible to detect multiple phenomena until the final aspect is reached.

また異なる故障様相として例えば高電位部に設置された
電界緩和シールドの固定部位で電気的な接触不良が生ず
るとシールドが浮動電位となりコロナ放電が発生する。
As a different type of failure, for example, if an electrical contact failure occurs at a fixed portion of an electric field relaxation shield installed in a high potential area, the shield becomes a floating potential and corona discharge occurs.

この場合にも前記と同様にガス分解が起こり現象として
は部分放電とガス分解が検出される。この状態で外部か
ら雷等のサージ性の電圧が侵入すると即座に地絡に至る
。従って1局所過熱とガス分解が検出されたときは未だ
異常進展の中期であるが、部分放電とガス分解、もしく
はこれらに加え局所過熱が検出されたときは異常進展の
最終様相に近い状態であると考えられる。
In this case as well, gas decomposition occurs and partial discharge and gas decomposition are detected as phenomena. If surge voltage such as lightning enters from outside in this state, it will immediately lead to a ground fault. Therefore, when local overheating and gas decomposition are detected, it is still in the middle stage of abnormal progress, but when partial discharge and gas decomposition, or local overheating is detected in addition to these, the state is close to the final stage of abnormal progress. it is conceivable that.

このことから、2つ以上の現象がとらえられたとき異常
警報を出すようにすることにより、異常検出の信頼性を
向上することができるとともに。
From this, by issuing an abnormality alarm when two or more phenomena are detected, the reliability of abnormality detection can be improved.

検出された現象が局所過熱とガス分解1部分放電とガス
分解の組合わせにより異なる異常警報を出すよう構成す
ることにより、より柔軟性に富んだシステムとすること
ができる。
By configuring the system to issue different abnormality alarms depending on the combination of detected phenomena such as local overheating, gas decomposition, partial discharge, and gas decomposition, the system can be made more flexible.

〔実施例〕〔Example〕

以下、本発明の開閉機器の異常検出装置の一実施例を第
1図により説明する。この図は、遮断部を2個直列に接
続した2点切り遮断器に本発明を適用した例で、その−
相分を模式的に示したものである。気密容器である接地
電位のタンク1にブッシング2,2′で気密絶縁支持さ
れた導体3に。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an abnormality detection device for a switching device according to the present invention will be described below with reference to FIG. This figure shows an example in which the present invention is applied to a two-point circuit breaker with two disconnecting parts connected in series.
This diagram schematically shows the phase components. A conductor 3 is hermetically insulated and supported by bushings 2 and 2' in a tank 1 which is an airtight container and has a ground potential.

しゃ断部4,4′が電気的に接続され図示しない支持体
により絶縁支持されている。導体3には。
The breaker parts 4, 4' are electrically connected and insulatedly supported by a support (not shown). For conductor 3.

他端を他の送変電機器もしくは送電線等に接続された外
部導体5.5′が接続され通電回路が構成されている。
An external conductor 5.5' whose other end is connected to other power transmission/transformation equipment or a power transmission line is connected to constitute a current-carrying circuit.

この構成例において遮断器の内部に接触不良等の通電異
常の検出センサとして、温度検出用熱電対6.6’ 、
定電位電解式の亜硫酸ガス検知器7、接地線8に流れる
電流パルスを検出するホール素子で構成された電流パル
ス検出器9、タンク1に沿って張られたアンテナ10で
空中電磁波を検出する電磁波計11が装備されている。
In this configuration example, a temperature detection thermocouple 6.6',
A constant potential electrolytic sulfur dioxide gas detector 7, a current pulse detector 9 composed of a Hall element that detects current pulses flowing through a grounding wire 8, and an electromagnetic wave that detects airborne electromagnetic waves with an antenna 10 stretched along the tank 1. A total of 11 units are equipped.

これら各センサはそれぞれ判定回路12,13゜14.
15に接続され、判定回路12,13゜14.15はあ
らかじめ設定された検出方式に基づいて入力信号の異常
有無を判断する。ここで用いた異常検出の原理を個別に
説明する。まず温度上昇は、本例では遮断部の異常検出
を対象としてタンク表面の遮断部4,4′上部近傍に熱
電対6゜6′を設置している。高電位部の温度を直接絶
縁測定する手法はあるが、遮断器本体の信頼度を損なう
ことなく異常診断する外部診断方式とした。
Each of these sensors is connected to a judgment circuit 12, 13, 14, respectively.
The determination circuits 12, 13, 14, and 15 determine whether or not there is an abnormality in the input signal based on a preset detection method. The principles of abnormality detection used here will be explained individually. First, in order to detect temperature rise, in this example, a thermocouple 6°6' is installed near the upper part of the shut-off parts 4, 4' on the surface of the tank to detect an abnormality in the shut-off part. Although there are methods to directly measure the temperature of high-potential parts with insulation, we decided to use an external diagnosis method to diagnose abnormalities without compromising the reliability of the circuit breaker itself.

測定点の数は、他の接続部も対象として必要に応じて増
すことは可能である。また、熱電対の設置に際しては、
タンク1のサージ性の電位上昇に耐える絶縁が必要であ
り、しかも日照風雨の影響を軽減する断熱材で周囲を覆
うことが必要となるが発明の本質から離れるので図では
略した。温度測定方式そのものも、タンク1表面から放
射される赤外線量を検出する非接触測定を含め多くの方
式があるが、特に測定方式を限定する必要はない。
The number of measurement points can be increased as necessary to include other connections. Also, when installing thermocouples,
It is necessary to insulate the tank 1 to withstand the potential increase due to surges, and to cover the surrounding area with a heat insulating material to reduce the effects of sunlight, wind, and rain, but this is omitted from the diagram as it departs from the essence of the invention. There are many temperature measurement methods, including non-contact measurement that detects the amount of infrared rays emitted from the surface of the tank 1, but there is no need to limit the measurement method in particular.

熱電対6,6′の出力は、判定回路12に接続されると
同時に、他相の遮断器の対応する位置での測定結果も、
測定線16を介して判定回路12に接続されている。判
定回路12は、異なる相(ここでは三相)の間のばらつ
きが、あらかじめ設定された値(例えば5K)を越えた
とき出力を出すよう構成されている。タンク1温度は、
通電電流及び日照風雨の外部条件の影響を受は易いため
、これらの影響の類似した他相の同一部位の温度を判定
基準として選ぶのが望ましいことである。これにより、
遮断器の内部に通電異常が発生した場合は、異常部から
発生した熱による温度上昇は検出可能となる。通電異常
に付随する現象として、熱及びアーク放電による雰囲気
ガスの分解がある。
The outputs of the thermocouples 6, 6' are connected to the determination circuit 12, and at the same time, the measurement results at the corresponding positions of the circuit breakers of other phases are also
It is connected to the determination circuit 12 via a measurement line 16. The determination circuit 12 is configured to output an output when the variation between different phases (here, three phases) exceeds a preset value (for example, 5K). Tank 1 temperature is
Since it is easily influenced by external conditions such as current, sunlight, wind, and rain, it is desirable to select the temperature of the same part of the other phase that is similar to these influences as the criterion. This results in
If a current abnormality occurs inside the circuit breaker, a temperature rise due to heat generated from the abnormal part can be detected. A phenomenon accompanying abnormal current flow is the decomposition of atmospheric gas due to heat and arc discharge.

絶縁性ガスとしてSFsガスを用いた場合には、SFa
、F2.SO2,HF、5O2FZ等多くの分解ガスが
生成される。ガスクロマトグラフ、質量分析計等を用い
てこれらの生成量を精密に測定する手法もあるが、ここ
では簡易な定電位電解式の亜硫酸ガス検知器7を用いて
S02ガス量を測定している。測定結果は、判定回路1
3に入力され異常有無の判定がなされるが、分解ガス量
は正常な電流遮断時にも生成されるので、この点への配
慮が必要となる。第2図に分解ガス量Sの時間を特性を
示してあり、時刻t1において電流遮断したときの正常
時の分解ガス量17と、異常時の分解ガス量18を示し
ている。正常時には、時刻t1において分解ガスが急激
に数ppm〜数十ppm増加し、その後遮断器内に装備
されている吸着材の効果により、吸着材の吸着特性と平
衡するまで時定数数時間〜数十時間の減少特性を示す。
When SFs gas is used as the insulating gas, SFa
, F2. Many cracked gases such as SO2, HF, and 5O2FZ are generated. Although there is a method of precisely measuring the amount of these produced using a gas chromatograph, a mass spectrometer, etc., here, the amount of S02 gas is measured using a simple constant potential electrolysis type sulfur dioxide gas detector 7. The measurement result is sent to the judgment circuit 1.
3 and it is determined whether or not there is an abnormality.However, since the amount of decomposed gas is generated even during a normal current cutoff, consideration must be given to this point. FIG. 2 shows the time characteristics of the decomposed gas amount S, and shows the decomposed gas amount 17 in a normal state and the decomposed gas amount 18 in an abnormal state when the current is cut off at time t1. Under normal conditions, the decomposed gas rapidly increases by several ppm to several tens of ppm at time t1, and then due to the effect of the adsorbent installed in the circuit breaker, it takes a time constant of several hours to several tens of ppm until it reaches equilibrium with the adsorption characteristics of the adsorbent. Shows a ten-hour decrease characteristic.

異常のある場合18は、ある一定量の傾きで増加を続は
時刻tlで電流遮断すると、そのときの発生量が重ね合
わせられた特性となる。従って、分解ガスの異常判定で
は1分解ガス量の値そのものではなく時間変化が基準値
を越えたとき出力を出すよう構成しておけばよく、その
基準値は検出器の検出感度で決定される(ここでは0.
3ppm7日)。
If there is an abnormality 18, the current increases at a certain slope and then the current is cut off at time tl, resulting in a characteristic in which the amount of occurrence at that time is superimposed. Therefore, in determining abnormalities in decomposed gases, it is sufficient to configure the structure to output an output when the time change exceeds a reference value, rather than the value itself of the amount of decomposed gas, and the reference value is determined by the detection sensitivity of the detector. (here 0.
3ppm 7 days).

通電異常に伴なう部分放電の検出は振動、電磁波、パル
ス電流等を測定する方式があるが本例では後2者を設置
し、そのいずれかが異常検知したとき。
There are methods to detect partial discharge due to abnormality in energization, such as by measuring vibrations, electromagnetic waves, pulse current, etc. In this example, the latter two are installed, and when one of them detects an abnormality.

部分放電、異常が発生したとみなす方式としている。The system assumes that a partial discharge or abnormality has occurred.

すなわち、アンテナ10及び電磁波計11で異常な電磁
波放射が検知されると、判定回路14では基準値と比較
のうえ、これを上廻っているとき出力信号を出す。同様
に、電流パルス検出器9が異常パルスを検出すると、判
定回路15はあらかじめ設定されている判定アルゴリズ
ムに従って処理し、基準を満たさないとき異常信号を出
力する。
That is, when abnormal electromagnetic wave radiation is detected by the antenna 10 and the electromagnetic wave meter 11, the determination circuit 14 compares it with a reference value and outputs an output signal when it exceeds the reference value. Similarly, when the current pulse detector 9 detects an abnormal pulse, the determination circuit 15 processes it according to a preset determination algorithm, and outputs an abnormal signal when the standard is not met.

いずれの測定法でも、検出感度は数十ピコクー027秒
の放電程度であるが、変電所現地では最大子ピコクーロ
ン/秒程度の放電に相当するバックノイズがあるため、
部分放電の検出ではバックノイズの除去が重要となる。
In either measurement method, the detection sensitivity is about a discharge of several tens of picocoulombs per second, but at the substation site there is back noise equivalent to a discharge of the maximum picocoulomb per second.
Removal of back noise is important in partial discharge detection.

本構成においては判定回路14.15のうちいずれか一
方が異常信号を出力するとORゲート19が開きAND
ゲート24に対し異常信号を出力する。本構成において
は、部分放電を検出するため、電磁波センサスは電磁パ
ルスセンサのいずれかが異常を検出すればよいので、異
常の判定基準を高く設定でき(本例では2000ピコク
一ロン/秒)相対的にバックノイズの影響を少なくする
ことが可能である0以上述べた構成で、通電異常に伴な
う発熱が検出されたときは、判定回路12が異常信号を
出力し、分解ガスの増加が認められたときは判定回路1
3が出力する。また、部分放電が生ずると判定回路14
.15のいずれか又は双方が異常信号を出力し、ORゲ
ート19が動作する。これらの信号は、個別に監視盤の
表示等でモニタされる一方、それぞれの出力のいずれか
2つ以上が検出されたとき動作するよう構成されたAN
Dゲート20,21゜22とORゲート23から1通電
異常検出信号24が出力される。すなわち、局部過熱と
分解ガスが検出されたときは、判定回路12.13が動
作するのでANDゲート20が1分解ガスと部分放電が
検出されたときは、判定回路13とORゲート19が動
作するのでANDゲート22が、そして部分放電と局部
過熱が検出されたときORゲート19と判定回路13が
動作するのでANDゲート21が、また局部過熱と分解
ガスと部分放電の全てが検出されたときは判定回路12
.13及びORゲート19が動作するので、全てのAN
Dゲート20,21.22が動作し出方信号を発生する
。さらに、最終段に設けられたORゲートは、ANDゲ
ート20,21.22のうちいずれか一つが動作したと
き、出力信号を出すよう構成されているので、前述の動
作が実現される。以上の構成により、ノイズに対しても
誤動作しない信頼性の高い予防保全システムを実現する
ことができる。
In this configuration, when either one of the determination circuits 14 and 15 outputs an abnormal signal, the OR gate 19 opens and the AND
An abnormality signal is output to the gate 24. In this configuration, in order to detect partial discharge, the electromagnetic wave sensor only needs to detect an abnormality in one of the electromagnetic pulse sensors, so the abnormality judgment standard can be set high (in this example, 2000 picochons/second). In the configuration described above, when heat generation due to an abnormality in energization is detected, the determination circuit 12 outputs an abnormality signal to prevent an increase in decomposed gas. When it is recognized, judgment circuit 1
3 outputs. Further, if a partial discharge occurs, the determination circuit 14
.. 15 outputs an abnormal signal, and the OR gate 19 operates. These signals are individually monitored on a monitor panel display, etc., and an AN configured to operate when any two or more of the respective outputs is detected.
A 1 energization abnormality detection signal 24 is output from the D gates 20, 21° 22 and the OR gate 23. That is, when local overheating and decomposition gas are detected, the judgment circuits 12 and 13 operate, so the AND gate 20 is 1. When decomposition gas and partial discharge are detected, the judgment circuit 13 and OR gate 19 operate. Therefore, AND gate 22 operates, and when partial discharge and local overheating are detected, OR gate 19 and judgment circuit 13 operate, so AND gate 21 operates, and when local overheating, decomposition gas, and partial discharge are all detected, Judgment circuit 12
.. 13 and OR gate 19 operate, all AN
D gates 20, 21, and 22 operate to generate output signals. Further, since the OR gate provided at the final stage is configured to output an output signal when any one of the AND gates 20, 21, and 22 operates, the above-described operation is realized. With the above configuration, it is possible to realize a highly reliable preventive maintenance system that does not malfunction even in the presence of noise.

本発明の異なる実施例を示す第3図のものでは、温度上
昇、ガス分解1部分放電の3種の現象が全て検出された
ときのみ異常信号を出すANDゲートを判定回路12,
13、ORゲート19の出力に接続したものである。こ
れにより、ANDゲート24から出力される異常検出信
号の信頼度をさらに向上させることが可能である。
In the one shown in FIG. 3 showing a different embodiment of the present invention, the AND gate that outputs an abnormal signal only when all three types of phenomena, temperature rise and gas decomposition 1 partial discharge, is detected is connected to the judgment circuit 12,
13, connected to the output of OR gate 19. Thereby, it is possible to further improve the reliability of the abnormality detection signal output from the AND gate 24.

その他にも論理回路の組み方は種々が考えられるが本発
明の要点は、通電異常に付随する発熱、ガスの分解、部
分放電等異なる現象が同時に検出されたとき異常とみな
し、異常検出信号を発するようにしたことである。
Various other ways of assembling the logic circuit can be considered, but the gist of the present invention is that when different phenomena such as heat generation, gas decomposition, partial discharge, etc. accompanying abnormal energization are detected at the same time, it is regarded as an abnormality and an abnormality detection signal is generated. This is what I did.

また1本発明の別の実施例である第4図は、温度上昇を
検出する温度センサ6.6′とガスの分解を検出する分
解ガスセンサ7を装備し、2種のセンサで2つの異なる
現象を検出するようにしたものである。それぞれに接続
された判定回路12゜13の出力は、ANDゲート20
を通して両者で異常と判定されたときのみ、異常検出信
号24を出力する構成となっている0本例では、センサ
数が少なく構成が簡単であると同時に、部品点数が削減
できたことにより、異常検出回路の故障に対する信頼度
を向上させることが可能となっている。
Another embodiment of the present invention, shown in FIG. 4, is equipped with a temperature sensor 6,6' for detecting temperature rise and a decomposition gas sensor 7 for detecting decomposition of gas, and two types of sensors can detect two different phenomena. It is designed to detect. The outputs of the judgment circuits 12 and 13 connected to each are sent to the AND gate 20.
In this example, the configuration is such that the abnormality detection signal 24 is output only when both of them determine that it is abnormal. This makes it possible to improve the reliability of the detection circuit against failures.

更に第5図に示す実施例では同じく2種のセンサで2つ
の現象を検出した例であるが、本例では温度センサによ
る温度上昇と、超音波マイク25により部分放電を検出
している。超音波マイク25の出力は、アンプ26で増
幅され判定回路27に入る。変電所現地では、電気的誘
導ノイズ削減のため、アンプ26と判定回路27の間は
電気−光、光−電気変換回路を介して光ケーブル28で
接続するのが有効である。ANDゲート20は、温度上
昇と部分放電の2つの現象が認められたとき、異常検出
信号24を出力する構成である0本発明は任意の2つの
現象を測定することで達成されるが、通電異常の進展過
程は初期に発熱による温度上昇が生じ、次に部分放電と
ガスの分解等が続いて起こるので、異常を早期に発見す
るという観点から、2つの現象のうち少なくとも温度上
昇を検出するのが良い。
Further, in the embodiment shown in FIG. 5, two types of sensors are used to detect two phenomena, but in this example, a temperature rise is detected by a temperature sensor, and a partial discharge is detected by an ultrasonic microphone 25. The output of the ultrasonic microphone 25 is amplified by an amplifier 26 and input to a determination circuit 27 . At the substation site, in order to reduce electrically induced noise, it is effective to connect the amplifier 26 and the determination circuit 27 with an optical cable 28 via an electrical-optical or optical-electrical conversion circuit. The AND gate 20 is configured to output an abnormality detection signal 24 when two phenomena, temperature rise and partial discharge, are recognized. In the development process of an abnormality, a temperature rise occurs due to heat generation at the beginning, followed by partial discharge and gas decomposition, so from the perspective of early detection of an abnormality, it is necessary to detect at least the temperature rise of the two phenomena. It's good.

本発明の第6図の実施例は、ガス絶縁開閉装置29の母
線30,31’の接続部31を対象として、温度センサ
6とタンク振動を検出するための加速度センサ38及び
前置アンプ39を設けたものである。センサの取付位置
は、通電異常の発生頻度の高い接続部近傍に設置するの
が好ましいが。
The embodiment of the present invention shown in FIG. 6 is aimed at the connecting portion 31 of the busbars 30, 31' of the gas-insulated switchgear 29, and includes a temperature sensor 6, an acceleration sensor 38 for detecting tank vibration, and a preamplifier 39. It was established. It is preferable to install the sensor near the connection where abnormalities in power supply occur frequently.

検出感度の許す範囲でセンサ数を削減することは可能で
ある。ただし絶縁スペーサ32.32’で仕切られたガ
ス区画1箇所に少なくとも1組のセンサを配置すること
が好ましい。前置アンプ39の出力は判定回路40に入
り、基準値例えば0.005G  (Gは重力加速度)
を越えたとき異常と判定される。
It is possible to reduce the number of sensors within the range permitted by detection sensitivity. However, it is preferable to arrange at least one set of sensors in one gas compartment separated by insulating spacers 32, 32'. The output of the preamplifier 39 is input to the judgment circuit 40, and the reference value, for example, 0.005G (G is gravitational acceleration)
It is judged as abnormal when it exceeds.

更に、第7rJi!Iに示す実施例では、第1図に示す
実施例の判定回路に変更を加え異なる異常警報出力を出
すようにしたものである6局所加熱と分解ガスの判定回
路12.13の出力はANDゲート34を通して第1の
異常警報信号36を出力する。
Furthermore, the 7th rJi! In the embodiment shown in FIG. 1, the determination circuit of the embodiment shown in FIG. A first abnormality alarm signal 36 is outputted through 34.

同時にORゲート33を通した出力と部分放電判定回路
14.15のORゲート19を通した出力はANDゲー
ト35を通して第2の異常警報信号37を出力する。第
1の異常警報信号36は、異常進展の中期過程を示して
おり、これが発せられたときは、機器の精密点検を実施
する等の猶予がある。第2の異常警報信号37は、最終
様相を示しており、ただちに機器停止等の処置がとられ
る。
At the same time, the output through the OR gate 33 and the output through the OR gate 19 of the partial discharge determination circuit 14.15 are output through an AND gate 35 to output a second abnormality alarm signal 37. The first abnormality alarm signal 36 indicates the middle stage of abnormality development, and when this signal is issued, there is a grace period such as conducting a detailed inspection of the equipment. The second abnormality alarm signal 37 indicates the final state, and measures such as stopping the equipment are immediately taken.

このように、警報の種類により対応を変えることにより
、システムの柔軟性が広がる特徴を持つ。
In this way, by changing the response depending on the type of alarm, the system has the feature of increasing its flexibility.

表1に本発明を適用して通電異常を検出するのに好適な
組合わせを示した。ここでタンク振動検出法については
、他の電気的信号の測定と検出手段がかなり異なるので
部分放電検出法と分けて考えた。表中のO印は有力な組
合わせ、0印は効果の期待できる組合わせ、x印は通電
異常の検出法としては効果の期待できない組合わせであ
る。
Table 1 shows combinations suitable for detecting energization abnormalities by applying the present invention. Here, the tank vibration detection method was considered separately from the partial discharge detection method because the detection means are quite different from those for measuring other electrical signals. In the table, O marks are effective combinations, 0 marks are combinations that can be expected to be effective, and x marks are combinations that are not expected to be effective as a method for detecting energization abnormalities.

表    1 〔発明の効果〕 本発明のように開閉機器の異常監視装置を構成すれば、
通電異常に付随する発熱、ガスの分解、部分放電等異な
る現象が同時に検出されたとき異常発生とみなし、異常
検出信号を発するようにしたことにより、異なる原因に
よる同種の現象が生じても誤動作による異常検出信号を
出力することがなく、信頼性の高い異常監視装置を構成
することができる。
Table 1 [Effects of the invention] If the abnormality monitoring device for switching equipment is configured as in the present invention,
When different phenomena such as heat generation, gas decomposition, partial discharge, etc. associated with a power supply abnormality are detected at the same time, it is considered that an abnormality has occurred, and an abnormality detection signal is issued.Even if the same type of phenomenon occurs due to different causes, it will not be caused by malfunction. A highly reliable abnormality monitoring device can be configured without outputting an abnormality detection signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の開閉機器の異常監視装置の一実施例の
全体構成を示すブロック図、第2図は第1図の一部の動
作特性を示す特性図、第3図から第7図は本発明の開閉
機器の異常監視装置の異なる実施例を示すブロック図で
ある。 1・・・タンク、3・・・導体、4,4′・・・遮断部
、31・・・接続用接点、6.6’ 、7,9,10,
11・・・検出器、12,13,14,15・・・判定
回路。
FIG. 1 is a block diagram showing the overall configuration of an embodiment of the abnormality monitoring device for switching equipment of the present invention, FIG. 2 is a characteristic diagram showing some operating characteristics of FIG. 1, and FIGS. 3 to 7 FIG. 2 is a block diagram showing a different embodiment of the abnormality monitoring device for switching equipment according to the present invention. DESCRIPTION OF SYMBOLS 1... Tank, 3... Conductor, 4, 4'... Breaking part, 31... Connection contact, 6.6', 7, 9, 10,
11...Detector, 12, 13, 14, 15... Judgment circuit.

Claims (1)

【特許請求の範囲】 1、絶縁性ガスを封入する気密容器と、該気密容器中に
絶縁支持され電流通電可能に構成された導体と遮断部と
接続用接点等からなる通電部を有し、該通電部に異常が
生じたときそれに伴なう複数の現象を検出する検出器と
、該検出器の出力から異常の有無を判定する判定回路を
備えるものにおいて、前記判定回路の出力が複数の現象
の異常を検出したとき異常検出信号を出すように構成し
たことを特徴とする開閉機器の異常監視装置。 2、上記判定回路の出力が、異常発生に伴なう温度上昇
、ガスの分解、部分放電の3つの現象のうち少なくとも
2つの現象を検出したとき異常検出信号を出すように構
成したことを特徴とする請求項1記載の開閉機器の異常
監視装置。 3、温度上昇とガスの分解を検出したときと、温度上昇
やガスの分解もしくはその双方と部分放電を検出したと
きとで異なる異常検出信号を出すよう判定回路を構成し
たことを特徴とする請求項2記載の開閉機器の異常監視
装置。 4、絶縁性ガスを封入する気密容器と、該気密容器中に
絶縁支持され電流通電可能に構成された導体を有するガ
ス絶縁機器において、該気密容器の温度検出手段と、該
気密容器構造部材と大地の間に流れる微少電流を検出す
る手段と、該気密容器内の絶縁性ガスの分解ガスを検出
する手段と、該気密容器内の音波又は超音波を検出する
手段を有し、温度検出手段と超音波検出手段、又は温度
検出手段と分解ガス検出手段が検出信号を出した時に通
電異常であることを報知する手段を備えると共に、該微
少電流検出手段と音波又は超音波検出手段、又は該微少
電流検出手段と分解ガス検出手段が検出信号を出した時
に絶縁耐力異常であることを報知する手段を備えてなる
ところに特徴を有する開閉機器の異常監視装置。
[Scope of Claims] 1. It has an airtight container that encloses an insulating gas, and a conductor that is insulated and supported in the airtight container and is configured to be able to conduct current, a current-carrying part that includes a interrupting part, a connecting contact, etc., A detector that detects a plurality of phenomena associated with an abnormality occurring in the current-carrying part, and a determination circuit that determines the presence or absence of an abnormality from the output of the detector, wherein the output of the determination circuit is An abnormality monitoring device for switching equipment, characterized in that it is configured to output an abnormality detection signal when an abnormality in a phenomenon is detected. 2. The determination circuit is configured to output an abnormality detection signal when the output of the determination circuit detects at least two of the three phenomena of temperature rise, gas decomposition, and partial discharge caused by abnormality occurrence. An abnormality monitoring device for switching equipment according to claim 1. 3. A claim characterized in that the determination circuit is configured to issue different abnormality detection signals when detecting temperature rise and gas decomposition and when detecting temperature rise and/or gas decomposition and partial discharge. An abnormality monitoring device for switching equipment according to item 2. 4. In a gas insulated device having an airtight container that encloses an insulating gas and a conductor that is insulated and supported in the airtight container and configured to be able to conduct current, a temperature detection means of the airtight container, a structural member of the airtight container, It has a means for detecting a minute current flowing between the ground, a means for detecting a decomposed gas of an insulating gas in the airtight container, a means for detecting a sound wave or an ultrasonic wave in the airtight container, and a temperature detection means. and an ultrasonic detection means, or a means for notifying that there is an abnormality in energization when the temperature detection means and the decomposed gas detection means output a detection signal, and the microcurrent detection means and the sonic or ultrasonic detection means, or the An abnormality monitoring device for switching equipment characterized by comprising means for notifying a dielectric strength abnormality when a minute current detection means and a decomposition gas detection means output a detection signal.
JP63069500A 1988-03-25 1988-03-25 Switching device abnormality monitoring device Expired - Lifetime JP2644813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069500A JP2644813B2 (en) 1988-03-25 1988-03-25 Switching device abnormality monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069500A JP2644813B2 (en) 1988-03-25 1988-03-25 Switching device abnormality monitoring device

Publications (2)

Publication Number Publication Date
JPH01243327A true JPH01243327A (en) 1989-09-28
JP2644813B2 JP2644813B2 (en) 1997-08-25

Family

ID=13404503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069500A Expired - Lifetime JP2644813B2 (en) 1988-03-25 1988-03-25 Switching device abnormality monitoring device

Country Status (1)

Country Link
JP (1) JP2644813B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041422A (en) * 2009-08-17 2011-02-24 Hitachi Ltd Battery pack control unit
CN110441681A (en) * 2019-09-04 2019-11-12 上海乐研电气有限公司 A kind of accurate teletransmission gas density relay of high, middle pressure and gas density monitor system
CN110967627A (en) * 2019-12-20 2020-04-07 国网山东省电力公司日照供电公司 Distributed monitoring system and monitoring method for 10kV vacuum circuit breaker
CN115144745A (en) * 2022-09-01 2022-10-04 山东汇能电气有限公司 Detection system is used in column switch production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541113A (en) * 1978-09-13 1980-03-22 Tokyo Shibaura Electric Co Method of judging abnormality of gas insulated switching device
JPS5566222A (en) * 1978-11-10 1980-05-19 Hitachi Ltd Gas insulated switching device preventive safety system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541113A (en) * 1978-09-13 1980-03-22 Tokyo Shibaura Electric Co Method of judging abnormality of gas insulated switching device
JPS5566222A (en) * 1978-11-10 1980-05-19 Hitachi Ltd Gas insulated switching device preventive safety system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041422A (en) * 2009-08-17 2011-02-24 Hitachi Ltd Battery pack control unit
CN110441681A (en) * 2019-09-04 2019-11-12 上海乐研电气有限公司 A kind of accurate teletransmission gas density relay of high, middle pressure and gas density monitor system
CN110441681B (en) * 2019-09-04 2023-08-29 上海乐研电气有限公司 High-medium-voltage precise remote gas density relay and gas density monitoring system
CN110967627A (en) * 2019-12-20 2020-04-07 国网山东省电力公司日照供电公司 Distributed monitoring system and monitoring method for 10kV vacuum circuit breaker
CN115144745A (en) * 2022-09-01 2022-10-04 山东汇能电气有限公司 Detection system is used in column switch production
CN115144745B (en) * 2022-09-01 2022-11-29 山东汇能电气有限公司 Detection system is used in column switch production

Also Published As

Publication number Publication date
JP2644813B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
KR101887992B1 (en) ESS system having arc detector function and temperature detection and condensation detection and ground fault detection
CA2879174C (en) Method and apparatus for detecting a loose electrical connection in a photovoltaic system
KR101457880B1 (en) A high tension panel, low tension panel, dstribution panel and motor control panel for Fire Sensing Fuction
EP0333139B1 (en) Energization fault detection system
KR101879743B1 (en) Connection board of photovoltaic power having function of temperature and condensation detection
KR101389844B1 (en) Degradation diagnosis and protection relay system with multi-sensor
KR101535923B1 (en) An electric distributing board with diagnosis function of electric power quality through monitoring carbonization of power cable and dischare of power apparatus connecting parts
US11942896B2 (en) Protection device for a direct current electrical plant
JPH01243327A (en) Abnormality monitoring device for opening/closing equipment
KR102308824B1 (en) Management system for distribution panel having function protecting dewfall
KR0169969B1 (en) Power apparatus, power transmission/distribution unit, and tripping method therefor
JPH0821865A (en) Partial discharge detecting device
CN113064033B (en) Gas insulated switchgear and fault monitoring device thereof
CN210863936U (en) GIS insulation degradation detection device and GIS insulation degradation diagnosis system
JPH08223718A (en) Degradation detection apparatus of lightning arrester for gas-insulated switchgear
KR20180000011A (en) Switchgear having always diagnosing and recording apparatus by combinated accident sensor
JP3254707B2 (en) Gas pressure monitoring equipment for gas insulation equipment
JP2728422B2 (en) Abnormal location system for gas insulation equipment
JPH0587863A (en) Preventive maintenance system for power transformation equipment
JPH01232626A (en) Abnormal current supply sensing device for gas-insulated switching apparatus
JPS62278468A (en) Grounding-fault point locator
JPH0359471A (en) External diagnostic system for compressed gas insulation switching device
KR20230086449A (en) Apparatus for Monitoring Vacumm Status of Vacuum Interrupter
JPH1066211A (en) Gas-insulation switchgear
JP2513573Y2 (en) Closed type switchgear