JPH01242955A - Production of exhaust gas sensor - Google Patents

Production of exhaust gas sensor

Info

Publication number
JPH01242955A
JPH01242955A JP7121188A JP7121188A JPH01242955A JP H01242955 A JPH01242955 A JP H01242955A JP 7121188 A JP7121188 A JP 7121188A JP 7121188 A JP7121188 A JP 7121188A JP H01242955 A JPH01242955 A JP H01242955A
Authority
JP
Japan
Prior art keywords
mask
sensor body
thermal
sensor
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7121188A
Other languages
Japanese (ja)
Inventor
Kazuya Komatsu
一也 小松
Kazuo Okinaga
一夫 翁長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Mazda Motor Corp
Original Assignee
Figaro Engineering Inc
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Mazda Motor Corp filed Critical Figaro Engineering Inc
Priority to JP7121188A priority Critical patent/JPH01242955A/en
Publication of JPH01242955A publication Critical patent/JPH01242955A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To prevent the thermal deformation of a ceramics mask and to suppress sticking of thermal spraying particles to the mask by thermally spraying said particles to the sensor body in the state of covering a part of said body with the mask. CONSTITUTION:The sensor body 2 formed by using a metal oxide semiconductor, for example, TiO2 or the like, which is changed in resistance value by an air- fuel ratio is disposed to a heat resistant insulating substrate 6. The sensor body 2 is thermally sprayed in the state of covering a part of said body with the ceramics mask 14. The ceramics does not generate thermal deformation and is hardly stuck with the thermal spraying particles as compared to metals. The thermal deformation of the mask is, therefore, prevented and the sticking of the thermal spraying particles to the mask 14 is suppressed if the ceramics mask 14 is used. The connection of the mask 14 and the thermally sprayed film 16 by the sensor body 2 and the substrate 6 is prevented when the thermal deformation of the mask and the sticking of the thermal spraying particles are prevented.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、溶射膜によりセンサ本体を耐熱絶縁性基板
に固定するようにした、排ガスセンサの製造方法に関す
る。この発明の排ガスセンサは、例えば自動車エンジン
の空燃比の制御に用いる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing an exhaust gas sensor in which a sensor body is fixed to a heat-resistant insulating substrate using a sprayed film. The exhaust gas sensor of the present invention is used, for example, to control the air-fuel ratio of an automobile engine.

[従来技術] 発明者らは、耐熱絶縁性基板にBa5nOaやTiO2
等を用いたセンサ本体を配置し、センサ本体の一部と周
囲の基板とに溶射を施して、センサ本体を固定するよう
にした、排ガスセンサの製造方法を提案した(特願昭6
1−230,292号)。
[Prior art] The inventors used Ba5nOa and TiO2 on a heat-resistant insulating substrate.
proposed a manufacturing method for an exhaust gas sensor in which the sensor body is fixed by arranging the sensor body using materials such as the like, and then spraying a part of the sensor body and the surrounding substrate to fix the sensor body.
1-230, 292).

センサ本体に部分的に溶射を施すには、適当なマスクを
用いる。発明者らはここで、金属製のマスクを用いた。
A suitable mask is used to partially spray the sensor body. Here, the inventors used a metal mask.

しかし金属マスクを用いると、次の問題が生じた。However, when using a metal mask, the following problem arose.

(1)  溶射時の熱により、マスクが変形する。(1) The mask is deformed by the heat during thermal spraying.

(2)マスクに溶射粒子が付着し、2〜3回使用する毎
に、溶射膜をマスクからはがさねばならなくなる。
(2) Sprayed particles adhere to the mask, and the sprayed film must be peeled off from the mask every 2 to 3 uses.

(3)マスクに付着した溶射膜と、センサ本体や基板に
設けた溶射膜とが、つながってしまうことが有る。溶射
膜がつながってしまうと、マスクを外す際に、溶射膜が
破損する。
(3) The sprayed film attached to the mask and the sprayed film provided on the sensor body or substrate may become connected. If the sprayed film is connected, it will be damaged when the mask is removed.

[発明の課題] この発明の課題は、(1)マスクの熱変形の防止、(2
)マスクへの溶射粒子の付着の抑制、に有る。
[Problems to be solved by the invention] The problems to be solved by this invention are (1) prevention of thermal deformation of a mask;
) Suppression of adhesion of thermal spray particles to the mask.

[発明の構成と作用] この発明は、空燃比により抵抗値が変化する金属酸化物
半導体を用いたセンサ本体を耐熱絶縁性基板に配置し、
センサ本体に、マスクを用いてセンサ本体の表面の一部
を被覆しながら、溶射を施すようにした、排ガスセンサ
の製造方法において、前記マスクをセラミック製とした
ことを特徴とする。
[Structure and operation of the invention] The present invention includes a sensor body using a metal oxide semiconductor whose resistance value changes depending on the air-fuel ratio, arranged on a heat-resistant insulating substrate,
A method for manufacturing an exhaust gas sensor, in which thermal spraying is applied to a sensor body while covering a part of the surface of the sensor body using a mask, characterized in that the mask is made of ceramic.

ここで、空燃比により抵抗値が変化する金属酸化物半導
体としては、例えばBaSnO3、T i Ot、Sr
TiO3、LaCoO3等が有る。またこれらを用いた
センサ本体としては、例えば金属酸化物半導体をプレス
成型し焼結したもの、あるいは金属酸化物半導体を印刷
等により膜状に成型した乙の等が有る。
Here, examples of metal oxide semiconductors whose resistance value changes depending on the air-fuel ratio include BaSnO3, TiOt, Sr
There are TiO3, LaCoO3, etc. Sensor bodies using these materials include, for example, those made by press-molding and sintering a metal oxide semiconductor, or those made by forming a metal oxide semiconductor into a film shape by printing or the like.

耐熱絶縁性基板としては、例えばアルミナ等の基板を用
いる。センサ本体を基板に配置するには、例えばプレス
成型後に焼結したセンサ本体を、基板のくぼみ部に収容
すれば良い。あるいは基板上に金属酸化物半導体の膜を
印刷する、等でも良い。
As the heat-resistant insulating substrate, for example, a substrate made of alumina or the like is used. In order to arrange the sensor body on the substrate, for example, the sensor body, which has been press-molded and sintered, may be housed in a recessed portion of the substrate. Alternatively, a metal oxide semiconductor film may be printed on the substrate.

そしてセラミックマスクにより、センサ本体の一部を被
覆した状態で溶射を施す。マスクの材質はセラミックで
あれば良い。セラミックは熱変形を起こさず、また金属
に比べ溶射粒子が付着し難い。従って、セラミックのマ
スクを用いると、マスクの熱変形を防止し、かつマスク
への溶射粒子の付着を抑制することができる。マスクの
熱変形や溶射粒子の付着を抑制すると、マスクと、セン
サ本体や基板とで溶射膜がつながるのを防止できる。
Thermal spraying is then performed with a portion of the sensor body covered using a ceramic mask. The material of the mask should be ceramic. Ceramic does not undergo thermal deformation, and thermal spray particles are less likely to adhere to it than metal. Therefore, when a ceramic mask is used, thermal deformation of the mask can be prevented and adhesion of thermal spray particles to the mask can be suppressed. By suppressing thermal deformation of the mask and adhesion of sprayed particles, it is possible to prevent the sprayed film from connecting between the mask and the sensor body or substrate.

マスクの材質には、好ましくはAlN5S 13N+、
BN%TiN等の窒化物、あるいは5iCSWC。
The material of the mask is preferably AlN5S 13N+,
Nitride such as BN%TiN or 5iCSWC.

TIC等の炭化物を用いる。溶射材料として好ましいも
のはMgAl2O4、T i Ot、At、O,等の金
属酸化物であるため、マスクには金属酸化物とのなじみ
が悪く、熱膨張率が異なるものが好ましいからである。
Carbide such as TIC is used. This is because metal oxides such as MgAl2O4, TiOt, At, O, etc. are preferable as the thermal spraying material, and the mask is preferably one that is poorly compatible with metal oxides and has a different coefficient of thermal expansion.

溶射材料とのなじみが悪く、熱膨張率が異なれば、マス
クへの溶射粒子の付着を抑制することができる。例えば
、 マスクの表面、特にセンサ本体側から見たマスクの背面
には、平滑処理を施すのが好ましい。なおマスクの全面
に平滑処理を施すのは困難な場合が有り、平滑処理はセ
ンサ本体側から見たマスクの背面に施せば足りる。平滑
処理を施すのは、溶射粒子の付着を抑制するためである
。実験によると、マスクの表面粗さを4μm以下とすれ
ば、溶射粒子の付着を充分に防止できることが判った。
If the material is not compatible with the thermal spray material and has a different coefficient of thermal expansion, it is possible to suppress the adhesion of the thermal spray particles to the mask. For example, it is preferable to smooth the surface of the mask, especially the back surface of the mask when viewed from the sensor body side. Note that it may be difficult to perform smoothing on the entire surface of the mask, and it is sufficient to perform smoothing on the back surface of the mask as viewed from the sensor body side. The purpose of performing the smoothing treatment is to suppress adhesion of thermal spray particles. Experiments have shown that if the surface roughness of the mask is 4 μm or less, adhesion of thermal spray particles can be sufficiently prevented.

以下、特定の条件に付いて、実施例を説明する。Examples will be described below with regard to specific conditions.

[実施例] スズ酸の水溶液にBaCLを滴下し、3 a S n 
OJ・3H,Oの結晶を沈でんさせた。この沈でんを熱
分解し、Ba5nO:+とじた。BaSnO3の粉末を
プレス成型し、一対の電極線を埋設したセンサ本体とし
た。センサ本体を空気中で焼結した。
[Example] BaCL was dropped into an aqueous solution of stannic acid, and 3 a S n
Crystals of OJ.3H,O were precipitated. This precipitate was thermally decomposed and bound to Ba5nO:+. BaSnO3 powder was press-molded to form a sensor body in which a pair of electrode wires were embedded. The sensor body was sintered in air.

このセンサ本体を用いて、第1図の排ガスセンサを製造
した。図において、2はセンサ本体、4はその電極線の
一方で、他にもう1本の電極線が埋設しである。6はア
ルミナを用いた耐熱絶縁性基板、8は基板6に設けたく
ぼみ部で、この部分にセンサ本体2を収容する。lOは
電極線4等を引き出すための溝で、一対の電極線に応じ
、一対設ける。12は、電極線4に接続したPtの印刷
電極である。基板6には、これ以外に図示しないヒータ
等を設ける。
Using this sensor body, the exhaust gas sensor shown in FIG. 1 was manufactured. In the figure, 2 is the sensor body, 4 is one of its electrode wires, and another electrode wire is buried. 6 is a heat-resistant insulating substrate made of alumina, and 8 is a recess provided in the substrate 6, in which the sensor main body 2 is accommodated. IO is a groove for drawing out the electrode wire 4, etc., and a pair of grooves are provided corresponding to a pair of electrode wires. 12 is a Pt printed electrode connected to the electrode wire 4. The substrate 6 is also provided with a heater (not shown) and the like.

センサ本体2をくぼみ部8に収容し、電極線4を印刷電
極12に溶接した後、セラミックの溶射マスク14を用
いて、溶射膜16を形成した。溶射の方向は基板6に垂
直な方向(図の矢印)としたが、斜めから溶射しても良
い。
After the sensor main body 2 was accommodated in the recess 8 and the electrode wire 4 was welded to the printed electrode 12, a thermal spray film 16 was formed using a ceramic thermal spray mask 14. Although the direction of thermal spraying was perpendicular to the substrate 6 (arrow in the figure), thermal spraying may be performed obliquely.

溶射材料には平均粒径30μmのMgA Ito 4を
用い、Ar雰囲気で65OAの溶射電流により、膜厚2
00μm程度の溶射膜16とした。溶射材料には、これ
以外にT i OtやAlt03等の金属酸化物が好ま
しい。また溶射膜16は実施例では緻密質としたが、多
孔質でも良い。溶射膜16により、センサ本体2を基板
6に保持することかできる。また電極線4等や、印刷電
極12等を雰囲気から遮断し、保護することができる。
MgA Ito 4 with an average particle size of 30 μm was used as the spray material, and a film thickness of 2
The sprayed film 16 was about 00 μm thick. In addition to these, metal oxides such as T i Ot and Alt03 are also preferable as the thermal spraying material. Further, although the sprayed film 16 is dense in the embodiment, it may be porous. The sprayed film 16 allows the sensor body 2 to be held on the substrate 6. Further, the electrode wire 4, etc., the printed electrode 12, etc. can be shielded from the atmosphere and protected.

実施例に用いた溶射マスクI4を、第2図に示す。マス
ク14の材質には、MgAltOa等の金属酸化物と熱
膨張率が異なり、また化学的ななじみが悪いものとして
、AINを用いた。熱膨張率が異なりなじみか悪いと、
マスク14には溶射粒子が付着しない、あるいは付着し
ても容易に剥離する。なおマスク14の材質には、これ
以外に513N4やBN、’I’iN、あるいはSiC
やWC,TiCも好ましい。各種セラミックの線膨張率
は、AI。
The thermal spray mask I4 used in the example is shown in FIG. As the material for the mask 14, AIN was used because it has a different thermal expansion coefficient from metal oxides such as MgAltOa and is chemically incompatible. If the coefficient of thermal expansion is different and the compatibility is poor,
Thermal spray particles do not adhere to the mask 14, or even if they do, they are easily peeled off. In addition, the material of the mask 14 may include 513N4, BN, 'I'iN, or SiC.
, WC, and TiC are also preferable. The coefficient of linear expansion of various ceramics is AI.

03やMgAltO4でl0XIO−’℃−1程度、T
 i Otで9xlO−’℃−I捏度である。一方AI
Nでは6 x l O−”C−’、S iCヤT iC
テ4 X I O−1′℃−1程度である。
03 and MgAltO4 about 10XIO-'℃-1, T
iOt is 9xlO-'°C-I degree. On the other hand, AI
In N, 6 x l O-"C-', S iC ya T iC
It is about TE4XIO-1'°C-1.

マスク!4の形状が不適切であると、あるいはマスク1
4に金属マスクを用いると、第4図のようにマスク14
の側面で溶射膜16が連続的につながることがある。こ
れを防止する手段の1つとして、センサ本体2と接触す
る部分の面積を、マスク14の背面(溶射の流れに接し
た而)の面積よりら小さくすることが有る。このために
は、例えば第2図のようにマスク14の側面に切り落と
し部22を設ける、あるいは第3図のマスク34のよう
に側面にテーパ一部32を設けることが好ましい。この
ようにすれば、切り落とし部22やテーパ一部32で生
じた陰のため、マスク14等の側面とセンサ側とで、溶
射膜16が連続してつながることを防止できる。実施例
では、W面2×2mm、厚さ0 、6 ++u++のセ
ンサ本体2に対して、背面の幅がI 、 8 mm、セ
ンサ本体2と接触した部分の幅り月、 6 mm、厚さ
が0 、6 mmの長手の板状のマスク14を用いた。
mask! If the shape of mask 4 is inappropriate, or mask 1
If a metal mask is used for the mask 14 as shown in FIG.
The sprayed film 16 may be continuously connected on the side surface. One way to prevent this is to make the area of the part that comes into contact with the sensor body 2 smaller than the area of the back surface of the mask 14 (which is in contact with the thermal spray flow). For this purpose, it is preferable to provide a cut-off portion 22 on the side surface of the mask 14 as shown in FIG. 2, or to provide a tapered portion 32 on the side surface as in the mask 34 shown in FIG. 3, for example. In this way, it is possible to prevent the sprayed film 16 from being continuously connected to the side surface of the mask 14 etc. and the sensor side due to the shadow created by the cut-off portion 22 or the tapered portion 32. In the example, the width of the back surface is I, 8 mm, and the width of the part in contact with the sensor body 2 is 6 mm, and the thickness is 6 mm. A long plate-shaped mask 14 with a diameter of 0.6 mm was used.

また切り落とし部22は厚さ方向の中心に設け、切り落
としの幅はO、l mmとした。
Further, the cut-off portion 22 was provided at the center in the thickness direction, and the width of the cut-off portion was 0.1 mm.

次に、用いたAINマスクの背面と側面(図の太実線の
部分)を、#l000番のダイアモンド研摩剤で平滑化
し、表面粗さ(表面粗さ計で測定)を元の6〜IOμm
から2〜3μmまで平滑化した。
Next, the back and side surfaces (thick solid line parts in the figure) of the AIN mask used were smoothed with #1000 diamond abrasive, and the surface roughness (measured with a surface roughness meter) was reduced to the original 6 to IO μm.
It was smoothed from 2 to 3 μm.

好ましい平滑化の条件は表面粗さで4μn以下で、平滑
化を進めると溶射粒子がマスク14に付着し難くなる。
A preferable smoothing condition is a surface roughness of 4 μm or less, and as the smoothing progresses, thermal spray particles become less likely to adhere to the mask 14.

試験例 第2図のマスク14を用い、各種の条件で溶射を行った
。マスク14には、背面1 、8 mm幅、センサ本体
2との接触面1.6+no+幅のものを用いた。
Test Example Thermal spraying was carried out under various conditions using the mask 14 shown in FIG. The mask 14 used had a back surface 1.8 mm wide and a contact surface with the sensor body 2 1.6+no+ width.

金属製(SUS304)のマスクを比較例としく比較例
り、表面粗さ2〜3μmまで研摩したAINのマスクを
実施例1とし、未研摩のAINを用いたマスクを実施例
2(表面粗さ6〜10μm)とした。溶射の条件は、前
記の通りである。
A metal (SUS304) mask was used as a comparative example, a mask made of AIN polished to a surface roughness of 2 to 3 μm was used as Example 1, and a mask using unpolished AIN was used as Example 2 (surface roughness 6 to 10 μm). The thermal spraying conditions are as described above.

比較例IのマスクではIO回程度使用ずろとマスク14
は熱変形し、熱変形の毎にマスクをたたき直して形状を
整えねばならなかった。また2〜3回使用する毎に、マ
スク14に溶射膜が厚く付着した。溶射膜を除くには、
マスクI4をたわまさねばならなかった。熱変形したマ
スクや溶射粒子が厚く付着したマスクを用いると、溶射
膜16が基板6やセンサ本体2からマスク14の側面に
つながったものが生じた。このようなセンサでは、マス
クの取り外し時に溶射膜16の破損が生じた。
The mask of Comparative Example I was used about IO times and the mask was 14
was deformed by heat, and each time the mask was deformed by heat, the mask had to be beaten again to adjust its shape. Moreover, the sprayed film thickly adhered to the mask 14 every time it was used two to three times. To remove the sprayed film,
Mask I4 had to be bent. When a thermally deformed mask or a mask to which sprayed particles were thickly adhered was used, the sprayed film 16 was connected to the side surface of the mask 14 from the substrate 6 or the sensor body 2. In such a sensor, the sprayed film 16 was damaged when the mask was removed.

実施例1のマスクでは熱変形は生じず、マスク14には
溶射膜16は部分的にしか付着しなかった。付着した溶
射膜らピンセットではさむと、容易に剥離した。また基
板6やセンサ本体2と、マスク14の側面との、溶射膜
16の連続付着の現象は生じなかった。
No thermal deformation occurred in the mask of Example 1, and the sprayed film 16 was only partially attached to the mask 14. When the attached thermal sprayed film was pinched with tweezers, it was easily peeled off. Further, the phenomenon of continuous adhesion of the sprayed film 16 to the substrate 6, the sensor body 2, and the side surface of the mask 14 did not occur.

実施例2のマスクでも熱変形は生じなかった。No thermal deformation occurred in the mask of Example 2 either.

しかし溶射膜16は、マスク14の全面に付着した。付
着した溶射膜は、ピンセットで容易に除去できた。付着
した溶射膜を除去しないままマスクを繰り返し使用する
と、基板6やセンサ本体2と、マスク14の側面との、
溶射11i16の連続付着の現象が生じた。
However, the sprayed film 16 adhered to the entire surface of the mask 14. The attached thermal spray film could be easily removed with tweezers. If the mask is used repeatedly without removing the attached thermal spray film, the substrate 6, the sensor body 2, and the side surface of the mask 14 may be damaged.
A phenomenon of continuous deposition of thermal spray 11i16 occurred.

実施例1のマスク14に付いて、センサ本体2に対する
マスク部の割合の効果を測定した。溶射膜16によりセ
ンサ本体2を覆う部分の面積を、10%、30%、50
%の3種とした。これらのセンサを各10pl、30G
−230Hzの条件で5時間の振動テストにかけた。い
ずれの被覆面積でら、センサ本体2の脱落等の現象は生
じなかった。次に、センナを800℃でλ(当■比)が
098と1.02の雰囲気に交互にさらし、この間の応
答速度を測定した。応答速度は、I O−90%応答の
時間により求めた。応答速度への被覆面積の影響を、表
1に示す。これらの結果から明らかなように、溶射膜1
6による被覆面積は、センサ本体2の5〜40%が好ま
しい。
Regarding the mask 14 of Example 1, the effect of the ratio of the mask portion to the sensor body 2 was measured. The area of the part that covers the sensor body 2 with the sprayed film 16 is 10%, 30%, and 50%.
There were three types of %. Each of these sensors is 10pl, 30G
A vibration test was conducted for 5 hours at -230Hz. No phenomena such as falling off of the sensor body 2 occurred in any of the covered areas. Next, the senna was exposed alternately to atmospheres with λ (equal ratio) of 098 and 1.02 at 800° C., and the response speed during this period was measured. The response speed was determined by the time for IO-90% response. Table 1 shows the influence of the covered area on the response speed. As is clear from these results, thermal sprayed film 1
The area covered by the sensor body 6 is preferably 5 to 40% of the sensor body 2.

表1 +0   0.+   0.15 30   0.2  0.25 50   0.4  0.6 [発明の効果] この発明では、セラミックマスクを用いることにより、
マスクの熱変形を防止し、かつマスクへの溶射粒子の付
着を抑制ずろ。そしてこれに伴って、マスクと、センサ
本体や基板との間で、溶射膜が連続してつながることを
防止する。
Table 1 +0 0. + 0.15 30 0.2 0.25 50 0.4 0.6 [Effect of the invention] In this invention, by using a ceramic mask,
Prevents thermal deformation of the mask and suppresses adhesion of thermal spray particles to the mask. Along with this, the sprayed film is prevented from being continuously connected between the mask and the sensor body or substrate.

セラミックマスクの材質に窒化物や炭化物を用いると、
溶射粒子とのなじみが悪く、熱膨張率が異なるため、溶
射粒子のマスクへの付着を更に抑制することができる。
If nitride or carbide is used as the material for the ceramic mask,
Since it is poorly compatible with the thermal spray particles and has a different coefficient of thermal expansion, it is possible to further suppress the adhesion of the thermal spray particles to the mask.

マスクの表面を平滑化すると、溶射粒子の付着を更に抑
制できる。
Smoothing the surface of the mask can further suppress the adhesion of thermal spray particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の排ガスセンサの製造過程を現す断面図
、第2図は実施例で用いたマスクの断面図である。第3
図は変形例で用いたマスクの断面図である。第4図は、
従来例での溶射粒子の付着状況を示す断面図である。 図において、 2 センサ本体、   4 電極線、 6 耐熱絶縁性基板、  8 くぼみ部、14.34 
マスク、  +6 溶射膜、22 切り落とし部、  
32 テーパ一部。
FIG. 1 is a sectional view showing the manufacturing process of the exhaust gas sensor of the example, and FIG. 2 is a sectional view of the mask used in the example. Third
The figure is a sectional view of a mask used in a modified example. Figure 4 shows
FIG. 3 is a cross-sectional view showing the adhesion of thermal spray particles in a conventional example. In the figure: 2 sensor body, 4 electrode wire, 6 heat-resistant insulating substrate, 8 recess, 14.34
Mask, +6 sprayed film, 22 cut-off part,
32 Taper part.

Claims (3)

【特許請求の範囲】[Claims] (1)空燃比により抵抗値が変化する金属酸化物半導体
を用いたセンサ本体を耐熱絶縁性基板に配置し、 センサ本体に、マスクを用いてセンサ本体の表面の一部
を被覆しながら、溶射を施すようにした、排ガスセンサ
の製造方法において、 前記マスクをセラミック製としたことを特徴とする、排
ガスセンサの製造方法。
(1) The sensor body, which uses a metal oxide semiconductor whose resistance value changes depending on the air-fuel ratio, is placed on a heat-resistant insulating substrate, and the sensor body is sprayed while a part of the surface of the sensor body is covered using a mask. A method for manufacturing an exhaust gas sensor, characterized in that the mask is made of ceramic.
(2)前記マスクを、窒化物らしくは炭化物のセラミッ
クのマスクとしたことを特徴とする、請求項1に記載の
排ガスセンサの製造方法。
(2) The method for manufacturing an exhaust gas sensor according to claim 1, wherein the mask is a ceramic mask made of carbide rather than nitride.
(3)センサ本体側から見た前記マスクの背面の表面粗
さを4μm以下としたことを特徴とする、請求項1また
は2に記載の排ガスセンサの製造方法。
(3) The method for manufacturing an exhaust gas sensor according to claim 1 or 2, characterized in that the surface roughness of the back surface of the mask as viewed from the sensor main body side is 4 μm or less.
JP7121188A 1988-03-24 1988-03-24 Production of exhaust gas sensor Pending JPH01242955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121188A JPH01242955A (en) 1988-03-24 1988-03-24 Production of exhaust gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121188A JPH01242955A (en) 1988-03-24 1988-03-24 Production of exhaust gas sensor

Publications (1)

Publication Number Publication Date
JPH01242955A true JPH01242955A (en) 1989-09-27

Family

ID=13454120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121188A Pending JPH01242955A (en) 1988-03-24 1988-03-24 Production of exhaust gas sensor

Country Status (1)

Country Link
JP (1) JPH01242955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056652A1 (en) * 2008-11-10 2010-05-12 Mtu Aero Engines Gmbh Mask for kinetic cold gas compacting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49752A (en) * 1972-04-18 1974-01-07
JPS5518922A (en) * 1978-07-26 1980-02-09 Fuji Electric Co Ltd Oxygen sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49752A (en) * 1972-04-18 1974-01-07
JPS5518922A (en) * 1978-07-26 1980-02-09 Fuji Electric Co Ltd Oxygen sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056652A1 (en) * 2008-11-10 2010-05-12 Mtu Aero Engines Gmbh Mask for kinetic cold gas compacting
US8852681B2 (en) 2008-11-10 2014-10-07 Mtu Aero Engines Gmbh Mask for kinetic cold gas compacting
EP2344281B1 (en) * 2008-11-10 2015-03-11 MTU Aero Engines GmbH Mask for kinetic cold gas compacting

Similar Documents

Publication Publication Date Title
JP2675190B2 (en) Pressure sensor
EP0911422A3 (en) Method of forming a bond coat for a thermal barrier coating
JP3151778B2 (en) Coated ceramic products
JPH0729856B2 (en) Wax production method
US5277937A (en) Method for controlling the conductance of a heated cellular substrate
JPH0510309B2 (en)
EP0910120A3 (en) Method of producing a ferroelectric thin film containing bismuth
JPH0967662A (en) Ceramic-coated member
EP0806798A2 (en) Substrate support chuck having a contaminant containment layer and method of fabricating same
JP4066329B2 (en) Electrostatic chuck manufacturing method and electrostatic chuck obtained using the same
MX169998B (en) COATING SYSTEM WITH THERMAL BARRIER
JPS62286249A (en) Electrostatic chuck plate
JPH01242955A (en) Production of exhaust gas sensor
JP2602000B2 (en) Mask for forming a coating pattern
JPS5918184A (en) Ceramic metallization
JPS63157850A (en) Thermal spraying method
JPH0361545B2 (en)
JP2007194393A (en) Electrostatic chuck
JPS63310956A (en) Film forming metal mask
JP2560031B2 (en) Exhaust gas sensor
JPS5933844B2 (en) temperature sensing element
JP2680941B2 (en) Wafer transfer holder for semiconductor manufacturing equipment
JPH02296764A (en) Production of porcelain
JP2003133225A (en) Heater for heating semiconductor product
JPH0266150A (en) Heat shielding coating method