JPH0124260B2 - - Google Patents

Info

Publication number
JPH0124260B2
JPH0124260B2 JP56053156A JP5315681A JPH0124260B2 JP H0124260 B2 JPH0124260 B2 JP H0124260B2 JP 56053156 A JP56053156 A JP 56053156A JP 5315681 A JP5315681 A JP 5315681A JP H0124260 B2 JPH0124260 B2 JP H0124260B2
Authority
JP
Japan
Prior art keywords
ion
perchlorate
electrode
nitrite
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56053156A
Other languages
Japanese (ja)
Other versions
JPS57168154A (en
Inventor
Saburo Yanagisawa
Tsuneo Shirai
Koji Suzuki
Hitoshi Ishiwada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP56053156A priority Critical patent/JPS57168154A/en
Publication of JPS57168154A publication Critical patent/JPS57168154A/en
Publication of JPH0124260B2 publication Critical patent/JPH0124260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水溶液中の亜硝酸イオン、塩素イオ
ン、ヨウ素イオンおよび過塩素酸イオンの活量を
選択的に測定するための電極およびその製造方法
に関する。 溶液中のイオン活量は、通常、次の様な方法で
測定される。 すなわち、照合電極とイオン活量測定用電極と
を被測定溶液中に浸漬し、両電極間の電位差を測
定し、それよりイオン活量をしるのである。この
イオン活量測定用電極(以後、イオン電極)につ
いては、次に示す各種のものが知られている。
The present invention relates to an electrode for selectively measuring the activities of nitrite ions, chloride ions, iodine ions, and perchlorate ions in an aqueous solution, and a method for manufacturing the same. The ionic activity in a solution is usually measured by the following method. That is, the reference electrode and the electrode for measuring ion activity are immersed in a solution to be measured, the potential difference between the two electrodes is measured, and the ion activity is determined from this. The following types of electrodes for measuring ion activity (hereinafter referred to as ion electrodes) are known.

【表】 更に、最近、ヘンリーフライサー
(HENRYFREISER)らにより、イオン選択性
被覆線電極が開発された。これは液体膜型電極を
イオン交換膜を含むポリマーで置換えたものに相
当するが、これは公知のイオン電極に比し構造が
簡単で、作成が極めて容易であり、コストも低
く、小型化され、且つ、内部基準液をもたないの
で取扱いが容易等の特徴を有する。 本発明者らはとくに硝酸イオン選択性被覆線電
極について鋭意研究を行い、特願昭55−69571号
(特開昭56−166461号公報、特公昭63−17179号公
報)として出願したが、更に他の陰イオンについ
て研究し、本発明を完成した。 すなわち、本発明は、ポリマーとしてビスフエ
ノールAエポキシオリゴマーを用い、イオン交換
体として陰イオンである亜硝酸イオン、塩素イオ
ン、ヨウ素イオン又は過塩素酸イオンを含む4級
アンモニウム塩を用いるもので、本発明の電極は
それらの混合物の硬化物で覆われた導電性金属よ
りなる被覆型電極である。 そしてこの電極は、有機溶媒、例えばデカノー
ル、メチルシクロヘキサノン、ニトロベンゼン又
はクロロホルムなどに4級アンモニウム塩を0.1
〜6.0重量パーセントになるように添加し、更に
強酸解離型の塩である塩化物、亜硝酸塩、沃化
物、過塩素酸塩を添加して前記4級アンモニウム
塩を陰イオンである塩素イオン、亜硝酸イオン、
ヨウ素イオン、過塩素酸イオンのいずれかで交換
し、次にビスフエノールAエポキシオリゴマーと
硬化剤とをイオン交換後の生成物に添加してペー
スト状物質を生成させる。この際、溶媒を共に添
加してもよい。最後に生成ペースト状物質で導電
線金属上に被覆後、ペースト状物質を硬化させ完
成される。 液状イオン交換体としては、イオン交換能の大
きい4級アンモニウム塩、例えばトリオクチルメ
チルアンモニウムクロライド(例えば、ゼネラル
ミルズ社商品名アリコート336S)、ベンジルジメ
チルテトラデシルアンモニウム塩(ゼフイラミ
ン)、セシルトリメチルアンモニウム塩
(CTMA)、ドデシルトリメチルアンモニウム塩
(DTMA)等が用いられる。ビスフエノールAエ
ポキシオリゴマー、硬化剤とイオン交換後の生成
物に添加する溶媒としてはメチルエチルケトン、
テトラヒドロフラン、メチルイソブチルケトン等
を用いることができる。 又硬化剤としては通常用いられるトリエチレン
テトラミン、無水シクロヘキサン1.2ジカルボン
酸がある。 又、被覆される導電性金属としては、銅、ス
ズ、銀などの線あるいは薄板でもよい。 なお、電極は必要によりホルダーをとりつける
と使用に便利である。 次に、実施例にもとづいて本発明を詳述する。 実施例 1 トリオクチルメチルアンモニウムクロライド
(アリコート336S)にデカノールを40重量%にな
るように加え、1モル/リツトルの塩化カリウム
をほゞ同量加え、振とう、遠心分離を繰返し、塩
素イオン交換液を得、次にこの液とビスフエノー
ルAタイプエポキシオリゴマー、硬化剤トリエチ
レンテトラミンを重量比で5:10:2の割合で混
合して放置し、適度の粘性をもつようになつたと
きに、直径0.5mmの銅線上を均一に約0.2mmの厚さ
に被覆し、室温で1週間放置して乾燥して硬化さ
せ、塩素イオン選択性被覆線電極を製造した。 次に、この電極を用いて第1図に示すホルダー
に取付けて測定用電極を作成し、第2図に示す装
置を用いて電極電位を測定した。 第1図において、1,3は銅線、2ははんだ、
4は被覆、5は保護管、6はプラステイツクホル
ダー、7はポリテトラフルオロエチレンチユーブ
である。 又、第2図において、Pは第1図に示す本発明
の陰イオン選択性被覆線電極、8は測定溶液、9
は絶縁体、10はスターラー、11は飽和カロメ
ル電極である照合電極、12は電圧計、13は絶
縁ボツクス、14は記録計である。 次に測定方法を示す。 これには、まず300mlビーカーに250mlの純水を
取り、恒温槽中に保持して25℃の定温とする。次
にこれを取り出し、スターラーにのせて撹拌しな
がら、純水での電位を測定した。次に、250mlの
純水中にビユレツトで10-2Mおよび1.0MのKcl溶
液を規定量づつ滴下し、4×10-6M〜4×10-2M
の活量範囲にわたつて比較電極に飽和カロメル電
極を用いて電位差計として東亜電波製HE−20E
型デジタルPHメーターを用いて電位応答を測定
した。 その応答特性を第3図線21に示す。図におい
て縦軸は電位差、横軸は塩素イオン活量の対数で
ある。 次に、Kclの代りに亜硝酸カリウム、ヨウ化カ
リウム、過塩素酸カリウムを用い、全く同様にし
て亜硝酸イオン選択性被覆線電極、ヨウ素イオン
選択性被覆線電極、過塩素酸イオン選択性被覆線
電極を作成し、全く同様の方法で電極電位を測定
した。その結果を第3図線22、線23、線24
に示す。 第3図によると、いずれの電極も直線応答の下
限が5×10-5M程度であり、応答勾配も60(nv/aid)
前後であつて、ネルンストの理論値59.2(nv/aid)
かなり近い。 又、直線応答の上限はいずれも測定した最大活
量4×10-2Mを上回つている。更に電位の安定性
は、いずれも1×10-2Mで±0.5mV、1×
10-4Mで±2mV程度、又、応答の安定は1×
10-2Mで1秒以内、1×10-4Mで数秒で行われ
る。第1表に各イオンの直線応答範囲およびその
勾配を示す。 比較例 1 銀−塩化銀型ダブルジヤンクシヨン電極の外容
器部に実施例1のイオン交換液をいれた簡易型液
膜電極を用い、その電位応答測定を調べた結果を
第2表に示す。 表において直線下限は5×10-4M程度であり、
あきらかに実施例1より悪い。
[Table] Furthermore, an ion-selective coated wire electrode was recently developed by HENRYFREISER et al. This corresponds to replacing the liquid membrane electrode with a polymer containing an ion exchange membrane, which has a simpler structure, is extremely easy to produce, is less expensive, and is more compact than known ion electrodes. Moreover, since it does not have an internal standard liquid, it is easy to handle. The present inventors particularly conducted intensive research on nitrate ion-selective coated wire electrodes, and filed an application as Japanese Patent Application No. 1983-69571 (Japanese Patent Application Laid-open No. 166461/1983, Japanese Patent Publication No. 17179/1983). The present invention was completed by researching other anions. That is, the present invention uses a bisphenol A epoxy oligomer as a polymer and a quaternary ammonium salt containing an anion such as nitrite ion, chloride ion, iodine ion, or perchlorate ion as an ion exchanger. The electrode of the invention is a covered electrode made of a conductive metal covered with a cured product of a mixture thereof. This electrode is prepared by adding 0.1% of a quaternary ammonium salt to an organic solvent such as decanol, methylcyclohexanone, nitrobenzene or chloroform.
~6.0% by weight, and further add strong acid dissociated salts such as chloride, nitrite, iodide, and perchlorate to transform the quaternary ammonium salt into anionic chloride ions and submersible salts. nitrate ion,
Exchange with either iodine ions or perchlorate ions, then add bisphenol A epoxy oligomer and curing agent to the ion exchanged product to form a paste-like material. At this time, a solvent may also be added. Finally, the conductive wire metal is coated with the produced paste-like material, and the paste-like material is cured to complete the process. Examples of liquid ion exchangers include quaternary ammonium salts with high ion exchange ability, such as trioctylmethylammonium chloride (for example, Aliquot 336S, manufactured by General Mills), benzyldimethyltetradecylammonium salt (Zefiramine), and ceyltrimethylammonium salt ( CTMA), dodecyltrimethylammonium salt (DTMA), etc. are used. Bisphenol A epoxy oligomer, curing agent and methyl ethyl ketone as a solvent to be added to the product after ion exchange.
Tetrahydrofuran, methyl isobutyl ketone, etc. can be used. Further, as curing agents, commonly used triethylenetetramine and cyclohexane anhydride 1.2 dicarboxylic acid are available. Further, the conductive metal to be coated may be a wire or thin plate of copper, tin, silver, or the like. Note that it is convenient to use the electrode if a holder is attached to it if necessary. Next, the present invention will be explained in detail based on examples. Example 1 Decanol was added to trioctylmethylammonium chloride (Aliquot 336S) to a concentration of 40% by weight, 1 mol/liter of potassium chloride was added in approximately the same amount, shaking and centrifugation were repeated, and a chlorine ion exchange solution was added. Next, this liquid, bisphenol A type epoxy oligomer, and hardening agent triethylenetetramine were mixed in a weight ratio of 5:10:2 and left to stand, and when it had a suitable viscosity, A copper wire with a diameter of 0.5 mm was coated uniformly to a thickness of about 0.2 mm, and left at room temperature for one week to dry and harden, producing a chloride ion selective coated wire electrode. Next, this electrode was attached to the holder shown in FIG. 1 to prepare a measurement electrode, and the electrode potential was measured using the apparatus shown in FIG. In Figure 1, 1 and 3 are copper wires, 2 is solder,
4 is a coating, 5 is a protective tube, 6 is a plastic holder, and 7 is a polytetrafluoroethylene tube. In addition, in FIG. 2, P is an anion-selective coated wire electrode of the present invention shown in FIG. 1, 8 is a measurement solution, and 9 is
10 is an insulator, 10 is a stirrer, 11 is a reference electrode which is a saturated calomel electrode, 12 is a voltmeter, 13 is an insulating box, and 14 is a recorder. The measurement method is shown next. To do this, first take 250ml of pure water in a 300ml beaker and keep it in a constant temperature bath at a constant temperature of 25°C. Next, this was taken out, placed on a stirrer, and the electric potential in pure water was measured while stirring. Next, drop the specified amounts of 10 -2 M and 1.0 M Kcl solutions into 250 ml of pure water using a biuret.
Toa Denpa HE-20E was used as a potentiometer using a saturated calomel electrode as a reference electrode over the activity range of
The potential response was measured using a model digital PH meter. The response characteristic is shown by the line 21 in the third diagram. In the figure, the vertical axis is the potential difference, and the horizontal axis is the logarithm of the chloride ion activity. Next, use potassium nitrite, potassium iodide, and potassium perchlorate instead of Kcl, and use the same method to create a nitrite ion-selective coated wire electrode, an iodine ion-selective coated wire electrode, and a perchlorate ion-selective coated wire electrode. Electrodes were created and electrode potentials were measured in exactly the same manner. The results are shown in Figure 3, lines 22, 23, and 24.
Shown below. According to Figure 3, the lower limit of linear response for all electrodes is approximately 5 × 10 -5 M, and the response slope is also 60 (nv/aid).
This is quite close to Nernst's theoretical value of 59.2 (nv/aid) . Moreover, the upper limit of the linear response exceeds the measured maximum activity of 4×10 −2 M in all cases. Furthermore, the potential stability is ±0.5 mV at 1×10 -2 M, 1×
About ±2mV at 10 -4 M, and the response stability is 1×
At 10 -2 M, it takes less than 1 second, and at 1×10 -4 M, it takes a few seconds. Table 1 shows the linear response range and its slope for each ion. Comparative Example 1 A simple liquid membrane electrode containing the ion exchange solution of Example 1 in the outer container of a silver-silver chloride type double junction electrode was used, and the potential response was measured. Table 2 shows the results. In the table, the linear lower limit is about 5×10 -4 M,
It is clearly worse than Example 1.

【表】【table】

【表】 実施例 2 次に妨害イオンの存在する場合の選択性につい
ての実施例を示す。 選択性は次のごとくに測定した。 すなわち、一定濃度の妨害イオンjを含む溶液
中で測定イオン、iの活量を変化させ本発明のイ
オン選択性被覆型電極を用いて電位を測定し、電
位との活量との関係を示す曲線を第4図のごとく
えがく。 妨害が現われると電位応答が一定となり、水平
線となる。この水平線の延長とネルンストの直線
応答の延長との交点Bから測定イオン、iについ
ての切片活量axが求まる。溶液中の妨害イオンj
の活量ajから次式によつて選択定数Kpot ijが求ま
る。 Kpot ij=ax/(aj1/n (1) ここで、nは妨害イオンの荷電数である。な
お、この時ajを求めるためには、μとaiとの関係
を示す曲線をえがき、fを求め、 aj=fCj (2) により算出した。ここで、μはイオン強度、fは
活量係数、Cjは妨害イオンの濃度であり、 μ=1/2ΣCZ2 ………(3)、 logf=AZ2√ ………(4) となる。 なお、Zはイオンの荷電数、Aは25℃で0.511
の定数であり、(4)式をDEBYE−HU¨CKELの式
という。 測定した妨害イオンはSO2- 4、Cl-、NO- 2
NO- 3、I-、ClO4-であり、それぞれ特級試薬を用
いた。選択定数Kpot ijは妨害イオンの濃度を一定し
た混合溶液法によつて測定し、算出した。その結
果を第3表に示す。
[Table] Example 2 Next, an example of selectivity in the presence of interfering ions will be shown. Selectivity was measured as follows. That is, the activity of the measurement ion, i, is varied in a solution containing a constant concentration of interfering ions, j, and the potential is measured using the ion-selective coated electrode of the present invention, and the relationship between the potential and the activity is shown. Draw the curve as shown in Figure 4. When a disturbance appears, the potential response becomes constant and forms a horizontal line. The intercept activity a x for the measured ion, i, is determined from the intersection point B of the extension of this horizontal line and the extension of the Nernst linear response. Interfering ions in solution
The selection constant K pot ij can be found from the activity a j of , using the following equation. K pot ij = a x /(a j ) 1/n (1) where n is the number of charges on the interfering ion. In order to obtain a j at this time, a curve showing the relationship between μ and a i was drawn, f was obtained, and a j = fCj (2) was calculated. Here, μ is the ionic strength, f is the activity coefficient, and Cj is the concentration of interfering ions, μ=1/2ΣCZ 2 (3), logf=AZ 2 √ (4). In addition, Z is the charge number of the ion, and A is 0.511 at 25°C.
is a constant, and equation (4) is called the DEBYE−HU¨CKEL equation. The interfering ions measured were SO 2- 4 , Cl - , NO - 2 ,
They were NO - 3 , I - , and ClO4 - , and special grade reagents were used for each. The selection constant K pot ij was calculated by measuring the concentration of interfering ions using a mixed solution method. The results are shown in Table 3.

【表】 上表よりSO2- 4>Cl->NO- 2>NO- 3>I->ClO4 -
の順で、一般的に妨害をうけにくいことが分る。
換言すれば、Kの値は上表中、下にゆくにしたが
つて大となつていて、より大きな妨害をうけるこ
とを示す。 しかし、従来の液膜電極とその選択性は相異は
なく、実用上問題はない。 実施例 3 実施例1は液状イオン交換体として4級アンモ
ニウム塩であるトリオクチルメチルアンモニウム
塩を用い、溶媒としてデカノールを用いたが、4
級アンモニウム塩としてゼフイラミン、CTMA、
DTMAを、溶媒としてデカノールを用い実施例
1と全く同様に塩素イオン被膜電極を作成し、実
施例1と同様に応答特性および硝酸イオンに対す
る選択定数Kpot Cl-,NO3-を測定した。その結果を第5
図および第4表に示す。
[Table] From the table above, SO 2- 4 >Cl - >NO - 2 >NO - 3 >I - >ClO 4 -
It can be seen that in this order, it is generally less susceptible to interference.
In other words, the value of K increases as you go down in the table above, indicating that you are subject to greater interference. However, there is no difference in selectivity from conventional liquid film electrodes, and there is no problem in practical use. Example 3 In Example 1, trioctylmethylammonium salt, which is a quaternary ammonium salt, was used as the liquid ion exchanger and decanol was used as the solvent.
Zephyramine, CTMA, as class ammonium salt
A chloride ion coated electrode was prepared in exactly the same manner as in Example 1 using DTMA and decanol as the solvent, and the response characteristics and selection constants K pot Cl-,NO3- for nitrate ions were measured in the same manner as in Example 1. The result is the fifth
It is shown in the figure and Table 4.

【表】 第5図において25はアリコート、26はゼフ
イラミン、27はCTMA、28はDTMAを使用
したものである。 いずれを用いた電極も直線応答性は1×10-4
4×10-2M程度、温度勾配は60mv/aid程度とそ
の応答特性に差はあまりなく、且つ塩素イオンに
対するKpotも3.3〜4.5程度とほゞ一致している。
[Table] In FIG. 5, 25 is an aliquot, 26 is zephyramine, 27 is CTMA, and 28 is DTMA. The linear response of any electrode used is 1×10 -4 ~
The temperature gradient is about 4×10 −2 M, the temperature gradient is about 60 mv/aid, and there is not much difference in response characteristics, and the K pot for chlorine ions is about 3.3 to 4.5, which is almost the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に用いた本発明のイオン選択性
被覆線電極、第2図は実施例に用いた本発明のイ
オン選択性被覆製電極を組込んだ電位測定装置、
第3図は実施例1の結果を示す電位差対活量曲
線、第4図は妨害イオンの存在する場合の活量ax
を求める図、第5図は実施例3の結果を示す電位
差対活量曲線である。 図において、1,3は銅線、4は被覆膜、6は
ホルダーを示す。
FIG. 1 shows an ion-selective coated wire electrode of the present invention used in Examples, and FIG. 2 shows a potential measuring device incorporating the ion-selective coated electrode of the present invention used in Examples.
Figure 3 shows the potential difference versus activity curve showing the results of Example 1, and Figure 4 shows the activity a x in the presence of interfering ions.
FIG. 5 is a potential difference versus activity curve showing the results of Example 3. In the figure, 1 and 3 are copper wires, 4 is a coating film, and 6 is a holder.

Claims (1)

【特許請求の範囲】 1 ビスフエノールAエポキシオリゴマーと陰イ
オン種である塩素イオン、亜硝酸イオン、ヨウ素
イオンおよび過塩素酸イオンのいずれかを含む4
級アンモニウム塩との混合物を主成分とする硬化
物質で覆われた導電性金属よりなる塩素イオン、
亜硝酸イオン、ヨウ素イオンおよび過塩素酸イオ
ンのいずれかの陰イオン選択性被覆型電極。 2 有機溶媒に4級アンモニウム塩を0.1〜60重
量パーセントになるように添加し、更に測定対象
イオンを含む強解離型の塩である塩化物、亜硝酸
塩、ヨウ化物および過塩素酸塩のいずれかを添加
して4級アンモニウム塩を陰イオンである塩素イ
オン、亜硝酸イオン、ヨウ素イオンおよび過塩素
酸イオンのいずれかで交換し、次にビスフエノー
ルAエポキシオリゴマーと硬化剤とを前記イオン
交換後の生成物に添加してペースト状物質を生成
させ、該生成ペースト状物質で導電性金属上に被
覆後、該生成ペースト状物質を硬化させるイオン
選択性被覆型電極の製造方法。
[Claims] 1. Containing a bisphenol A epoxy oligomer and any one of anionic species such as chlorine ion, nitrite ion, iodide ion, and perchlorate ion 4
chloride ion, which consists of a conductive metal covered with a hardening substance mainly composed of a mixture with a class ammonium salt;
Anion-selective coated electrode for either nitrite, iodine, or perchlorate. 2. Add a quaternary ammonium salt to an organic solvent at a concentration of 0.1 to 60% by weight, and then add a strongly dissociated salt containing the ion to be measured, such as chloride, nitrite, iodide, or perchlorate. is added to exchange the quaternary ammonium salt with any of the anions chloride ion, nitrite ion, iodine ion, and perchlorate ion, and then the bisphenol A epoxy oligomer and the curing agent are exchanged after the ion exchange. A method for producing an ion-selective coated electrode, comprising: adding the paste to a product of the above to produce a paste-like substance, coating a conductive metal with the produced paste-like substance, and then curing the produced paste-like substance.
JP56053156A 1981-04-10 1981-04-10 Ion selective covered type electrode and its manufacture Granted JPS57168154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56053156A JPS57168154A (en) 1981-04-10 1981-04-10 Ion selective covered type electrode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56053156A JPS57168154A (en) 1981-04-10 1981-04-10 Ion selective covered type electrode and its manufacture

Publications (2)

Publication Number Publication Date
JPS57168154A JPS57168154A (en) 1982-10-16
JPH0124260B2 true JPH0124260B2 (en) 1989-05-10

Family

ID=12934977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56053156A Granted JPS57168154A (en) 1981-04-10 1981-04-10 Ion selective covered type electrode and its manufacture

Country Status (1)

Country Link
JP (1) JPS57168154A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348151A (en) * 1989-03-06 1991-03-01 Clorox Co Surface-active agent detecting electrode for potential difference titration
JP6996781B1 (en) * 2020-10-05 2022-01-17 株式会社常光 Method for manufacturing response membrane for anion-selective electrode and response membrane for anion-selective electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882897A (en) * 1972-01-19 1973-11-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882897A (en) * 1972-01-19 1973-11-06

Also Published As

Publication number Publication date
JPS57168154A (en) 1982-10-16

Similar Documents

Publication Publication Date Title
Ammann et al. Lipophilic salts as membrane additives and their influence on the properties of macro-and micro-electrodes based on neutral carriers
James et al. Coated wire ion-selective electrodes
Sauer et al. Electrical conductance of porous plugs-ion exchange resin-solution systems
US4115209A (en) Method of determining ion activity using coated ion selective electrodes
US3563874A (en) Halide-sensitive electrochemical electrodes and method of making same
US4211623A (en) Halide electrode
Topcu Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite
Shain et al. ELECTROLYSIS WITH CONSTANT POTENTIAL: REVERSIBLE PROCESSES AT A HANGING MERCURY DROP ELECTRODE1
Mascini et al. An analytical study of a new type of halide-sensitive electrode prepared from silver halides and thermoplastic polymers
Lee et al. Carbon paste coated wire selective electrode for nitrate ion
Ibrahim et al. Construction and response characteristics of a sulfite/hydrogensulfite-selective all-solid-state contact electrode based on the 4-methylpiperidinedithiocarbamate complex of mercury (II)
JPH0124260B2 (en)
Martin et al. Coated-wire ion selective electrodes and their application to the teaching laboratory
Yuan et al. Chemically modified electrode based on poly [tetra (4-aminophenyl) porphyrin] as a pH sensor
Levitchev et al. Photocurable carbonate-selective membranes for chemical sensors containing lipophilic additives
Takahashi Inorganic polarography in organic solvents
CN105784805B (en) Chlorion selectivity solid state electrode based on graphene and preparation method and application
US3671413A (en) Nitrate ion sensitive electrode
CA1054226A (en) Ion-selective electrode
Newbery The variation of the critical micelle concentration of sodium dodecyl sulphate with ionic strength monitored by selective-ion membrane electrodes
Xu et al. A novel salicylate-selective electrode based on a Sn (IV) complex of salicylal-imino acid Schiff base
Diaz et al. A double-membrane ion-selective electrode for the potentiometric determination of potassium
Bombi et al. Argentometric titration of halides and cyanide in molten nitrates
JPS6317179B2 (en)
JPS5858458A (en) Covered selective electrode for chlorine ions