JPH01239986A - Bistable semiconductor laser - Google Patents

Bistable semiconductor laser

Info

Publication number
JPH01239986A
JPH01239986A JP6895688A JP6895688A JPH01239986A JP H01239986 A JPH01239986 A JP H01239986A JP 6895688 A JP6895688 A JP 6895688A JP 6895688 A JP6895688 A JP 6895688A JP H01239986 A JPH01239986 A JP H01239986A
Authority
JP
Japan
Prior art keywords
inp
electrode
grating
optical
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6895688A
Other languages
Japanese (ja)
Inventor
Yuji Koga
甲賀 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6895688A priority Critical patent/JPH01239986A/en
Publication of JPH01239986A publication Critical patent/JPH01239986A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • G02F3/02Optical bistable devices
    • G02F3/026Optical bistable devices based on laser effects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To increase the degree of freedom in constituting an optical logic circuit by installing the following: a tandem electrode composed of two electrode pieces which are separated from each other; a beam-incidence window composed of a grating in a saturable region. CONSTITUTION:A bistable semiconductor laser is composed of the following: an InGaAsP 3; p-InP 4; n-InP 5; p-InP 6; p-InP 7; an InGaAsP active layer 8; an n-InP substrate 9; an n-electrode 10. A DFB laser of a DC-PBH structure is formed on the n-InP substrate 9 having a primary grating 11 by a liquid epitaxial growth method and by chemical etching. Then, a resist 20 is coated on the side of the p-electrode 2; the electrode 2 is formed; a beam-incidence window 13 is formed by a lift-off method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光演算装置等として用いて好適な双安定半導体
レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a bistable semiconductor laser suitable for use as an optical processing device or the like.

(従来の技術) 近年、面処理型半導体光演算装置は、半導体電子演算装
置にとって代わる次世代の半導体演算装置として研究活
動が活発に行われている。光半導体を用いた演算素子の
うちで5EEDと呼ばれる光双安定半導体素子がある。
(Prior Art) In recent years, research activities have been actively conducted on surface processing type semiconductor optical processing devices as next-generation semiconductor processing devices to replace semiconductor electronic processing devices. Among the operational elements using optical semiconductors, there is an optical bistable semiconductor element called 5EED.

この光双安定半導体素子は、多重量子井戸N(以下M 
Q W層と略す)をI形半導体層に持つpinダイオー
ドに直列に電圧源と抵抗とを接続してなる素子である。
This optical bistable semiconductor device is a multi-quantum well N (hereinafter referred to as M
It is an element formed by connecting a voltage source and a resistor in series to a pin diode having an I-type semiconductor layer (abbreviated as QW layer).

この素子は、MQW層に垂直に逆方向電圧を加えると、
バンド端吸収(励起子共鳴のピークを含む)が低エネル
ギー側へずれることを利用した光双安定半導体素子であ
る。逆方向電圧が0の時の励起子共鳴の近くに入力光の
波長を選び、逆方向電圧のもとてこの素子へ光を入射す
ると、光電流が流れる。この光電流が流れることにより
、直列接続した負荷で電圧降伏する電圧が増大する。
When a reverse voltage is applied perpendicularly to the MQW layer, this device
This is an optical bistable semiconductor device that utilizes the shift of band edge absorption (including the peak of exciton resonance) to the lower energy side. When the wavelength of the input light is selected near the exciton resonance when the reverse voltage is 0, and the light is incident on this element under the reverse voltage, a photocurrent flows. The flow of this photocurrent increases the voltage breakdown in the series-connected loads.

その結果、pin接合部への印加電圧が低下し、これに
伴ってMQW層での光吸収が増大し、より大きな電圧変
化が生じる6以上のような帰還作用により光の入出力関
係に光双安定性が現れる。
As a result, the voltage applied to the pin junction decreases, and the light absorption in the MQW layer increases accordingly, resulting in a feedback effect such as 6 or more that causes a larger voltage change, causing an optical twin in the light input/output relationship. Stability appears.

5EEDは以上の原理により双安定動作をする素子であ
る (アプライド フィジックス レター Appli
ed  PhysicsLetter  Vol、45
  No、l  1st  July  1984  
PP13−15)  。
5EED is an element that operates bistablely based on the above principle (Applied Physics Letter Appli
ed Physics Letter Vol, 45
No, l 1st July 1984
PP13-15).

また、従来は光交換や光コンピュータの要となる半導体
装置としては、上記の面処理型半導体装置等の他に、半
導体レーザのレーザ光の出射面を入出力面とする双安定
レーザがあった。この双安定半導体レーザは、光共振器
内の活性領域の一部に非励起領域または低励起領域を設
けることによって、この部分を可飽和吸収体としている
ものである。双安定の特性は光入力−光出力でも、注入
電流−光出力でも可能である(昭和59年電気通信学会
総合全国大会1024 )。
In addition to the above-mentioned surface-processed semiconductor devices, conventional semiconductor devices that are the key to optical exchange and optical computers include bistable lasers whose input and output surfaces are the laser light output surfaces of semiconductor lasers. . This bistable semiconductor laser has a non-excited region or a low-excited region in a part of the active region within the optical resonator, thereby making this part a saturable absorber. The bistable characteristic can be achieved by optical input-optical output or injection current-optical output (1984 National Conference of the Institute of Electrical Communication Engineers 1024).

これら双安定半導体レーザを用いれば、入力信号光(ま
たは、電気的入力信号)をもとに、予め設定されたレー
ザのしきい値などによって論理和や論理積等の演算を行
なう半導体光演算装置が構成できる。
If these bistable semiconductor lasers are used, a semiconductor optical arithmetic device that performs operations such as logical sum and logical product based on input signal light (or electrical input signal) using a preset laser threshold value etc. can be configured.

(発明が解決しようとする課題) かかる機能を有する従来の双安定半導体レーザでは、入
力信号を光について考えた場合、いずれも光入力部が光
出力部と同一の軸上にあった。
(Problems to be Solved by the Invention) In conventional bistable semiconductor lasers having such a function, when considering the input signal as light, the optical input section and the optical output section are all on the same axis.

そこで、従来の双安定半導体レーザは、光コンピュータ
や光交換器等に組み込まれて何段らの論理回路を構成す
る場合において、一つの平面上だけに並べられるから、
自由度が非常に制約されていた。このように、従来の技
術には配置の自由度が制約されるという課題があった。
Therefore, when conventional bistable semiconductor lasers are incorporated into optical computers, optical exchangers, etc. to form several stages of logic circuits, they are arranged only on one plane.
Freedom was severely restricted. As described above, the conventional technology has a problem in that the degree of freedom of arrangement is restricted.

(課題を解決するための手段) 本発明におけるタンデム電極を有する双安定半導体レー
ザは、可飽和吸収領域にグレーティングから成る光入射
窓を有することを特徴とする。
(Means for Solving the Problems) A bistable semiconductor laser having tandem electrodes according to the present invention is characterized by having a light entrance window made of a grating in a saturable absorption region.

(作用) 本発明では、双安定半導体レーザの可飽和吸収領域に光
結合用のグレーティングを形成し、リフトオフ法により
光入射窓を設け、この窓より信号光を入射する。このこ
とにより従来、レーザ共振器の端面から入射していた信
号光を双安定半導体レーザの上下面側から入力すること
も可能となる。入力光は光結合用のグレーティングによ
り可飽和吸収領域で吸収され、このことにより可飽和吸
収領域の利得状態が、吸収側がら利得側に移り双安定動
作が得られる。
(Function) In the present invention, a grating for optical coupling is formed in the saturable absorption region of a bistable semiconductor laser, a light entrance window is provided by a lift-off method, and signal light is made incident through this window. This makes it possible to input signal light, which conventionally entered from the end face of the laser resonator, from the upper and lower surfaces of the bistable semiconductor laser. Input light is absorbed in the saturable absorption region by the optical coupling grating, and as a result, the gain state of the saturable absorption region shifts from the absorption side to the gain side, resulting in bistable operation.

(実施例) 第1図は本発明の一実施例を示す断面図であり、本図の
切断面はレーザ出射端の共振器軸に垂直な面にある。1
はInGaAsP発振領域、2はp−電極、3はP−I
nGaAsP、4はP−InP、5はn−InP、6は
p−InP、7はp−1nP、8はInGaAsP活性
層、9はn−InP基板、10はn  ”?E’fIで
あり、レーザはD C−P B H構造を持つ。
(Embodiment) FIG. 1 is a sectional view showing an embodiment of the present invention, and the cut plane in this figure is on a plane perpendicular to the resonator axis at the laser emission end. 1
is InGaAsP oscillation region, 2 is p-electrode, 3 is P-I
nGaAsP, 4 is P-InP, 5 is n-InP, 6 is p-InP, 7 is p-1nP, 8 is InGaAsP active layer, 9 is n-InP substrate, 10 is n''?E'fI, The laser has a D C-P B H structure.

第2図は第1実施例の製造工程を示す図であり、本図の
(a)〜(c)は実施例を製作する際に各工程で形成さ
れる積層構造の断面図である。
FIG. 2 is a diagram showing the manufacturing process of the first embodiment, and (a) to (c) of this figure are cross-sectional views of the laminated structure formed in each step when manufacturing the embodiment.

本図の各断面は共振器軸を通り基板9の底面に垂直な面
にある0図において、11はDFBレーザのグレーティ
ング(1次のグレーティング)、12は可飽和吸収領域
、13は光入射窓である。化学エツチングによって作ら
れたレーザの発振波長に対して1次のグレーティングを
持つInP基板9上に、液相エピタキシャル成長法及び
化学エツチングによってDC−PBH構造のDFBレー
ザを形成する(第2図(a))、次に、p−電[211
TIの可飽和吸収領域12にレジストを塗布し電極を蒸
着する(第2図(b))。そして、リフトオフ法により
光入射窓13を形成する(第2図(C))。
Each cross section in this figure is on a plane passing through the resonator axis and perpendicular to the bottom surface of the substrate 9. In figure 0, 11 is the grating of the DFB laser (first-order grating), 12 is the saturable absorption region, and 13 is the light incidence window. It is. A DFB laser with a DC-PBH structure is formed by liquid phase epitaxial growth and chemical etching on an InP substrate 9 having a first-order grating for the oscillation wavelength of the laser (FIG. 2(a)). ), then p-electron [211
A resist is applied to the saturable absorption region 12 of the TI, and an electrode is deposited (FIG. 2(b)). Then, a light entrance window 13 is formed by a lift-off method (FIG. 2(C)).

第3図は第1図の実施例の入出力を示す模式図である。FIG. 3 is a schematic diagram showing the input and output of the embodiment shown in FIG.

本図では実施例は共振器軸を通る面の断面図で示しであ
る。15は入力信号光、18は出力信号光、19は入力
信号光である6本図に示すように入力信号光は入射窓1
3から入射する。
In this figure, the embodiment is shown as a cross-sectional view of a plane passing through the resonator axis. 15 is the input signal light, 18 is the output signal light, and 19 is the input signal light.As shown in the figure, the input signal light is input through the entrance window 1.
It enters from 3.

第4図は本発明の別の実施例の入出力を示す模式図であ
る。この実施例はファブリペロ−・レーザであり、可飽
和吸収領域だけにグレーティングを持ち入射光15を吸
収する。
FIG. 4 is a schematic diagram showing the input/output of another embodiment of the present invention. This embodiment is a Fabry-Perot laser, which has a grating only in the saturable absorption region and absorbs the incident light 15.

また、第5図は本発明のさらに別の実施例の入出力を示
す模式図であり、第3図の構造における可飽和吸収体1
2の部分のInP基板8上のグレーティングの周期を電
流注入部より長くしてなる6また、可飽和吸収体とな・
る部分のグレーティングとして2次より高次のグレーテ
ィングを用いると光の強度を垂直入力のときとあまり変
えずに角度を付けた入力信号光17として入射すること
ができ、同時に出力信号光16を垂直面から取り出すこ
とも。
Further, FIG. 5 is a schematic diagram showing the input/output of still another embodiment of the present invention, in which the saturable absorber 1 in the structure of FIG.
The period of the grating on the InP substrate 8 in the part 2 is made longer than the current injection part6.
If a higher-order grating than the second-order is used as the grating for the part where the input signal is input, it is possible to input the input signal light 17 at an angle without significantly changing the intensity of the light compared to vertical input, and at the same time input the output signal light 16 vertically. You can also take it out from the surface.

その高次クレーティングの特性により可能である。This is possible due to the properties of its higher-order crating.

第4図または第5図の実施例における可飽和吸収体の部
分のグレーティングが2次のクレーティングの場合、第
3図のvi造における垂直入射よりも効率よく入力信号
光15を入射することができ、同時に出力信号光14を
垂直面から収り出すことも、2次のクレーティングの特
性により可能となる。
If the grating of the saturable absorber portion in the embodiment of FIG. 4 or FIG. At the same time, it is also possible to output the output signal light 14 from the vertical plane due to the characteristics of the secondary crating.

(発明の効果) 本発明を適用するならば、光信号を基板上面に垂直な方
向から入力でき、光論理回路を構成するのに配置の自由
度か大きい双安定半導体レーザを提供できる。そこで、
本発明の双安定半導体レーザを採用することにより、何
段もの論理回路を組む場合において一つの平面上に装置
が並ぶため自由度が非常に制約されるという従来の技術
における問題点を解決することができる。
(Effects of the Invention) If the present invention is applied, it is possible to provide a bistable semiconductor laser in which an optical signal can be inputted from a direction perpendicular to the top surface of a substrate, and which has a large degree of freedom in arrangement when configuring an optical logic circuit. Therefore,
By employing the bistable semiconductor laser of the present invention, it is possible to solve the problem in conventional technology that when constructing multiple stages of logic circuits, the degree of freedom is extremely restricted because the devices are arranged on one plane. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるレーザ出射端の断面
図、第2図はその実施例の製造工程を示す図、第3図は
その実施例の人出力を示す模式図、第4図および第5図
は本発明の別の実施例の入出力を示す模式図である。 図において、1はI nGaAs P発振領域、2はP
−電極、3はp−1nGaAsP、4はp−InP、5
はn−InP、6はp−InP、7はp−InP、8は
InGaAsP活性層、9はn−InP基板、10はn
−電極、11はDFI3レーザのグレーティング、12
は可飽和吸収領域、13は光入射窓、15.17は入力
信号光、14.16.18は出力信号光、19は入力信
号光、20はレジストである。
Fig. 1 is a sectional view of a laser emitting end in an embodiment of the present invention, Fig. 2 is a diagram showing the manufacturing process of the embodiment, Fig. 3 is a schematic diagram showing the manpower output of the embodiment, and Fig. 4 and FIG. 5 is a schematic diagram showing the input/output of another embodiment of the present invention. In the figure, 1 is the InGaAs P oscillation region, and 2 is the P oscillation region.
- electrode, 3 is p-1nGaAsP, 4 is p-InP, 5
is n-InP, 6 is p-InP, 7 is p-InP, 8 is InGaAsP active layer, 9 is n-InP substrate, 10 is n
- electrode, 11 is the grating of the DFI3 laser, 12
13 is a saturable absorption region, 13 is a light incidence window, 15.17 is an input signal light, 14, 16, 18 is an output signal light, 19 is an input signal light, and 20 is a resist.

Claims (1)

【特許請求の範囲】[Claims] 互いに分離された2つの電極片でなるタンデム電極を有
し、可飽和吸収領域にグレーティングから成る光入射窓
を有することを特徴とする双安定半導体レーザ。
A bistable semiconductor laser, characterized in that it has a tandem electrode made up of two electrode pieces separated from each other, and has a light entrance window made of a grating in a saturable absorption region.
JP6895688A 1988-03-22 1988-03-22 Bistable semiconductor laser Pending JPH01239986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6895688A JPH01239986A (en) 1988-03-22 1988-03-22 Bistable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6895688A JPH01239986A (en) 1988-03-22 1988-03-22 Bistable semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01239986A true JPH01239986A (en) 1989-09-25

Family

ID=13388629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6895688A Pending JPH01239986A (en) 1988-03-22 1988-03-22 Bistable semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01239986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315592A (en) * 1991-06-24 1993-11-26 Nippon Telegr & Teleph Corp <Ntt> Optical register memory
JPH05326921A (en) * 1991-06-24 1993-12-10 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion optical register memory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315592A (en) * 1991-06-24 1993-11-26 Nippon Telegr & Teleph Corp <Ntt> Optical register memory
JPH05326921A (en) * 1991-06-24 1993-12-10 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion optical register memory
JP2793381B2 (en) * 1991-06-24 1998-09-03 日本電信電話株式会社 Optical register memory
JP2793382B2 (en) * 1991-06-24 1998-09-03 日本電信電話株式会社 Variable output wavelength optical register memory

Similar Documents

Publication Publication Date Title
JPH10321952A (en) Surface-emitting semiconductor laser
KR100271700B1 (en) Surface emitting semiconductor laser
US5952683A (en) Functional semiconductor element with avalanche multiplication
US5398255A (en) Semiconductor laser having buried structure on p-InP substrate
JPH0236585A (en) Quantum well structure and semiconductor element provided therewith
JP2007158204A (en) Optical integrated device
JPH01239986A (en) Bistable semiconductor laser
JPS63116489A (en) Optical integrated circuit
US7415054B2 (en) Semiconductor laser device
US4768200A (en) Internal current confinement type semiconductor light emission device
JPS61114588A (en) Optical bistable integrated element
JPH07249835A (en) Semiconductor optical element
JPH0484484A (en) Wavelength variable semiconductor laser
JPH04305991A (en) Semiconductor laser element
JPH04116630A (en) Optical flip-flop laser
JPS63153883A (en) Quantum well type semiconductor light-emitting element
JPH0728094B2 (en) Semiconductor laser device
JPS60242688A (en) Optical amplifying light-emitting light-receiving integrated element
JPS6230391A (en) Integrated semiconductor laser
JPH05267784A (en) Distorted quantum well type semiconductor laser
JPH01239985A (en) Bistable semiconductor laser
JPS6332980A (en) Semiconductor laser
JPS58140180A (en) Photo-functioning element
JPS61220388A (en) Optical semiconductor device
JPH02137386A (en) Semiconductor light-emitting device