JPH01239497A - Self-operation type control rod drive mechanism - Google Patents

Self-operation type control rod drive mechanism

Info

Publication number
JPH01239497A
JPH01239497A JP63065096A JP6509688A JPH01239497A JP H01239497 A JPH01239497 A JP H01239497A JP 63065096 A JP63065096 A JP 63065096A JP 6509688 A JP6509688 A JP 6509688A JP H01239497 A JPH01239497 A JP H01239497A
Authority
JP
Japan
Prior art keywords
magnetic
control rod
reactor
drive mechanism
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63065096A
Other languages
Japanese (ja)
Other versions
JPH0638112B2 (en
Inventor
Minoru Gunji
軍司 稔
Makoto Saito
誠 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP63065096A priority Critical patent/JPH0638112B2/en
Publication of JPH01239497A publication Critical patent/JPH01239497A/en
Publication of JPH0638112B2 publication Critical patent/JPH0638112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To lower the ambient temp. of the coil of an electromagnet and to safely shut down a nuclear reactor without depending on the operating force from the outside by installing the above-mentioned coil above a shielding plug and providing a magnetic attraction part to the bottom end of a drive shaft. CONSTITUTION:A control rod 14 is moved upward and downward by operating a drive motor 28 to make output adjustment at the time of ordinary operation of the nuclear reactor. The coolant temp. in the reactor rises when abnormality such as flow rate loss of the coolant arises during the reactor operation. The saturation magnetic flux density of magnetic members 36a, 36b drops sharply and the members change from ferromagnetic materials to paramagnetic materials when the temp. rise exceeds the Curie point of said members. The magnetic path is, therefore, automatically opened even if the energization to the coil 30 is continued. The attraction force between magnetic attraction members 40a, 40b and a magnetic handling head 10 is lost and the handling head 10 is automatically disconnected. The control rod 14 is then dropped and the reactor is shut down.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、異常発生時に原子炉を緊急停止させるため制
御棒を炉心へ自動的に挿入する自己作動型制御棒駆動機
構に関し、更に詳しくは、制御棒を吊り下げ保持する電
磁石のコイルを遮蔽プラグの上方に設置するとともに、
その磁気回路の一部に温度感知磁性材料を使用し、冷却
材温度の異常上昇によりその飽和磁束密度が低下するこ
とを利用して制御棒を解放し落下させる制御棒駆動機構
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a self-actuated control rod drive mechanism that automatically inserts control rods into a reactor core in order to make an emergency shutdown of a nuclear reactor in the event of an abnormality. , an electromagnetic coil that suspends and holds the control rod is installed above the shielding plug, and
This relates to a control rod drive mechanism that uses a temperature-sensing magnetic material in a part of the magnetic circuit, and releases and drops the control rod by utilizing the decrease in its saturation magnetic flux density due to an abnormal rise in coolant temperature.

[従来の技術] 原子炉では炉停止の信頼性を高めるため出力制御用の制
御棒とは別に異常時等に炉心に挿入する制御棒を備えて
いる。これらを駆動する制御棒駆動機構は外部からのス
クラム信号により動作を開始する。そのため非常時の信
頼性が外部のスクラム信号発生機構に依存しており、炉
内異常発生からスクラムまでの信号伝達経路が複雑にな
るため炉停止の応答性並びに信頼性の点で問題があった
[Prior Art] In order to improve the reliability of reactor shutdown, nuclear reactors are equipped with control rods that are inserted into the reactor core in the event of an abnormality, in addition to control rods for output control. The control rod drive mechanism that drives these starts operating in response to an external scram signal. As a result, reliability in the event of an emergency depends on an external scram signal generation mechanism, and the signal transmission path from the occurrence of an abnormality in the reactor to the scram becomes complicated, leading to problems in terms of response and reliability when shutting down the reactor. .

これらの問題を解決するため、炉内に温度スイッチを設
け、その信号により直接制御棒を駆動する構成が提案さ
れた(例えば特開昭60−127493号公報参照)、
ここで炉内の異常を検出する温度スイッチとしては、複
数の異種″金属による熱膨張量の差を利用して接点をオ
ン−オフ制御する方式が採られている。
In order to solve these problems, a configuration has been proposed in which a temperature switch is provided in the reactor and the control rod is directly driven by the signal from the temperature switch (for example, see Japanese Patent Application Laid-open No. 127493/1983).
As a temperature switch for detecting an abnormality in the furnace, a method is adopted in which a contact point is controlled on and off by utilizing the difference in the amount of thermal expansion of a plurality of different types of metals.

しかしこの技術では、温度スイッチは炉心近傍に設置さ
れているため放射・線照射の影響を受は信頼性の点で問
題がある。また冷却材中に浸漬されているから、ステン
レス管内には漏洩検出器を取り付は液体冷却材の侵入の
有無を検知しなければならず、機構的にも複雑になる。
However, with this technology, since the temperature switch is installed near the reactor core, it is susceptible to radiation and ray irradiation, which poses a problem in terms of reliability. In addition, since the tube is immersed in the coolant, a leak detector must be installed inside the stainless steel tube to detect whether or not liquid coolant has entered the tube, making it mechanically complex.

そこでこのような問題を解決できるものとして、制御棒
駆動機構中に制御棒を磁気的に吸着保持するための電磁
石を設け、その磁気回路の少なくとも一部に冷却材温度
が異常に高くなった時に飽和磁束密度が低下するアモル
ファス磁性合金を組み込んだ自己作動型制御棒駆動機構
が提案された(特開昭63−19593号公報参照)、
ここで電磁石は制御棒を昇降駆動する駆動軸の下端に取
り付けられている。
Therefore, as a solution to this problem, an electromagnet is installed in the control rod drive mechanism to magnetically attract and hold the control rods, and at least a part of the magnetic circuit is equipped with an electromagnet that can be used when the coolant temperature becomes abnormally high. A self-actuating control rod drive mechanism incorporating an amorphous magnetic alloy with a reduced saturation magnetic flux density was proposed (see Japanese Patent Application Laid-open No. 19593/1983).
Here, the electromagnet is attached to the lower end of the drive shaft that drives the control rod up and down.

[発明が解決しようとする課題] 前記°のように従来構成の自己作動型制御棒駆動機構で
は、冷却材温度の異常上昇時に制御棒を解放し落下させ
るための電磁石(コイルおよび磁気回路)は全て原子炉
内の冷却材中に位置している。
[Problems to be Solved by the Invention] In the self-actuating control rod drive mechanism of the conventional configuration as described above, the electromagnet (coil and magnetic circuit) for releasing and dropping the control rod when the coolant temperature rises abnormally is All are located in the coolant inside the reactor.

原子炉が金属ナトリウムを冷却材とする高速炉のような
場合には、冷却材ナトリウム温度は200〜600℃程
度もの高温状態となる。従って電磁石のコイルもそのよ
うな高温に耐え得るものでなければならない。
When the nuclear reactor is a fast reactor that uses metallic sodium as a coolant, the temperature of the coolant sodium is as high as about 200 to 600°C. Therefore, the electromagnet coil must also be able to withstand such high temperatures.

しかし冷却材温度が比較的低い場合はともがく、600
℃もの高温で長期間にわたって使用できる信頼性の高い
コイルは未だ開発途上にある。そのため上記従来技術は
特に高温の冷却材を使用する原子炉には現在のところ適
用できない。
However, if the coolant temperature is relatively low, it will struggle and the 600
A highly reliable coil that can be used for long periods at temperatures as high as ℃ is still under development. Therefore, the above-mentioned prior art is currently not applicable to nuclear reactors that use particularly high-temperature coolants.

本発明の目的は、上記のような従来技術の欠点を解消し
、外部からの操作力や信号に依存せずに原子炉を安全に
停止することができ、構造が単純で、しかも高温の金属
ナトリウムを冷却材として用いるような原子炉にも十分
対応することができるような信頼性の高い自己作動型の
制御棒駆動機構を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art as described above, to be able to safely stop a nuclear reactor without relying on external operating force or signals, to have a simple structure, and to be able to use high-temperature metals. It is an object of the present invention to provide a highly reliable self-actuated control rod drive mechanism that can be fully used in nuclear reactors that use sodium as a coolant.

[課題を解決するための手段] 本発明は、制御棒と、該制御棒を昇降駆動する制御棒駆
動機構を有し、該制御棒駆動機構中に制御棒を吸着保持
するための電磁石が組み込まれており、その磁気回路の
少なくとも一部分に冷却材温度の異常上昇時に飽和磁束
密度が低下する温度感知磁性材料が使用されている構成
の自己作動型制御棒駆動機構を前提としている。
[Means for Solving the Problems] The present invention has a control rod and a control rod drive mechanism for driving the control rod up and down, and an electromagnet for attracting and holding the control rod is incorporated in the control rod drive mechanism. The system is based on a self-actuated control rod drive mechanism in which at least a portion of its magnetic circuit uses a temperature-sensitive magnetic material whose saturation magnetic flux density decreases when the coolant temperature abnormally increases.

そして前記のような目的を達成するため本発明では、電
磁石のコイルは遮蔽プラグの上方に設置され、駆動軸の
下端に磁性吸着部が設けられており、電磁石の磁気回路
は上端で連結され下端が開放されていて駆動軸を包むよ
うに垂設されている磁性部材と前記磁性吸着部とを有す
る構成になっている。
In order to achieve the above object, in the present invention, the electromagnet coil is installed above the shielding plug, a magnetic adsorption part is provided at the lower end of the drive shaft, and the magnetic circuit of the electromagnet is connected at the upper end and connected at the lower end. The structure includes a magnetic member that is open and vertically disposed so as to surround the drive shaft, and the magnetic adsorption section.

例えば駆動軸を非磁性材料で作成し、該駆動軸を包むよ
うに垂設されている磁性部材は、断面円弧状をなし互い
に対向する如く配設された一対の温度感知磁性材料から
なり、磁性吸着部に対して相対的に摺動可能な構成とす
るのが望ましい。
For example, the drive shaft is made of a non-magnetic material, and the magnetic member vertically disposed so as to wrap around the drive shaft is composed of a pair of temperature-sensing magnetic materials having an arcuate cross section and facing each other. It is desirable that the structure is slidable relative to the section.

[作用] 本発明では電磁石のコイルは冷却材中ではなくて遮蔽プ
ラグの上方に設置されているから、周囲温度は比較的低
く、特に高温に対する考慮を必要としない。そのため−
船釣な電磁石コイルでも使用可能となる。
[Operation] In the present invention, since the electromagnetic coil is installed above the shielding plug rather than in the coolant, the ambient temperature is relatively low, and there is no need to particularly consider high temperatures. Therefore-
It can also be used with electromagnetic coils for boat fishing.

通常運転時においては、温度感知磁性材料は強磁性を呈
し、コイル電流によって発生する磁束が磁気回路を通り
、磁性吸着部によって制御棒上端の磁性ハンドリングヘ
ッドを磁気的に吸着して該制御棒が保持する。従ってそ
の状態で制御棒駆動機構により制御棒を昇降駆動するこ
とができる。
During normal operation, the temperature-sensing magnetic material exhibits ferromagnetism, and the magnetic flux generated by the coil current passes through the magnetic circuit, and the magnetic attraction section magnetically attracts the magnetic handling head at the upper end of the control rod. Hold. Therefore, in this state, the control rod can be driven up and down by the control rod drive mechanism.

原子炉に異常が生じて冷却材温度が異常上昇した場合に
は温度感知磁性材料の飽和磁束密度が急激に低下し、形
成されていた磁路が遮断され吸着保持力が失われる。そ
のため制御棒が解放されて自由落下する。
When an abnormality occurs in the nuclear reactor and the coolant temperature rises abnormally, the saturation magnetic flux density of the temperature-sensing magnetic material rapidly decreases, the previously formed magnetic path is cut off, and the attraction and retention force is lost. This releases the control rods and allows them to fall freely.

このように本発明では原子炉の冷却材温度の異常上昇を
物理現象として感知し、外部の各種制御機を介すること
なく自己作動で制御棒を直接駆動することができる。
As described above, in the present invention, an abnormal rise in the coolant temperature of a nuclear reactor can be sensed as a physical phenomenon, and the control rods can be directly driven by self-operation without using various external controllers.

[実施例コ 第1図は本発明に係る自己作動型制’<illll動駆
動機構実施例を示す説明図であり、同図Aは制御棒を吸
着保持している状態を、同図Bは制御棒を解放した状態
をそれぞれ示している。また本発明の要部を第2図に、
そのm−m断面を第3図に示す。
[Embodiment] Fig. 1 is an explanatory diagram showing an embodiment of the self-actuating type control rod according to the present invention. Each figure shows the state in which the control rods are released. In addition, the main part of the present invention is shown in FIG.
The mm-m cross section is shown in FIG.

第1図Aに示すように、上部に磁性ハンドリングヘッド
10を有し内部に中性子吸収体12を有する制御棒14
が、炉心内の制御棒案内管16の上方に位置し、制御棒
保持機構により保持される。制御棒保持機構は、上部案
内管18内を挿通するように設けられた駆動軸2oと電
磁石22等からなり、ケーブル(図示せず)によって電
源から励磁電流が供給され、励磁された電磁石22が磁
性ハンドリングヘッド1oを吸着して制御棒14を保持
する構成である。
As shown in FIG. 1A, a control rod 14 having a magnetic handling head 10 on the top and a neutron absorber 12 inside.
is located above the control rod guide tube 16 in the reactor core, and is held by a control rod holding mechanism. The control rod holding mechanism consists of a drive shaft 2o and an electromagnet 22, which are provided so as to pass through the upper guide tube 18, and are supplied with excitation current from a power source through a cable (not shown), and the excited electromagnet 22 is It is configured to hold the control rod 14 by attracting the magnetic handling head 1o.

駆動軸20は非磁性材料からなり、その上部にはボール
ナツト24が取り付けられ、該ボールナツト24はボー
ルネジ26と噛み合い、ボールネジ26の上端は駆動モ
ータ28に結合されている。原子炉の通常運転時には駆
動モータ28を作動させることにより、制御棒14を上
下させ出力調整を行う。炉内になんらかの異常が生じ温
度が上昇した場合、制御棒保持機構が自己作動し、それ
によって第1図已に示すように制御棒14が切り離され
て重力で落下し原子炉を停止させる。
The drive shaft 20 is made of a non-magnetic material, and a ball nut 24 is attached to the upper part of the drive shaft 20. The ball nut 24 meshes with a ball screw 26, and the upper end of the ball screw 26 is connected to a drive motor 28. During normal operation of the nuclear reactor, the control rod 14 is moved up and down by operating the drive motor 28 to adjust the output. If some kind of abnormality occurs in the reactor and the temperature rises, the control rod holding mechanism is self-activated, and as a result, the control rods 14 are separated and dropped by gravity as shown in Figure 1, stopping the reactor.

さて本発明の特徴は制御棒保持機構における電磁石22
の構成にある。本発明ではコイル30は遮蔽プラグ32
の上面に位置する。そしてコイル30の設置位置近傍か
ら遮蔽プラグ32を貫通し冷却材34中に達するように
磁気回路が設けられ、その磁気回路の少なくとも一部分
に冷却材温度の異常上昇時に飽和磁束密度が低下する温
度感知磁性材料が使用されている。
Now, the feature of the present invention is that the electromagnet 22 in the control rod holding mechanism
It is in the configuration of In the present invention, the coil 30 is connected to a shielding plug 32.
located on the top surface of A magnetic circuit is provided so as to penetrate the shielding plug 32 from near the installation position of the coil 30 and reach the coolant 34, and at least a portion of the magnetic circuit has a temperature sensing sensor whose saturation magnetic flux density decreases when the coolant temperature abnormally rises. Magnetic materials are used.

本実施例では磁気回路は、第2図及び第3図に詳細に示
されている如く、駆動軸20を包むようにそれに沿って
垂設されている一対の磁性部材36a、36bと、それ
らの上部を連結する上部連結部38と、非磁性駆動軸2
0の下端に設けられている円弧状の一対の磁性吸着部4
0a、40bを有する構成である。ここで駆動軸20を
包むように垂設されている磁性部材36a、36bは前
記磁性吸着部40a、40bの外周面に沿うような断面
円弧状で長尺状をなし温度感知磁性材料から構成されて
おり、磁性吸着部40a、40bに対して相対的に摺動
可能となっている。コイル3oは前記のように遮蔽プラ
グ32の上面位置で各磁性部材36a。
In this embodiment, as shown in detail in FIGS. 2 and 3, the magnetic circuit includes a pair of magnetic members 36a and 36b that are vertically disposed along the drive shaft 20 so as to wrap around the drive shaft 20, and an upper part of the magnetic members 36a and 36b. and the upper connecting part 38 that connects the non-magnetic drive shaft 2.
A pair of arc-shaped magnetic adsorption parts 4 provided at the lower end of 0
The configuration has 0a and 40b. The magnetic members 36a and 36b vertically disposed so as to surround the drive shaft 20 have an arcuate cross section and a long elongated shape along the outer peripheral surfaces of the magnetic attraction parts 40a and 40b, and are made of a temperature-sensitive magnetic material. The magnetic adsorption parts 40a and 40b can be slid relative to each other. The coil 3o is connected to each magnetic member 36a at the upper surface of the shielding plug 32 as described above.

36bにそれぞれ巻き付けられている。磁性部材36a
、36bを構成する温度感知磁性材料は、例えばアモル
ファス磁性合金等であり、−定の温度(キュリー点)以
上に達した時に、その飽和磁束密度が急激に低下する性
質を持つものである。ここではそのキュリー点が原子炉
冷却材の異常温度に対応するような材料を選定する。
36b, respectively. Magnetic member 36a
, 36b is, for example, an amorphous magnetic alloy or the like, and has the property that its saturation magnetic flux density sharply decreases when the temperature reaches a certain temperature (Curie point) or higher. Here, a material whose Curie point corresponds to the abnormal temperature of the reactor coolant is selected.

通常運転時の状態は第1図A及び第2図に示す通りであ
る。電源(図示せず)からコイル30に通電することに
よって励磁され、磁性部材36a、上部連結部38、磁
性部材36b、磁気吸着部材40b、[性ハンドリング
ヘッド10、磁気吸着部材40aからなる閉磁路が構成
される。これによって制御棒14が吸着保持される。こ
の状態で駆動軸2oを上昇させれば制御棒14が引き上
げられ原子炉は運転状態に入る。
The state during normal operation is as shown in FIG. 1A and FIG. 2. The coil 30 is excited by energizing it from a power source (not shown), and a closed magnetic path consisting of the magnetic member 36a, the upper connecting portion 38, the magnetic member 36b, the magnetic attraction member 40b, the handling head 10, and the magnetic attraction member 40a is formed. configured. As a result, the control rod 14 is held by suction. If the drive shaft 2o is raised in this state, the control rod 14 is pulled up and the reactor enters the operating state.

さて万一、原子炉運転中に冷却材の流量喪失等の異常が
発生した場合には原子炉内の冷却材温度が上昇する。そ
れに伴って磁気回路を構成している磁性材料の温度も上
昇する。この温度上昇が磁性部材36a、36bのキュ
リー点を超えるとその飽和磁束密度が急激に低下し強磁
性体から常磁性体に変化する。このためコイル30への
通電が継続されている状態でも磁路が自然に開き、磁気
吸着部材40 a、  40 bと磁性ハンドリングヘ
ッド10との間での吸着力が失われてハンドリングヘッ
ド10が自動的に切り離され、制御棒14は第1図Bに
示すように落下し原子炉は停止する。
Now, in the unlikely event that an abnormality such as loss of coolant flow rate occurs during nuclear reactor operation, the coolant temperature within the reactor will rise. Along with this, the temperature of the magnetic material forming the magnetic circuit also rises. When this temperature rise exceeds the Curie point of the magnetic members 36a, 36b, their saturation magnetic flux density drops rapidly and they change from ferromagnetic to paramagnetic. Therefore, even when the coil 30 continues to be energized, the magnetic path opens naturally, and the attraction force between the magnetic attraction members 40 a, 40 b and the magnetic handling head 10 is lost, causing the handling head 10 to automatically move. The control rods 14 fall as shown in FIG. 1B, and the reactor shuts down.

制御棒14が落下して原子炉が停止すると炉内温度も低
下する。炉内温度が磁性部材36a。
When the control rod 14 falls and the reactor is shut down, the temperature inside the reactor also decreases. The temperature inside the furnace is the magnetic member 36a.

36bのキュリー点よりも低下すればそれらの部材は再
び強磁性体に戻る。駆動モータ28によって駆動軸20
及びそれに取り付けられている磁性吸着部40a、40
bを割引14頂部の磁性ハンドリングヘッドIOまで降
下させ、更に別の駆動装置(図示せず)で磁性部材36
a、35bを降下させて閉磁路を形成できるようにする
と、再び制御棒14を吸着保持することができ、前記の
各駆動装置により所定の位置まで引き上げることができ
る。
When the temperature drops below the Curie point of 36b, those members return to ferromagnetism again. Drive shaft 20 by drive motor 28
and magnetic adsorption parts 40a, 40 attached thereto.
b is lowered to the magnetic handling head IO on the top of the discount 14, and further the magnetic member 36 is lowered by another drive device (not shown).
When a and 35b are lowered to form a closed magnetic path, the control rod 14 can be attracted and held again, and the control rod 14 can be pulled up to a predetermined position by each of the aforementioned drive devices.

以上本発明の好ましい一実施例について詳述したが、本
発明はこのような構成のみに限定されるものではない、
磁気吸着部材を温度感知磁性材料で構成してもよいし、
磁性ハンドリングヘッドをそのような温度感知磁性材料
で構成してもよい。また磁気回路の構成は上記以外の様
々な変形が可能である。
Although a preferred embodiment of the present invention has been described in detail above, the present invention is not limited to only such a configuration.
The magnetic attraction member may be made of a temperature-sensitive magnetic material,
A magnetic handling head may be constructed of such temperature sensitive magnetic material. Further, the configuration of the magnetic circuit can be modified in various ways other than those described above.

[発明の効果] 本発明は上記のように制御棒を吸着保持するための電磁
石コイルを遮蔽プラグの上方に設置しているため該コイ
ルの周囲温度は比較的低く、そのためナトリウム冷却型
の原子炉のように冷却材温度が高い場合でも高温に対し
て特別な考慮を払う必要がなく、−船釣な電磁石コイル
を使用できるため容易に実現可能となる。またそのため
システムとしての信幀性が高まりメンテナンス性も良好
となる効果がある。
[Effects of the Invention] As described above, the electromagnetic coil for attracting and holding the control rods is installed above the shielding plug, so the ambient temperature of the coil is relatively low. Even when the coolant temperature is high, as in the above case, there is no need to pay special consideration to the high temperature, and it can be easily realized because an electromagnetic coil that can be used on a boat can be used. This also has the effect of increasing the reliability of the system and improving maintainability.

更に本発明は基本的に外部からの操作力や信号に依存せ
ずに直接的に原子炉を停止できるような自己作動型であ
るから、システム全体としての構成が簡素化され、外部
機構の故障等による信頬性の低下や信号伝達経路の複雑
化のために応答性が悪くなること等を回避でき、極めて
安全性が高くなる効果がある。
Furthermore, since the present invention is basically a self-actuating type that can directly stop the reactor without relying on external operating force or signals, the overall system configuration is simplified and there is no possibility of failure of external mechanisms. It is possible to avoid a decrease in reliability due to such factors and a decrease in responsiveness due to the complexity of the signal transmission path, and has the effect of extremely increasing safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A、Bは本発明に係る自己作動型制御棒駆動機構
の一実施例を示す説明図、第2図はその要部を示す説明
図、第3図はそのm−m断面図である。 10・・・磁性ハンドリングヘッド、14・・・制御棒
、20・・・駆動軸、22・・・電磁石、30・・・コ
イル、32・・・遮蔽プラグ、34・・・冷却材、36
a。 36b・・・磁性部材、38・・・上部連結部、40a
。 40b・・・磁性吸着部。 第1図 八 「−□
Figures 1A and B are explanatory diagrams showing one embodiment of the self-actuating control rod drive mechanism according to the present invention, Figure 2 is an explanatory diagram showing the main parts thereof, and Figure 3 is a cross-sectional view taken along line mm. be. DESCRIPTION OF SYMBOLS 10... Magnetic handling head, 14... Control rod, 20... Drive shaft, 22... Electromagnet, 30... Coil, 32... Shielding plug, 34... Coolant, 36
a. 36b...Magnetic member, 38...Upper connecting portion, 40a
. 40b...Magnetic adsorption part. Figure 1 8 “-□

Claims (1)

【特許請求の範囲】 1、制御棒と、該制御棒を昇降駆動する制御棒駆動機構
を有し、該制御棒駆動機構中に制御棒を吸着保持するた
めの電磁石が組み込まれており、その磁気回路の少なく
とも一部分に冷却材温度の異常上昇時に飽和磁束密度が
低下する温度感知磁性材料が使用されているものにおい
て、前記電磁石のコイルは遮蔽プラグの上方に設置され
、駆動軸の下端に磁性吸着部が設けられており、電磁石
の磁気回路は上端で連結され下端が開放されていて駆動
軸を包むように垂設されている磁性部材と磁性吸着部と
を有することを特徴とする自己作動型制御棒駆動機構。 2、駆動軸は非磁性材料からなり、該駆動軸を包むよう
に垂設されている磁性部材は断面円弧状をなし対向して
配置された一対の温度感知磁性材料からなり、磁性吸着
部に対して相対的に摺動可能となっている請求項1記載
の自己作動型制御棒駆動機構。
[Claims] 1. It has a control rod and a control rod drive mechanism that drives the control rod up and down, and an electromagnet for attracting and holding the control rod is built into the control rod drive mechanism. In at least a portion of the magnetic circuit, a temperature-sensitive magnetic material whose saturation magnetic flux density decreases when the coolant temperature rises abnormally is used, the coil of the electromagnet is installed above the shielding plug, and the magnetic circuit is installed at the lower end of the drive shaft. A self-actuating type characterized in that the magnetic circuit of the electromagnet is connected at the upper end and is open at the lower end, and has a magnetic member and the magnetic attraction part that are vertically arranged so as to wrap around the drive shaft. Control rod drive mechanism. 2. The drive shaft is made of a non-magnetic material, and the magnetic member vertically disposed so as to wrap around the drive shaft is made of a pair of temperature-sensing magnetic materials that have an arcuate cross section and are placed opposite each other. 2. A self-actuated control rod drive mechanism according to claim 1, wherein said control rod drive mechanism is movable relative to said control rod drive mechanism.
JP63065096A 1988-03-18 1988-03-18 Self-actuated control rod drive mechanism Expired - Lifetime JPH0638112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065096A JPH0638112B2 (en) 1988-03-18 1988-03-18 Self-actuated control rod drive mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065096A JPH0638112B2 (en) 1988-03-18 1988-03-18 Self-actuated control rod drive mechanism

Publications (2)

Publication Number Publication Date
JPH01239497A true JPH01239497A (en) 1989-09-25
JPH0638112B2 JPH0638112B2 (en) 1994-05-18

Family

ID=13277044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065096A Expired - Lifetime JPH0638112B2 (en) 1988-03-18 1988-03-18 Self-actuated control rod drive mechanism

Country Status (1)

Country Link
JP (1) JPH0638112B2 (en)

Also Published As

Publication number Publication date
JPH0638112B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
CN108730604B (en) Passive valve system
JPH0122915B2 (en)
JPS6412352B2 (en)
JPH01239497A (en) Self-operation type control rod drive mechanism
US4582675A (en) Magnetic switch for reactor control rod
JPH0559399B2 (en)
JPH01301195A (en) Self-operation type control rod driving mechanism
JPS6391592A (en) Self-operated type control-rod drive mechanism
JPH0718943B2 (en) Self-acting reactor shutdown mechanism
JPS63290991A (en) Shutdown device for nuclear reactor
JP2742291B2 (en) Reactor shutdown device
JPS6319593A (en) Self-operation type control-rod drive mechanism
JP2869294B2 (en) Control rod drop position detection device for self-actuated furnace shutdown mechanism
US4770845A (en) Self-actuating reactor shutdown system
JPH03289593A (en) Shutting down device of fast breeder reactor
JPH03165298A (en) Reactor shutdown device
JP2869106B2 (en) Reactor shutdown device for fast breeder reactor
JP2845927B2 (en) Reactor control rod support device
US20030194043A1 (en) Nuclear reactor system and method for automatically scramming the same
JPH0462038B2 (en)
JPH04250395A (en) Nuclear reactor shutdown device
JPS6159288A (en) Driving mechanism of control rod
JPS61258192A (en) Drive for control rod
JPH03128487A (en) Control element driving device
JPS5927290A (en) Reactor shutdown device