JPS6391592A - Self-operated type control-rod drive mechanism - Google Patents
Self-operated type control-rod drive mechanismInfo
- Publication number
- JPS6391592A JPS6391592A JP61238410A JP23841086A JPS6391592A JP S6391592 A JPS6391592 A JP S6391592A JP 61238410 A JP61238410 A JP 61238410A JP 23841086 A JP23841086 A JP 23841086A JP S6391592 A JPS6391592 A JP S6391592A
- Authority
- JP
- Japan
- Prior art keywords
- control rod
- drive mechanism
- reactor
- self
- magnetic alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims description 27
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 27
- 230000005291 magnetic effect Effects 0.000 claims description 25
- 230000007423 decrease Effects 0.000 claims description 18
- 230000004907 flux Effects 0.000 claims description 13
- 239000002826 coolant Substances 0.000 claims description 10
- 238000002425 crystallisation Methods 0.000 description 12
- 230000008025 crystallization Effects 0.000 description 12
- 230000005856 abnormality Effects 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002907 paramagnetic material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- De-Stacking Of Articles (AREA)
- Vehicle Body Suspensions (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、異常発生時に原子炉を緊急停止させるため制
御棒を炉心へ自動的に挿入する自己作動型制御棒駆動a
構に関し、更に詳しくは、制御棒を吊り下げ保持する電
磁石の磁気回路の一部にアモルファス磁性合金を使用し
、温度の異常上昇によりその飽和磁束密度が低下するこ
とを利用して制御棒を解放し落下させる制御棒駆動機構
に関するものである。Detailed Description of the Invention [Field of Industrial Application] The present invention provides a self-actuating control rod drive a that automatically inserts control rods into the reactor core in order to make an emergency shutdown of the reactor in the event of an abnormality.
More specifically, an amorphous magnetic alloy is used for part of the magnetic circuit of the electromagnet that suspends and holds the control rod, and the control rod is released by utilizing the decrease in saturation magnetic flux density caused by an abnormal rise in temperature. This relates to the control rod drive mechanism that causes the control rods to fall.
[従来の技術]
一般に高速炉等では炉停止の信頼性を高めるため、出力
制御用の制御棒とは別に異常時等に炉心に挿入する制御
棒を備えている。これらを駆動する制御棒駆動機構は、
外部からのスクラム信号により動作を開始する。そのた
め非常時の信頼性が外部のスクラム信号発生m構に依存
しており、炉内異常発生からスクラムまでの信号伝達経
路が複雑になるため炉停止の応答性並びに信頼性の点で
問題があった。[Prior Art] In general, fast reactors and the like are equipped with control rods that are inserted into the reactor core in the event of an abnormality, in addition to control rods for output control, in order to increase the reliability of reactor shutdown. The control rod drive mechanism that drives these is
The operation is started by an external scram signal. Therefore, reliability in the event of an emergency depends on the external scram signal generation mechanism, and the signal transmission path from the occurrence of an abnormality in the reactor to the scram becomes complicated, which poses problems in terms of response and reliability when shutting down the reactor. Ta.
これらの問題を解決するため炉内に温度スイッチを設け
、その信号により直接制御棒を駆動する構成が提案され
ている(例えば特開昭60−127493号公報参照)
、ここでは炉内の異常を横比する温度スイッチとして、
複数の異種金属による熱膨張量の差を利用して接点をオ
ン−オフ制御する方式が採られており、その信号を制御
棒保持機構に伝達するように構成されている。In order to solve these problems, a configuration has been proposed in which a temperature switch is provided in the reactor and the control rods are directly driven by the signal from the temperature switch (for example, see Japanese Patent Application Laid-open No. 127493/1983).
, here, as a temperature switch that horizontally monitors abnormalities in the furnace.
A system is adopted in which the contacts are controlled on and off by utilizing the difference in the amount of thermal expansion between a plurality of different metals, and the system is configured to transmit the signal to the control rod holding mechanism.
[発明が解決しようとする問題点]
上記の従来技術では、温度スイッチは冷却材中に浸漬さ
れるステンレス管内にタングステン棒を挿入した異種金
属の組み合わせからなり、ステンレス管とタングステン
棒の下端部が接合されタングステン棒の上端が可動接点
に当接する構成である。ステンレス管とタングステン棒
の熱膨張量の差によりタングステン棒の上端が上下方向
に移動して可動接点を固定接点に接触させたり離間させ
る。[Problems to be Solved by the Invention] In the above-mentioned conventional technology, the temperature switch is made of a combination of dissimilar metals in which a tungsten rod is inserted into a stainless steel tube that is immersed in a coolant, and the lower end of the stainless steel tube and tungsten rod is The upper end of the joined tungsten rod contacts the movable contact. Due to the difference in thermal expansion between the stainless steel tube and the tungsten rod, the upper end of the tungsten rod moves up and down, causing the movable contact to come into contact with and separate from the fixed contact.
しかし温度スイッチは炉心近傍に設置されているため照
射の影響を受は信軌性の点で問題がある。また冷却材中
に浸漬されているから、ステンレス管内には漏洩検出器
を取り付は液体冷却材の侵入の有無を検知しなければな
らず、機構的にも複雑になる。However, since the temperature switch is installed near the core, it is affected by irradiation, which poses a problem in terms of reliability. In addition, since the tube is immersed in the coolant, a leak detector must be installed inside the stainless steel tube to detect whether or not liquid coolant has entered the tube, making it mechanically complex.
本発明の目的は、上記のような従来技術の欠点を解消し
、外部からの操作力や信号に依存せずに原子炉を安全に
停止することができ、構造が単純で、自己作動により制
御棒を落下させるメカニズムが複数備わっており、それ
らによって信頼性を高めることができる自己作動型の制
御棒駆動機構を提供することにある。The purpose of the present invention is to eliminate the drawbacks of the prior art as described above, to be able to safely stop a nuclear reactor without relying on external operating force or signals, to have a simple structure, and to be able to control by self-operation. An object of the present invention is to provide a self-actuated control rod drive mechanism that is equipped with a plurality of mechanisms for dropping the rod, thereby increasing reliability.
[問題点を解決するための手段]
本発明は、制御棒と、該制御棒を昇降駆動する制御棒駆
動機構を有し、該制御棒駆動機構中に制御棒を吸着保持
するための電磁石が組み込まれている構成を前提として
いる。[Means for Solving the Problems] The present invention has a control rod and a control rod drive mechanism for driving the control rod up and down, and an electromagnet for attracting and holding the control rod in the control rod drive mechanism. It assumes the built-in configuration.
そして前記のような目的を達成するため本発明では、冷
却材温度が異常に高くなった時に飽和磁束密度が低下す
る磁気特性を存するアモルファス磁性合金を、前記電磁
石の磁気回路の少なくとも一部分に組み込んだ自己作動
型制御棒駆動機構である。In order to achieve the above-mentioned object, the present invention incorporates an amorphous magnetic alloy, which has magnetic properties such that the saturation magnetic flux density decreases when the coolant temperature becomes abnormally high, into at least a portion of the magnetic circuit of the electromagnet. It is a self-actuated control rod drive mechanism.
[作用]
通常運転時においては、強磁性体で且つ一般の強磁性材
に比べてシャープな磁気特性を有するアモルファス磁性
合金を磁気回路中に組み込んだitm石によって制御棒
が吸着保持される。[Operation] During normal operation, the control rod is attracted and held by the ITM stone, which is made of an amorphous magnetic alloy that is ferromagnetic and has sharper magnetic properties than ordinary ferromagnetic materials.
原子炉に異常が生じて冷却材温度が異常上昇した場合に
はアモルファス磁性合金の飽和磁束密度が急激に低下し
、電磁石により形成されていた磁界が遮断され保持力が
低下するため制御棒が解放されて落下する。このように
本発明では原子炉の炉内異常を物理現象として感知し、
外部の各種制御器を介することなる自己作動で制御棒を
直接駆動することができる。If an abnormality occurs in the reactor and the coolant temperature rises abnormally, the saturation magnetic flux density of the amorphous magnetic alloy will rapidly decrease, the magnetic field formed by the electromagnet will be cut off, and the holding force will decrease, causing the control rod to release. being hit and falling. In this way, the present invention detects abnormalities inside a nuclear reactor as a physical phenomenon,
The control rods can be directly driven by different self-actuations via various external controllers.
アモルファス磁性合金の場合、そのキュリー点は結晶化
温度よりも低く、飽和磁束密度の減少により自己作動す
るように材料を選定し動作温度を決めることによって、
結晶化することなく繰り返し制御棒の切り離し動作を実
施することができる。In the case of an amorphous magnetic alloy, its Curie point is lower than the crystallization temperature, and by selecting the material and determining the operating temperature so that it will self-operate by decreasing the saturation magnetic flux density,
Repeated control rod separation operations can be performed without crystallization.
またこの種の材料では結晶化する時に急激に膨張したり
電気抵抗が急激に低下するから、このような物性変化を
利用して制御棒を切り離せるように構成すれば、結晶化
に伴う動作をバンクアップとして位置すけ、より効果的
な信頼性の高い制御棒駆動機構を実現できる。In addition, when this type of material crystallizes, it expands rapidly and its electrical resistance rapidly decreases, so if the control rod can be separated by taking advantage of these changes in physical properties, it will be possible to control the operation associated with crystallization. A more effective and reliable control rod drive mechanism can be achieved by positioning the rod as a bank up.
[実施例]
第1図は本発明に係る自己作動型制御棒駆動機構の一実
施例を示す説明図であり、同図Aは制御棒を吸着保持し
ている状態、同図Bは制御棒を解放した状態をそれぞれ
示している。[Embodiment] Fig. 1 is an explanatory view showing an embodiment of a self-actuating control rod drive mechanism according to the present invention, in which A shows a state in which a control rod is held by suction, and Fig. B shows a state in which a control rod is held by suction. Each shows the released state.
上部に磁性体製のハンドリングヘッド10を有し内部に
中性子吸収体12を有する制御棒14が、炉心内の下部
案内管16の上方に位置し、制御棒保持機構により保持
される。制御棒保持機構は、上部案内管18内を挿通す
るように設けられた駆動軸20と、その下端に取り付け
られた電磁石22等からなり、ケーブル(図示せず)に
よって電源から電流が供給され、励磁された電磁石22
が磁性体製ハンドリングヘッドIOを吸着して制御棒1
4を保持する。A control rod 14 having a handling head 10 made of a magnetic material at the top and a neutron absorber 12 inside is located above a lower guide tube 16 in the reactor core and is held by a control rod holding mechanism. The control rod holding mechanism consists of a drive shaft 20 inserted through the upper guide tube 18, an electromagnet 22 attached to the lower end of the drive shaft 20, etc., and is supplied with current from a power source via a cable (not shown). Excited electromagnet 22
attracts the magnetic handling head IO and controls the control rod 1.
Hold 4.
駆動軸20の上部はボールナツト24が取り付けられ、
該ボールナツト24はボールネジ26と噛み合い、ボー
ルネジ26の上端は駆動モータ28に連結されている。A ball nut 24 is attached to the upper part of the drive shaft 20,
The ball nut 24 meshes with a ball screw 26, and the upper end of the ball screw 26 is connected to a drive motor 28.
原子炉の通常運転時には駆動モータ28を作動させるこ
とによリ、制御棒14を上下させ出力調整を行う、炉内
に何らかの異常が生じた場合、制御棒保持機構が自己作
動し、それによって同図Bに示すように制御棒14が切
り離されて重力で落下し原子炉を停止する。During normal operation of the reactor, the control rods 14 are moved up and down to adjust the output by operating the drive motor 28. If any abnormality occurs in the reactor, the control rod holding mechanism automatically operates, thereby As shown in Figure B, the control rod 14 is separated and falls due to gravity, stopping the reactor.
本発明の特徴は、制御棒保持機構の電磁石22として、
その磁気回路の少なくとも一部分に、冷却材温度が異常
に高くなった時に飽和磁束密度が低下する特性を有する
アモルファス磁性合金を組み込んだ点である。The feature of the present invention is that as the electromagnet 22 of the control rod holding mechanism,
The point is that an amorphous magnetic alloy having a characteristic that the saturation magnetic flux density decreases when the coolant temperature becomes abnormally high is incorporated into at least a portion of the magnetic circuit.
この電磁石22は、例えば第2図に示すように、中央に
位置する鉄心30と、それに巻装したコイル32と、コ
イル32の外側を覆い上端が鉄心フランジ部30aに結
合されたアモルファス磁性合金製の円筒体34とからな
り、該円筒体34の下端面と鉄心30の下端面とがほぼ
同じ水平面内に位置する構造である。コイル32には電
源36から電力が供給される。For example, as shown in FIG. 2, the electromagnet 22 is made of an amorphous magnetic alloy that includes an iron core 30 located at the center, a coil 32 wound around the core, and an amorphous magnetic alloy that covers the outside of the coil 32 and whose upper end is connected to the iron core flange 30a. The lower end surface of the cylindrical body 34 and the lower end surface of the iron core 30 are located in substantially the same horizontal plane. Electric power is supplied to the coil 32 from a power source 36 .
アモルファス磁性合金は一定の温度(キュリー点)以上
に達した時に、その飽和磁束密度が急激に低下する。こ
こでは飽和磁束が低下する温度が原子炉の炉内異常温度
に対応するような材料を選定する。When an amorphous magnetic alloy reaches a certain temperature (Curie point) or higher, its saturation magnetic flux density decreases rapidly. Here, a material is selected such that the temperature at which the saturation magnetic flux decreases corresponds to the abnormal temperature inside the nuclear reactor.
通常運転時の状態は第2図に示す通りであり、電源36
からコイル32に通電され、鉄心30゜アモルファス磁
性合金製の円筒体34.磁性体製ハンドリングヘッド1
0によって磁気回路が構成され、制御棒が吸着保持され
る。ここで原子炉運転中、冷却材の流量喪失等の異常が
発生した場合、原子炉内の冷却材温度が上昇する。The state during normal operation is as shown in Figure 2, and the power supply 36
The coil 32 is energized from the iron core 30° and the cylindrical body 34 made of amorphous magnetic alloy. Magnetic handling head 1
0 constitutes a magnetic circuit, and the control rod is attracted and held. If an abnormality such as loss of coolant flow rate occurs during reactor operation, the coolant temperature within the reactor increases.
それに伴って電磁石22の近傍の温度も上昇する。この
温度上昇が異常値に達すると、円筒体34を構成してい
るアモルファス磁性合金の飽和磁束密度が急激に低下し
、強磁性体から常磁性体に変化して行く、このため磁気
回路が開き、吸着力が失われてハンドリングヘッド10
が切り離され制御棒が第3図に示すように落下し原子炉
が停止する。Along with this, the temperature near the electromagnet 22 also rises. When this temperature rise reaches an abnormal value, the saturation magnetic flux density of the amorphous magnetic alloy that makes up the cylindrical body 34 rapidly decreases, changing from a ferromagnetic material to a paramagnetic material, which causes the magnetic circuit to open. , the suction force is lost and the handling head 10
is separated, the control rod falls as shown in Figure 3, and the reactor shuts down.
基本的にはこのようにして異常発生時に原子炉が停止す
る。万−何らかの原因によりアモルファス磁性合金の飽
和磁束密度が低下しただけでは制御棒が切り離されなか
った場合でも、本装置は次のようなバンクアップ機構が
動作して確実に制御棒を落下させることができみ。Basically, this is how the reactor is shut down when an abnormality occurs. - Even if the control rod is not separated due to a decrease in the saturation magnetic flux density of the amorphous magnetic alloy for some reason, this device operates the following bank-up mechanism to ensure that the control rod falls. Dekimi.
原子炉の温度上昇が更に進んでアモルファス磁性合金の
結晶化温度に達すると、アモルファス磁性合金は結晶化
し、それに伴い急激な膨張が生じる。つまり第4図に示
すように、円筒体34が急激に熱膨張してハンドリング
へソド10を下方に押し出す、これによって鉄心30と
ハンドリングヘッド10との間にギャップGが形成され
、制御棒は確実に落される。When the temperature of the nuclear reactor further increases and reaches the crystallization temperature of the amorphous magnetic alloy, the amorphous magnetic alloy crystallizes and, as a result, undergoes rapid expansion. In other words, as shown in FIG. 4, the cylindrical body 34 rapidly expands thermally and pushes the rod 10 downward toward the handling rod, thereby forming a gap G between the iron core 30 and the handling head 10, and the control rod is securely moved. be dropped.
第5図は更に別のバックアップ機構の例を示したもので
、アモルファス磁性合金の結晶化に伴う電気抵抗の減少
を利用して制御B棒を解放する例である。アモルファス
磁性合金内に電極38を埋め込み、コイル32と並列に
接続する。FIG. 5 shows yet another example of a backup mechanism, in which the control rod B is released by utilizing the decrease in electrical resistance accompanying crystallization of an amorphous magnetic alloy. An electrode 38 is embedded within the amorphous magnetic alloy and connected in parallel with the coil 32.
通常の運転時には制御棒をrg1着保持できるようにコ
イル32に通電しておき、その時同時にアモルファス磁
性合金製の円筒体34にも通電する。コイル32に通電
する電圧、を流値は制御棒を吸着保持できる値に対して
あまり大きくならないように設定する。炉内の温度が異
常に上昇しアモルファス磁性合金が結晶化すると、その
電気抵抗は急激に減少する。その結果アモルファス磁性
合金側により多くの電流が流れ、逆にコイル側の電流は
減少する。この変化により電磁石の保持力が減少し制御
棒を吸着保持できなくなり、制御棒が落下して原子炉を
停止させる。During normal operation, the coil 32 is energized so that the control rod can be held at rg1, and at the same time, the cylindrical body 34 made of an amorphous magnetic alloy is also energized. The voltage applied to the coil 32 is set so that the current value is not too large compared to the value that allows the control rod to be attracted and held. When the temperature inside the furnace rises abnormally and the amorphous magnetic alloy crystallizes, its electrical resistance rapidly decreases. As a result, more current flows to the amorphous magnetic alloy side, and conversely, the current to the coil side decreases. As a result of this change, the holding power of the electromagnet decreases and it is no longer able to attract and hold the control rod, causing the control rod to fall and shutting down the reactor.
本発明は上記のように電磁石の構成部品の一部にアモル
ファス磁性合金を用いたことによって、従来の自己作動
型の;し制御棒駆動機構と大きく異なり、
■ 飽和磁束密度の減少で動作させる。As described above, the present invention uses an amorphous magnetic alloy as a part of the electromagnet components, so that it is greatly different from the conventional self-actuated control rod drive mechanism, and is operated by reducing the saturation magnetic flux density.
■ 結晶化に伴う急激な膨張で動作させる。■ Operate by rapid expansion due to crystallization.
■ 結晶化に伴う急激な電気抵抗の減少で動作させる。■ Operates due to the rapid decrease in electrical resistance associated with crystallization.
という複数の動作方式を備えさせることができる。これ
により■の動作が行われず制御棒が落下しなかったとし
ても、■および/または■の動作により、確実に制御棒
を落下させ原子炉を停止させることができる。なおアモ
ルファス磁性合金は結晶化してしまうと再度同じ条件で
使用することは不可能であるが、一般にアモルファス磁
性合金においては結晶化温度よりキュリー点の方がかな
り(材料によっても異なるが、通常100℃もしくはそ
れ以上)低いので飽和磁束密度の減少により動作するよ
うに材料を選定し動作温度を決めれば結晶化させること
なく繰り返し電磁石を使用することができる。つまり結
晶化に伴う動作をバックアップとして位置づければ、よ
り効果的な使い方となる。A plurality of operation methods can be provided. As a result, even if the control rod does not fall because the operation (2) is not performed, the control rod can be reliably dropped and the reactor can be stopped by the operation (2) and/or (2). Note that once an amorphous magnetic alloy has crystallized, it is impossible to use it again under the same conditions, but in general, the Curie point of an amorphous magnetic alloy is much higher than the crystallization temperature (usually 100°C, although it varies depending on the material). (or higher), so if the material is selected and the operating temperature is determined so that it operates by reducing the saturation magnetic flux density, the electromagnet can be used repeatedly without crystallization. In other words, if the operation associated with crystallization is positioned as a backup, it can be used more effectively.
以上本発明の好ましい一実施例について詳述したが、本
発明はこのような構成のみに限定されるものでないこと
熱論である。アモルファス磁性合金は、中心側の磁気回
路中に組み込んでもよいし、ハンドリングヘッド側に組
み込んでもよく、種々の変形が可能である。Although a preferred embodiment of the present invention has been described above in detail, it is important to note that the present invention is not limited to only such a configuration. The amorphous magnetic alloy may be incorporated into the magnetic circuit on the center side or on the handling head side, and various modifications are possible.
C発明の効果〕
本発明は上記のように制御棒を吸着保持するための電磁
石の磁気回路の一部分にアモルファス磁性合金を組み込
み、冷却材温度が異常に高くなった時にその物性変化に
より制御棒を解放するように構成したから、制御棒駆動
機構自身に炉内異常(温度の異常上昇)を検知する機能
が備わっており、外部からの操作力や信号に依存せずに
直接的に原子炉を停止することができ、そのためシステ
ム構成が簡素化され、外部機構の故障等による信頼性の
低下や信号伝達経路の複雑化のために応答性が悪くなる
ことを回避でき、極めて安全性が高くなる効果がある。C Effects of the Invention] As described above, the present invention incorporates an amorphous magnetic alloy into a part of the magnetic circuit of the electromagnet for attracting and holding the control rod, and when the coolant temperature becomes abnormally high, the control rod is Because the control rod drive mechanism itself is configured to release the reactor, it is equipped with a function to detect abnormalities within the reactor (abnormal rise in temperature), and it can directly operate the reactor without relying on external operating force or signals. This simplifies the system configuration and prevents deterioration in reliability due to failures in external mechanisms and poor responsiveness due to complication of signal transmission paths, resulting in extremely high safety. effective.
また異常を検出し自己作動させ制御棒を落下させるメカ
ニズムが複数備わっているため、従来の自己作動型の制
御棒駆動機構に比べてより信頼性が高くなる効果もある
。Additionally, since it is equipped with multiple mechanisms that detect an abnormality and self-actuate to drop the control rod, it also has the effect of being more reliable than conventional self-actuating control rod drive mechanisms.
第1図A、Bは本発明に係る自己作動型制御棒駆動機構
の一実施例を示す説明図、第2図はその電磁石の構造を
示す説明図、第3図はアモルファス磁性合金の飽和磁束
密度の低下により制御棒を解放した状態を示す説明図、
第4図は結晶化に伴う熱膨張により制御棒を解放した状
態を示す説明図、第5図は結晶化に伴う電気抵抗の低下
を利用して制御棒を切り離せるようにした説明図である
。
10・・・磁性体製のハンドリングヘッド、14・・・
制御棒、22・・・電磁石、30・・・鉄心、32・・
・コイル、34・・・アモルファス磁性合金製の円筒体
、36・・・電源、38・・・電極。
特許出願人 動力炉・核燃料開発事業団代 理
人 茂 見 穣第1図
第2図
fs4図
第3図
第55i!Figures 1A and B are explanatory diagrams showing one embodiment of the self-actuated control rod drive mechanism according to the present invention, Figure 2 is an explanatory diagram showing the structure of the electromagnet, and Figure 3 is the saturation magnetic flux of the amorphous magnetic alloy. An explanatory diagram showing the state in which the control rods are released due to a decrease in density,
Figure 4 is an explanatory diagram showing the state in which the control rod is released due to thermal expansion associated with crystallization, and Figure 5 is an explanatory diagram showing how the control rod can be separated by utilizing the decrease in electrical resistance associated with crystallization. . 10... Handling head made of magnetic material, 14...
Control rod, 22... Electromagnet, 30... Iron core, 32...
- Coil, 34... Cylindrical body made of amorphous magnetic alloy, 36... Power source, 38... Electrode. Patent applicant Representative of Power Reactor and Nuclear Fuel Development Corporation
Figure 1 Figure 2 fs4 Figure 3 Figure 55i!
Claims (1)
を有し、該制御棒駆動機構中に制御棒を吸着保持するた
めの電磁石が組み込まれているものにおいて、前記電磁
石はその磁気回路の少なくとも一部分に、冷却材温度が
異常に高くなった時に飽和磁束密度が低下するアモルフ
ァス磁性合金を組み込んだことを特徴とする自己作動型
制御棒駆動機構。1. A control rod that has a control rod and a control rod drive mechanism that drives the control rod up and down, and an electromagnet that attracts and holds the control rod is built into the control rod drive mechanism, and the electromagnet is A self-actuating control rod drive mechanism characterized in that at least a portion of the circuit incorporates an amorphous magnetic alloy whose saturation magnetic flux density decreases when the coolant temperature becomes abnormally high.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61238410A JPS6391592A (en) | 1986-10-07 | 1986-10-07 | Self-operated type control-rod drive mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61238410A JPS6391592A (en) | 1986-10-07 | 1986-10-07 | Self-operated type control-rod drive mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6391592A true JPS6391592A (en) | 1988-04-22 |
JPH0588797B2 JPH0588797B2 (en) | 1993-12-24 |
Family
ID=17029792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61238410A Granted JPS6391592A (en) | 1986-10-07 | 1986-10-07 | Self-operated type control-rod drive mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6391592A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58113893A (en) * | 1981-12-28 | 1983-07-06 | 株式会社東芝 | Reactor shutdown device |
JPS5950389A (en) * | 1982-09-14 | 1984-03-23 | 株式会社東芝 | Reactor control device |
-
1986
- 1986-10-07 JP JP61238410A patent/JPS6391592A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58113893A (en) * | 1981-12-28 | 1983-07-06 | 株式会社東芝 | Reactor shutdown device |
JPS5950389A (en) * | 1982-09-14 | 1984-03-23 | 株式会社東芝 | Reactor control device |
Also Published As
Publication number | Publication date |
---|---|
JPH0588797B2 (en) | 1993-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0024783B1 (en) | Nuclear reactor shutdown system | |
US4405558A (en) | Nuclear reactor shutdown system | |
JPS6391592A (en) | Self-operated type control-rod drive mechanism | |
US4582675A (en) | Magnetic switch for reactor control rod | |
JPH0638112B2 (en) | Self-actuated control rod drive mechanism | |
JPS63290991A (en) | Shutdown device for nuclear reactor | |
JPH068883B2 (en) | Self-actuated control rod drive mechanism | |
JPS6319593A (en) | Self-operation type control-rod drive mechanism | |
JP2742291B2 (en) | Reactor shutdown device | |
JPS60127493A (en) | Automatic stop device for nuclear reactor | |
JPH03128487A (en) | Control element driving device | |
JPS63259495A (en) | Advanced reactor stop mechanism | |
JPH03289593A (en) | Shutting down device of fast breeder reactor | |
JPH02243995A (en) | Self-operation type reactor shut-down mechanism | |
JPH03165298A (en) | Reactor shutdown device | |
JP2845927B2 (en) | Reactor control rod support device | |
JPS5942493A (en) | Reactor shutdown device | |
JPS6159288A (en) | Driving mechanism of control rod | |
JPH01206289A (en) | Shut-down device | |
JPH01241726A (en) | Thermal switch for high temperature | |
JPH01288799A (en) | Holding mechanism of nuclear reactor control rod | |
JPH04104089A (en) | Apparatus for shutting down nuclear reactor | |
JPH049271B2 (en) | ||
JPH02222871A (en) | Reactor shutdown equipment | |
JPS58113893A (en) | Reactor shutdown device |