JPH01239482A - Testing method for resin-sealed semiconductor device - Google Patents

Testing method for resin-sealed semiconductor device

Info

Publication number
JPH01239482A
JPH01239482A JP63066421A JP6642188A JPH01239482A JP H01239482 A JPH01239482 A JP H01239482A JP 63066421 A JP63066421 A JP 63066421A JP 6642188 A JP6642188 A JP 6642188A JP H01239482 A JPH01239482 A JP H01239482A
Authority
JP
Japan
Prior art keywords
semiconductor device
water
pressed
resin
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066421A
Other languages
Japanese (ja)
Inventor
Manabu Sugawa
須川 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP63066421A priority Critical patent/JPH01239482A/en
Publication of JPH01239482A publication Critical patent/JPH01239482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PURPOSE:To detect a microcrack and to securely evaluate a test result with high accuracy by pressing water in the semiconductor device at room temperature, immersing it in liquid held above the boiling point of water, and confirming bubbling through the vaporization of the water. CONSTITUTION:Solder 8 is melted in a solder tank 7 with a temperature control function and the semiconductor device is immersed therein. Compressed air 14 is sent to a pressure applying device 12 through a pressure valve 13, and consequently the water 20 is pressed in the semiconductor device 9. The air is discharged through a vent valve 15 after the water is pressed in, and the semiconductor device 9 is taken out of a beaker 12. Lastly, the semiconductor device 9 wherein the water is pressed in is immersed in the liquid 17 held above 100 deg.C by the liquid tank 16 with the temperature control function by using a jig 18. Clear air bubbles are found in the semiconductor device where the water is pressed as compared with a semiconductor device 9 where no water is pressed, and it is evident that the certainty of the evaluation result is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は樹脂封止型半導体装置に機械環境試験11r:
実施した際にその評価結果の確実度の向上1!r:実現
する試験方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention applies mechanical environmental tests 11r to resin-sealed semiconductor devices.
Improving the certainty of evaluation results when carried out 1! r: Regarding the test method to be realized.

従来の技術 樹脂封止型半導体装置(以下、半導体装置という)は、
プリント基板上の実装密度向上の要求から、その形状が
小型化・薄型化してきている。このため、近年では実装
方法として、はんだ浸漬や赤外線リフローのように、半
導体装置全体が200℃以上の高温に急激に加熱される
方法が採用されている。それゆえ、半導体装置i)耐熱
衝撃性が低下してきている。第2図(a) (blは半
導体装置の耐熱衝撃性を評価する試験方法として、機械
環境試験のひとつである、はんだ耐熱試験を行なった結
果、半導体装置の樹脂部にクラックが生じた例を示した
ものである。第2図(al (b)は、ダイパッド1の
上にチップ2を塔載し、チップ2とリードフレーム3を
ワイヤー4で接続したものを樹脂5で封止した半導体装
置において、溶融したはんだ(M魚釣183℃)に半導
体装置全体を浸漬した際に、ダイパッド1のコーナ一部
を起点として、樹脂5にクラック6が発生した様子を示
したものである。この工うに、半導体装置全体に急激な
温度変化が与えられることにエリ、樹脂部にクラック6
が生じ、耐熱衝撃性が低下していることがわかる。さら
に、半導体装置を使用した機器が屋外で用いられる場合
にも同様の故障が発生することがある。これは、屋外環
境ではその環境の温度変化の範囲が拡大し、その変化が
くり返し印加されることによる。また、同じ屋外分野で
も、自動車などの車載分野では、前記環境温度変化のく
り返しに加え、力学的な振動や衝撃力が与えられるため
、それらが半導体装置の樹脂部の強度をこえた場合、ク
ツツクが生じることがある。上記、半導体装置の実装時
の耐熱衝撃性を評価するはんだ耐熱試験に対し、環境温
度変化のくり返し、力学的な振動、衝撃に対する評価試
験方法としては、熱衝撃試験、・振動試験、・衝撃試験
などがある。これらは、機械環境試験の一部であり、従
来この試験結果の評価方法として、通常目視判定が採用
されている。
Conventional technology Resin-encapsulated semiconductor devices (hereinafter referred to as semiconductor devices) are
Due to the demand for higher mounting density on printed circuit boards, their shapes are becoming smaller and thinner. For this reason, in recent years, as a mounting method, methods such as solder immersion and infrared reflow, in which the entire semiconductor device is rapidly heated to a high temperature of 200° C. or higher, have been adopted. Therefore, the semiconductor device i) thermal shock resistance is decreasing. Figure 2 (a) (bl shows an example in which cracks occurred in the resin part of a semiconductor device as a result of a soldering heat resistance test, which is one of the mechanical environment tests used as a test method to evaluate the thermal shock resistance of semiconductor devices. FIG. 2 (al (b)) shows a semiconductor device in which a chip 2 is mounted on a die pad 1, and the chip 2 and a lead frame 3 are connected with a wire 4, which is then sealed with a resin 5. This figure shows how a crack 6 was generated in the resin 5 starting from a part of the corner of the die pad 1 when the entire semiconductor device was immersed in molten solder (183°C). However, due to the rapid temperature changes applied to the entire semiconductor device, cracks in the resin part 6
occurs, indicating that the thermal shock resistance is reduced. Furthermore, similar failures may occur when equipment using semiconductor devices is used outdoors. This is because in an outdoor environment, the range of temperature changes in the environment expands, and these changes are applied repeatedly. In addition, even in the same outdoor field, in the automotive field such as automobiles, in addition to the repeated environmental temperature changes, mechanical vibrations and impact forces are applied, so if these exceed the strength of the resin part of the semiconductor device, the may occur. In contrast to the soldering heat resistance test mentioned above, which evaluates the thermal shock resistance during mounting of semiconductor devices, evaluation test methods for repeated environmental temperature changes, mechanical vibrations, and shocks include thermal shock tests, vibration tests, and impact tests. and so on. These are a part of the mechanical environment test, and conventionally, visual judgment is usually adopted as a method for evaluating the test results.

発明が解決しようとする課題 第2図(al(blに示した樹脂部のクツツク6は、2
0〜30倍程度の拡大aを使用して目視により、その発
生の有無t−識別するのが通常である。しかし、クラッ
クの形状や大きさに工っては、その識別が困難であり、
単なる目視確認では限界がある。それゆえ、半導体装置
の耐熱性評価結果のIM実度や再現性が損なわれるとい
う問題がある。
Problems to be Solved by the Invention The nail 6 of the resin part shown in FIG.
Usually, the presence or absence of the occurrence is visually determined using magnification a of about 0 to 30 times. However, it is difficult to identify cracks by modifying their shape and size.
Mere visual confirmation has its limits. Therefore, there is a problem in that the IM accuracy and reproducibility of the heat resistance evaluation results of semiconductor devices are impaired.

そこで、本発明は、上記従来の問題点を解消し、半導体
装置の機械環境試験の評価結果の確実液の改善を行なう
ことを目的とす多。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to solve the above-mentioned conventional problems and to improve the accuracy of evaluation results of mechanical environment tests of semiconductor devices.

課題を解決するだめの手段 本発明の半導体装置の試験方法は、機械環境試験実施後
、室温高圧雰囲気により半導体装置内に水を圧入し、水
の沸点(100℃)以上の温度の液体中に浸漬して、水
の気化作用にLる樹脂クツツク部からの発泡を確認する
方法である。
Means for Solving the Problems In the semiconductor device testing method of the present invention, after conducting a mechanical environment test, water is forced into the semiconductor device in a high-pressure atmosphere at room temperature, and the test method is immersed in a liquid at a temperature higher than the boiling point of water (100°C). This is a method in which foaming from the resin shoe is confirmed by immersion in the resin due to the evaporation of water.

作用 前記のように、半導体装置に対し、機械環境試験を実施
した後、室温高圧雰囲気にエリ半導体装置内部へ水を圧
入すると、機械環境試験にエリ半導体装置の樹脂部にク
ツツクが生じた場合、このクラック部に水が圧入される
。その後、水の沸点(100℃)以上の温度の液体中に
浸漬することに工り、クラック部に圧入された水が気化
膨張し、このクワツク部エリ気泡として検出される。本
発明は、水の気化膨張作用を利用することにエリ、目視
では検出困難、あるいは検出不可能な微細なりナックを
検出することが可能となり、機械環境試験の評価結果に
対して、分解能、・精度、・再現性の著しい向上が実現
できる。
Effects As mentioned above, if water is injected into the inside of the semiconductor device in a high-pressure atmosphere at room temperature after a mechanical environment test is performed on the semiconductor device, if a crack occurs in the resin part of the semiconductor device during the mechanical environment test, Water is forced into this crack. Thereafter, it is immersed in a liquid at a temperature higher than the boiling point of water (100° C.), and the water press-injected into the crack evaporates and expands, which is detected as bubbles around the crack. The present invention utilizes the evaporative expansion effect of water to detect fine particles that are difficult or impossible to detect with the naked eye. Significant improvements in accuracy and reproducibility can be achieved.

実施例 以下、本発明の一実施例を第1図(al (bl (c
lに基づき説明する。第1図(at (bl (clは
、機械環境試験のひとつである、はんだ耐熱試験に適用
した場合を例示したものである。まず、第1図talに
示す工うに、温調機能付きはんだ[7にエリ、はんだ8
を溶融し、その中へ半導体装置9を浸漬する。次に、第
1図fb)に示す工うに、はんだ附勢試験後の半導体装
置9を、水10を満たしたビーカー11に浸漬し、ビー
カー11を適当な圧力封入装置12の内部に設置する。
EXAMPLE Hereinafter, an example of the present invention will be described as shown in FIG.
The explanation will be based on 1. Figure 1 (at (bl (cl) is an example of the case where it is applied to the solder heat resistance test, which is one of the mechanical environment tests. First, the solder with temperature control function [ Eri to 7, solder 8
is melted and the semiconductor device 9 is immersed into it. Next, as shown in FIG. 1 fb), the semiconductor device 9 after the solder application test is immersed in a beaker 11 filled with water 10, and the beaker 11 is placed inside a suitable pressure sealing device 12.

圧力封入装置12には、加圧弁13を通して圧縮空気1
4が送り込まれ、それにエリ水10が半導体装置9に圧
入される。圧縮空気圧は3〜4〜.圧入時間は20分程
度である。圧入完了後、排気弁15工り排気し、ビーカ
ー11工り半導体装置9を取り出す。最後に、第1図(
C1に示すように、温調機能付き液槽16にエリ、10
0℃以上に設定された液体17に、治具18を使用して
水を圧入した半導体装置9を浸漬する。これにより、半
導体装置9の樹脂部のクツツクより気泡19が確;でき
る。なお、液体17は水の沸点以上で安定であること、
半導体装@9に化学的作用を及ぼさないこと、さらに気
泡を目視確認するため透明であることなどの特性が要求
されるため、不活性型フッ素液(沸魚釣230℃。
Compressed air 1 is supplied to the pressure sealing device 12 through a pressurizing valve 13.
4 is fed into the semiconductor device 9, and elimi water 10 is press-fitted into the semiconductor device 9. Compressed air pressure is 3~4~. The press-fitting time is about 20 minutes. After the press-fitting is completed, the exhaust valve 15 is made to evacuate the air, and the beaker 11 is made and the semiconductor device 9 is taken out. Finally, in Figure 1 (
As shown in C1, in the liquid tank 16 with temperature control function, Eri, 10
The semiconductor device 9 into which water has been press-fitted using the jig 18 is immersed in the liquid 17 set at 0° C. or higher. As a result, air bubbles 19 are formed by pressing the resin portion of the semiconductor device 9. Note that the liquid 17 is stable above the boiling point of water;
Since characteristics such as not having a chemical effect on the semiconductor device @ 9 and being transparent for visual confirmation of bubbles are required, an inert type fluorine liquid (boiled at 230°C) is required.

設定温度125℃)が適当である。ただし、半導体装置
9の表面に水が付着していると、液体17に浸漬時に発
泡し、クラック部からの気泡19と区別できなくなるた
め、液体17に浸漬する前に、半導体装置9の表面に付
着した水金除去することが望ましい。
A setting temperature of 125°C is appropriate. However, if water adheres to the surface of the semiconductor device 9, it will foam when it is immersed in the liquid 17 and cannot be distinguished from the air bubbles 19 from the cracked portion. It is desirable to remove attached water and gold.

なお、第1図(clには、同一条件ではんだ耐熱試験を
実施した後、水を圧入しない半導体装置20との比較も
示している。水を圧入した半導体装置に明確な気泡が見
られ、評価結果の確実液が改善されていることがわかる
。また、はんだ耐熱試験の条件(はんだ温度・浸漬時間
・浸漬の程度など)を変化させた後、水を圧入してそれ
ぞれの条件における半導体装置から発生する気泡の有無
お工び気泡が発生した場合、その場所や気泡の持続時間
を相互に比較することにニジ、半導体装置の耐熱衝撃性
を把握することができ、その改善対策につながる。さら
に、リードフレーム3と樹脂5の界面からの水の浸入も
予想されるため、この界面からの気泡を評価することに
より、両者の密着性が簡単に把握でき、半導体装置の長
期耐湿性も評価できる。
In addition, FIG. 1 (cl) also shows a comparison with a semiconductor device 20 in which water was not injected after conducting a soldering heat resistance test under the same conditions.Clear bubbles were seen in the semiconductor device into which water was injected. It can be seen that the reliability of the evaluation results has been improved.Also, after changing the conditions of the soldering heat resistance test (soldering temperature, immersion time, degree of immersion, etc.), water was press-injected and the semiconductor device under each condition was improved. If bubbles are generated, comparing their locations and the duration of the bubbles allows us to understand the thermal shock resistance of the semiconductor device and take measures to improve it. Furthermore, since water is expected to enter from the interface between the lead frame 3 and the resin 5, by evaluating air bubbles from this interface, the adhesion between the two can be easily determined, and the long-term moisture resistance of the semiconductor device can also be evaluated. can.

以上、はんだ耐熱試験への適用例を述べたが、他の機械
環境試験(例:振動・衝撃・熱衝撃試験など)に適用す
ることにニジ、その結果発生した非常に微細なりラック
を検知することができ、試験結果の評価に対して、確実
度・分解能・精度及び再現性の著しい改善が達成できる
The above is an example of application to solder heat resistance testing, but it can also be applied to other mechanical environment tests (e.g. vibration, shock, thermal shock tests, etc.) to detect extremely minute cracks that occur as a result. It is possible to achieve significant improvements in certainty, resolution, precision, and reproducibility for evaluation of test results.

発明の効果 上記本発明の試験方法によると、機械環境試験によって
発生した、半導体装置の樹脂部のクラックにおいて、従
来目視では判別困難なものが、室温で短時間に水を圧入
することにより、簡単に判別可能となり、試験結果の評
価に対し、確実度・精度・再現性が著しく向上される。
Effects of the Invention According to the test method of the present invention described above, cracks in the resin part of semiconductor devices that occur during mechanical environment tests that are difficult to discern with the naked eye can be easily detected by injecting water in a short time at room temperature. The accuracy, precision, and reproducibility of test result evaluations are significantly improved.

特に、目視検査ではその評価結果が客観性f欠ける場合
があるため、本発明の試験方法により、測定者依存性が
大きく改善される。
In particular, in visual inspection, the evaluation results may lack objectivity, so the test method of the present invention greatly improves the dependence on the measurer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al (bl (c)は本発明の試験方法の一
実施例における試験手順を示した断面図、第2図fal
お工び(blははんだ耐熱試験後における半導体装置の
平面図および断面図である。 5・・・樹脂、6・・・クラック、7・・・温調機能付
きはんだ槽、8・・・はんだ、9・・・半導体装置、1
0・・・水、12・・・圧力封入装置、16・・・温調
機能付き液槽、17・・・液体、19・・・気泡。 代理人   練  本  義  弘 第1図 月 第2図 どター 16In昌 が・−クラックー
Figure 1 (al (c) is a sectional view showing the test procedure in one embodiment of the test method of the present invention, Figure 2
Machining (BL is a plan view and a cross-sectional view of the semiconductor device after the soldering heat resistance test. 5...Resin, 6...Crack, 7...Solder bath with temperature control function, 8...Solder , 9... semiconductor device, 1
0...Water, 12...Pressure enclosure device, 16...Liquid tank with temperature control function, 17...Liquid, 19...Bubble. Agent Yoshihiro Renmoto 1st Figure 2nd Figure 16 In Masa - Crackoo

Claims (1)

【特許請求の範囲】[Claims] 1、樹脂封止型半導体装置に機械環境試験を実施した後
、室温で半導体装置内に水を圧入し、次に水の沸点以上
の温度の液体中に浸漬して、水の気化作用による発泡を
確認する樹脂封止型半導体装置の試験方法。
1. After conducting a mechanical environment test on a resin-sealed semiconductor device, water is pressurized into the semiconductor device at room temperature, and then immersed in a liquid at a temperature higher than the boiling point of water to form foam due to the evaporation of water. Test method for resin-sealed semiconductor devices to confirm
JP63066421A 1988-03-18 1988-03-18 Testing method for resin-sealed semiconductor device Pending JPH01239482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066421A JPH01239482A (en) 1988-03-18 1988-03-18 Testing method for resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066421A JPH01239482A (en) 1988-03-18 1988-03-18 Testing method for resin-sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH01239482A true JPH01239482A (en) 1989-09-25

Family

ID=13315313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066421A Pending JPH01239482A (en) 1988-03-18 1988-03-18 Testing method for resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH01239482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234993A (en) * 1999-02-16 2000-08-29 Mitsubishi Electric Corp Defect inspection method of power semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234993A (en) * 1999-02-16 2000-08-29 Mitsubishi Electric Corp Defect inspection method of power semiconductor device

Similar Documents

Publication Publication Date Title
US5456404A (en) Method of testing semiconductor chips with reusable test package
JPH04226046A (en) Bonding method of electronic chip
EP0504601A2 (en) Substrate soldering in a reducing atmosphere
Xu et al. Effect of intermetallic and Kirkendall voids growth on board level drop reliability for SnAgCu lead-free BGA solder joint
US5651493A (en) Method of performing solder joint analysis of semi-conductor components
CN111230350A (en) Method for testing chip solderability
JPH01239482A (en) Testing method for resin-sealed semiconductor device
US10593601B2 (en) Dye and pry process for removing quad flat no-lead packages and bottom termination components
US11166401B2 (en) Dye and pry process for surface mount technology dual in-line memory module
Zulfiqar et al. Structural and random vibration analysis of LEDs conductive polymer interconnections
US6137160A (en) Lead frame for semiconductor devices
Lau et al. Solder joint reliability of a thin small outline package (TSOP)
JP3415413B2 (en) Method for manufacturing semiconductor device
Plachý et al. Board Level Underfill–the Influence of Flux
Lau et al. Analytical and Experimental Studies of 208‐pin Fine Pitch (0· 5 mm) Quad Flat Pack Solder‐joint Reliability
Tan et al. Reliability assessment of BGA packages
Ko et al. Humidity and Corrosion Analysis and Design
Johnson et al. Wafer-applied underfill: Flip-chip assembly and reliability
JP3364455B2 (en) Method for manufacturing semiconductor device
Chou et al. Test method to evaluate a robust ball grid array (BGA) ball mount flux
Carla-Paula et al. Solder Wear Study on Electronic Boards using Nanoindentantions
Thomas 6.3 What's Wrong With Cerdips?
CN117367914A (en) Test method for analyzing integrated circuit sample quality
JPS63182582A (en) Evaluating method for heat resistance of resin sealed type semiconductor device
Yang et al. Test and reliability analysis of PBGA assemblies under random vibration