JPH01239027A - Oxide superconductor and production of film made thereof - Google Patents

Oxide superconductor and production of film made thereof

Info

Publication number
JPH01239027A
JPH01239027A JP63065871A JP6587188A JPH01239027A JP H01239027 A JPH01239027 A JP H01239027A JP 63065871 A JP63065871 A JP 63065871A JP 6587188 A JP6587188 A JP 6587188A JP H01239027 A JPH01239027 A JP H01239027A
Authority
JP
Japan
Prior art keywords
film
thickness
oxide superconductor
oxide
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63065871A
Other languages
Japanese (ja)
Other versions
JP2635355B2 (en
Inventor
Masashi Mukoda
昌志 向田
Kenichi Kuroda
研一 黒田
Shintaro Miyazawa
宮澤 信太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63065871A priority Critical patent/JP2635355B2/en
Publication of JPH01239027A publication Critical patent/JPH01239027A/en
Application granted granted Critical
Publication of JP2635355B2 publication Critical patent/JP2635355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title superconducting film giving superconductive transition at 110 deg.K, by depositing a specific oxide superconductor on a substrate followed by heat treatment. CONSTITUTION:Using an electron beam vapor deposition technique, metallic Cu, Bi and fluorides CaF2 and SrF2 are deposited in this order on a substrate (e.g., made of MgO) so as to be <=2,500Angstrom in thickness of the resultant film to form an oxide superconductor of the formula BiuSrvCawCuxOy with the ratio u:v:w:x=0.7-1.1:1.4-3.1:0.85-1.1:2 followed by heat treatment. Thence, furthermore, if needed, the above-mentioned deposition and heat treatment are plurally repeated respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液体窒素温度(絶対温度77K)以上の絶対
温度110にで超伝導転移をもつ新たな組成物および1
10に以下で超伝導体となる薄膜の形成法に関するもの
である。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a new composition having a superconducting transition at an absolute temperature of 110 degrees above the liquid nitrogen temperature (absolute temperature of 77 K) and
Section 10 below relates to a method for forming a thin film that becomes a superconductor.

(従来の技術) 1987年に化学式LnBa2CusOx (Ln:Y
、ランタノイド元素)で与えられる酸化物化合物か絶対
温度go度(摂氏マイナス183℃)の超伝導転移温度
をもつことが公知となって以来、より高い超伝導転移温
度をもつ酸化物超伝導物質の探索が盛んである。
(Prior art) In 1987, the chemical formula LnBa2CusOx (Ln:Y
Since it became known that the oxide compounds given by the lanthanide elements have a superconducting transition temperature of 0 degrees absolute (-183 degrees Celsius), oxide superconducting materials with higher superconducting transition temperatures have been developed. There is a lot of exploration going on.

1988年1月22日に、Bi、Sr、Ca、Cuで構
成された酸化物化合物である化学式B 1SrCaCu
20xが絶対温度105にと75事に超伝導転移をもつ
物質であることが報道された。
On January 22, 1988, chemical formula B 1SrCaCu is an oxide compound composed of Bi, Sr, Ca, and Cu.
It was reported that 20x is a material with an absolute temperature of 105 and a superconducting transition.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した物質は転移温度が異なる化合物(相)か共存(
あるいは混在)しているもので、高温転、移(105K
)相の化合物の同定は未解決である。この報道以後、絶
対温度が105Kを越える化合物組成についての知見は
報告されていない。
The above-mentioned substances are either compounds (phases) with different transition temperatures or coexist (
or mixed), high temperature transition, transfer (105K
) phase remains unresolved. Since this report, no findings regarding the composition of compounds whose absolute temperature exceeds 105K have been reported.

本発明は、エレクトロニクス応用に欠かせない絶対温度
105Kを越す超伝導転移温度を有するBi−5r−C
u−0化合物および高い超伝導転移温度を有する薄膜の
製造方法を提供することを目的とす〔課題を解決するた
めの手段] 本発明酸化物超伝導体は組成式Bi、SrvCawI:
uxo。
The present invention utilizes Bi-5r-C which has a superconducting transition temperature exceeding 105 K, which is essential for electronics applications.
An object of the present invention is to provide a method for producing a u-0 compound and a thin film having a high superconducting transition temperature [Means for Solving the Problems] The oxide superconductor of the present invention has the composition formula Bi, SrvCawI:
uxo.

で表され、u:V:W:Xの比が0.7〜1.1+1.
4〜3.1+0.85〜1.1:2であることを特徴と
する。
It is expressed as follows, and the ratio of u:V:W:X is 0.7 to 1.1+1.
It is characterized by a ratio of 4 to 3.1+0.85 to 1.1:2.

本発明製造方法は上述した酸化物超伝導体を、2500
Å以下の厚さで基板上に堆積することを特徴とする。
In the manufacturing method of the present invention, the above-mentioned oxide superconductor is
It is characterized by being deposited on a substrate to a thickness of Å or less.

さらに本発明製造方法は上述した酸化物超伝導体を25
00Å以下の厚さで基板上に堆積し、熱処理する工程を
複数回繰り返すことを特徴とする。
Furthermore, the manufacturing method of the present invention uses the above-mentioned oxide superconductor at 25
It is characterized by repeating the steps of depositing it on a substrate to a thickness of 00 Å or less and heat-treating it multiple times.

(作 用〕 ロ1−5r−Ca−Cu−0四元(酸素を含めると三元
)系酸化物で、Bi:Sr:Ca:Cu−0,7〜1.
1+1.4〜3.1+0.85〜1.1:2.0の比を
もつ化合物が絶対温度約1108で超伝導転移を示す新
物質であり、この転移温度を保った薄膜を形成するには
1回の堆積膜厚を2500Å以下とすることで実現でき
る。
(Function) Bi:Sr:Ca:Cu-0,7-1.
A compound with a ratio of 1+1.4 to 3.1+0.85 to 1.1:2.0 is a new material that exhibits a superconducting transition at an absolute temperature of about 1108, and it is necessary to form a thin film that maintains this transition temperature. This can be achieved by setting the thickness of the deposited film at one time to 2500 Å or less.

(実施例) 以下に図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

実施例1 電子ビーム蒸着法により金属Cu、Biおよびフッ化物
CaF2,5rFzの順に基板MgO(1(10)面上
にCu:[li:Ca:5r=2:1:1:1.5 に
なるように、Cu約90人、Bi約130人、CaF2
約 160人、SrF2約 520人を積層した。ただ
し、この膜厚は堆積中の膜厚計での指標で、実際の全膜
厚は775人であった。この積層膜を酸素中で約870
℃1時間熱処理をしてフッ化物を分解するとともに酸化
し、酸化物化合物薄膜とした。熱処理後の酸化膜をX線
蛍光分析法により組成分析をしたところ、各元素の比は
Cu:Bi:Ca:5r−2,0:1.08:1.08
:1.43であった。分析誤差は各元素に対して±10
96以下である。
Example 1 Metals Cu, Bi, and fluoride CaF2,5rFz are deposited on a substrate MgO (1(10) plane in the order of Cu:[li:Ca:5r=2:1:1:1.5) by electron beam evaporation. As such, Cu approximately 90 people, Bi approximately 130 people, CaF2
About 160 people and about 520 people of SrF2 were stacked. However, this film thickness was an index measured by a film thickness meter during deposition, and the actual total film thickness was 775. This laminated film was heated to approximately 870°C in oxygen.
C. for 1 hour to decompose and oxidize the fluoride to form an oxide compound thin film. When the composition of the oxide film after heat treatment was analyzed by X-ray fluorescence analysis, the ratio of each element was Cu:Bi:Ca:5r-2,0:1.08:1.08
:1.43. Analysis error is ±10 for each element
96 or less.

通常の四端子法によりこの酸化膜の電気抵抗の温度変化
を測定した結果を第1図に示す。約11[1にで電気抵
抗が急激に下がって、約100にで抵抗がゼロとなる超
伝導性を示している。この組成が110に転移温度をも
つ酸化物化合物であることは本発明者が見出したもので
ある。
FIG. 1 shows the results of measuring temperature changes in the electrical resistance of this oxide film using the usual four-terminal method. At about 11 [1], the electrical resistance drops rapidly, and at about 100, the resistance becomes zero, indicating superconductivity. The present inventor discovered that this composition is an oxide compound having a transition temperature of 110°C.

実施例2 電子ビーム蒸着により、金属Cu 、 B i 、フッ
化物のCaF2.SrF2の順に基板MgO(too)
面上にCu約170人、  Bi約 240人、CaF
2約 300人、SrF2約 9111人を積層堆積し
た。この厚みは膜厚計での換算であり、実際には全膜厚
は1993人であった。この積層膜を酸素中で約870
℃、1時間熱処理をし、フッ化物を分解させると同時に
酸化し、酸化物化合物とした。この酸化膜をX線蛍光分
析により組成分析をしたところ、Cu:Bi:Ca:5
r=2.O:0.94:0.88+1.4であった。分
析誤差は各元素に対して±10堀以内である。
Example 2 Metal Cu, B i , fluoride CaF2. Substrate MgO (too) in the order of SrF2
Approximately 170 Cu, 240 Bi, CaF on the surface
Approximately 300 layers of SrF2 and approximately 9111 layers of SrF2 were deposited. This thickness was calculated using a film thickness meter, and the actual total film thickness was 1,993 people. This laminated film was heated to approximately 870°C in oxygen.
C. for 1 hour to decompose and oxidize the fluoride to form an oxide compound. When this oxide film was analyzed for composition by X-ray fluorescence analysis, it was found that Cu:Bi:Ca:5
r=2. O:0.94:0.88+1.4. Analytical errors are within ±10 hogs for each element.

通常の四端子法でこの酸化膜の電気抵抗の温度変化を測
定した結果を第2図に示す。約110にで電気抵抗が急
激に低下しており、1101’1転移温度の超伝導体で
ある。但し、抵抗が約108に以下で据をひいて90に
で抵抗ゼロとなっていることが判った。
Figure 2 shows the results of measuring temperature changes in the electrical resistance of this oxide film using the usual four-terminal method. The electrical resistance decreases rapidly at about 110°C, making it a superconductor with a 1101'1 transition temperature. However, it was found that the resistance remained constant below about 108 and became zero at 90.

分析精度内で実施例1の酸化膜の組成とほぼ同じである
ことから、この電気抵抗の据ひきは膜厚の違いと云える
。すなわち実施例1に比へ全膜厚は約2.6倍になって
おり、この膜厚の違いが膜内の組成均一性を左右してい
る結果、電気抵抗の据びきを生じせしめている。この事
は実施例3て明らかとなったことでもある。
Since the composition is almost the same as that of the oxide film in Example 1 within the analysis accuracy, it can be said that this stagnation in electrical resistance is due to the difference in film thickness. In other words, the total film thickness is approximately 2.6 times that of Example 1, and this difference in film thickness affects the composition uniformity within the film, resulting in the electrical resistance remaining unchanged. . This fact was also made clear in Example 3.

実施例3 電子ビーム蒸着により、金属Cu、Bi、フッ化物Ca
F2.SrF2の1llt’t tZ Cu+Bi:C
a:5r−2:1.5 :1:lになるように、Cu約
 255人、Bi約 360人、CaF2約450人、
SrF2約1350人を積層堆積した。この厚さは堆積
中の膜厚計からの換算で、実際の全膜厚は2814人で
あった。この積層膜と酸素中で約870℃1時間熱処理
することで、フッ化物を分解させると同時に酸化物化合
物とした。X線蛍光分析による組成分析では、Cu:B
i:Ca:5r−2,0:0.93:!、11:148
てあり、分析誤差は各元素に対して±lO%以下である
Example 3 Metallic Cu, Bi, fluoride Ca by electron beam evaporation
F2. SrF2 1llt'tZ Cu+Bi:C
a:5r-2:1.5:1:l, about 255 Cu, about 360 Bi, about 450 CaF2,
Approximately 1,350 layers of SrF2 were deposited. This thickness was calculated from a film thickness meter during deposition, and the actual total film thickness was 2,814. This laminated film was heat-treated in oxygen at about 870° C. for 1 hour to decompose the fluoride and simultaneously convert it into an oxide compound. In composition analysis by X-ray fluorescence analysis, Cu:B
i:Ca:5r-2,0:0.93:! , 11:148
The analysis error is less than ±10% for each element.

通常の四端法でこの酸化膜の電気抵抗の温度変化を測定
した結果を第3図に示す。約110にで抵抗か急激に下
がるものの、約107に以下で抵抗が残存し、約60に
で抵抗がゼロとなる、二段の変化を示している。
FIG. 3 shows the results of measuring temperature changes in the electrical resistance of this oxide film using the usual four-edge method. Although the resistance drops sharply at about 110, resistance remains below about 107 and becomes zero at about 60, showing a two-step change.

組成分析の精度内でこの酸化膜の化合物は実施例1およ
び2の化合物と同しであることから、この二段の抵抗変
化、言い換えれば110Kにのみ超伝導転移を示す膜は
初期の堆積膜厚の違いによることに他ならない。すなわ
ち、実施例2の場合に比べCa濃度が測定精度(誤差±
1oft; )内であるが、膜厚は1.4倍厚い。
Since the compound of this oxide film is the same as the compounds of Examples 1 and 2 within the accuracy of compositional analysis, this two-step resistance change, in other words, the film showing superconducting transition only at 110K is an early deposited film. This is simply due to the difference in thickness. That is, compared to the case of Example 2, the Ca concentration has a lower measurement accuracy (error ±
), but the film thickness is 1.4 times thicker.

第4図に実施例1および実施例3で得られた酸化膜のX
線回折像を示す。曲線(a)は実施例1で得られた膜厚
775人の膜、曲線(b)は実施例3で得られた281
4人の1漠の回折図形である。第4図に示すように各試
料は同じパターンを示し、BfSr、、 5CaCu2
0X(xは不明)の酸化物化合物が基板上に配向してい
ることを示し、はぼ同一の構造か出来ている。しかし、
実施例3での厚い膜の場合には2θ=32°のピークが
僅かに現われ、これが電気抵抗の低温での据びきの原因
と云える。膜りが2500Å以下ではほぼ110に転移
温度の超伝導体となっていることが結論され、この事は
組成とともに本発明者らが見出したものである。
Figure 4 shows the X of the oxide films obtained in Example 1 and Example 3.
A line diffraction image is shown. Curve (a) shows the film thickness of 775 people obtained in Example 1, and curve (b) shows the film thickness of 281 people obtained in Example 3.
This is a diffraction pattern of four people. As shown in Figure 4, each sample shows the same pattern, BfSr, 5CaCu2
This shows that an oxide compound of 0X (x is unknown) is oriented on the substrate, and almost the same structure is formed. but,
In the case of the thick film in Example 3, a peak at 2θ=32° slightly appears, and this can be said to be the cause of the electrical resistance remaining unchanged at low temperatures. It was concluded that when the film thickness is 2500 Å or less, it becomes a superconductor with a transition temperature of approximately 110 Å, and this fact was discovered by the present inventors along with the composition.

実施例4 実施例2で行った積層堆積(初期膜厚1993人)をし
た後に同様に酸化熱処理を行い、約110にの超伝導転
移を確認した後、再び同じ組成になるように約2000
人のBio94Sr+、 40ca0.66Cu2. 
OOxを堆積し、やはり酸素中で870℃1時間酸化熱
処理を行った。
Example 4 After performing the layered deposition (initial film thickness of 1993) as in Example 2, oxidation heat treatment was performed in the same manner, and after confirming the superconducting transition to about 110, the layer was deposited to about 2000 to have the same composition again.
Human Bio94Sr+, 40ca0.66Cu2.
OOx was deposited, and oxidation heat treatment was performed at 870° C. for 1 hour in oxygen as well.

この酸化膜は約4000人の膜厚をもつ。通常の四端子
法て電気抵抗の温度変化を測定した結果を第5図に示す
。膜厚約2800人の実施例3では電気抵抗の温度変化
は二段になって約708で抵抗ゼロになったが、本実施
例のように2000人膜厚の堆積・熱処理を繰返して約
4000人の膜にしたときには、2500 A膜厚単層
の抵抗温度変化と大差なく、約110にで抵抗か急激に
低下して約95にで抵抗ゼロの超伝導体厚膜が得られた
。すなわち、2500Å以下の膜の堆積・熱処理を多数
回繰返すことによってより厚い110に転移温度をもつ
膜が得られる。
This oxide film has a thickness of about 4,000 people. Figure 5 shows the results of measuring the temperature change in electrical resistance using the usual four-terminal method. In Example 3 with a film thickness of about 2,800 people, the temperature change in electrical resistance was in two steps and reached zero resistance at about 708, but as in this example, repeating the deposition and heat treatment to a film thickness of 2,000 people resulted in a temperature change of about 4,000. When it was made into a human film, the resistance temperature change was not much different from that of a single layer with a thickness of 2500 A, but the resistance suddenly decreased at about 110 A, and a superconductor thick film with zero resistance was obtained at about 95 A. That is, by repeating the deposition and heat treatment of a film with a thickness of 2500 Å or less many times, a thicker film with a transition temperature of 110 can be obtained.

2500Å以下の膜厚であればよい事は実施例1〜3の
結果からも明らかで、薄い膜はど超伝導転移での電気抵
抗の据が小さいことから容易に判断できる。
It is clear from the results of Examples 1 to 3 that a film thickness of 2500 Å or less is sufficient, and it can be easily determined from the fact that the thinner the film, the smaller the electrical resistance at the superconducting transition.

実施例5 電子ビーム蒸着により金属Cu、Biおよびフッ化物C
uF2.SrF2の順に基板MgO(100)面上に堆
積した。膜厚は2006人であった。この膜を酸素中で
約870℃1時間熱処理して酸化物薄膜とした。四端子
法によって測定したこの膜の電気の温度変化を第6図に
示す。約110にで電気抵抗が急激に下がって、約10
8にて電気抵抗がゼロとなる超伝導性を示している。
Example 5 Metal Cu, Bi and fluoride C by electron beam evaporation
uF2. SrF2 was deposited on the MgO (100) surface of the substrate. The film thickness was 2006 people. This film was heat-treated in oxygen at about 870° C. for 1 hour to form an oxide thin film. Figure 6 shows the electrical temperature change of this film measured by the four-terminal method. At about 110, the electrical resistance suddenly decreases to about 10
8 shows superconductivity with zero electrical resistance.

本発明の酸化物超伝導体は Bil、 osr+、 5Ca1.0C112,001
1を中心組成とし、Bi、Sr。
The oxide superconductor of the present invention is Bil, osr+, 5Ca1.0C112,001
1 as the main composition, Bi, Sr.

CaおよびCuの原子比が、Cuを2とした時、Biが
0.7〜1.1.5rが1.4〜3.1.Caが0.8
5〜1.1 である。この組成範囲をはずれると、良好
な超伝導特性が得られない。
When the atomic ratio of Ca and Cu is 2 for Cu, 0.7 to 1.1.5 for Bi and 1.4 to 3.1. Ca is 0.8
5 to 1.1. If the composition is outside this range, good superconducting properties cannot be obtained.

実施例では、アルカリ土類元素の蒸発源としてCaF2
.SrF2を用いたが、金属Ca、Srでもよく、また
膜堆積法についても本発明は限定、あるいは制約される
ものではない。本発明においては、上述した組成の酸化
物を厚さ2500Å以下で基板上に堆積させ、または2
500Å以下の厚さの膜の堆積と熱処理とを繰返して酸
化物超伝導体膜を形成することによって、高い超伝導転
移温度を得ることができる。
In the example, CaF2 is used as an evaporation source of alkaline earth elements.
.. Although SrF2 is used, metallic Ca or Sr may also be used, and the present invention is not limited or restricted to the film deposition method. In the present invention, an oxide having the above-mentioned composition is deposited on a substrate to a thickness of 2500 Å or less, or
A high superconducting transition temperature can be obtained by forming an oxide superconductor film by repeatedly depositing a film with a thickness of 500 Å or less and heat treatment.

〔発明の効果] 以上説明したように、B1−5r−Ca−Cu−0回元
(酸素を含めると三元)系酸化物で、Bi:Sr:Ca
:Cu−,07〜1.1・1.4〜3.1:0.85〜
1.1:2.0の比をもつ化合物が絶対温度的110に
で超伝導転移を示す新物質であり、この転移温度を保っ
た薄膜を形成するには1回の堆積膜厚を2500Å以下
とすることで実現できる。この結果、液体窒素温度77
よりも30度以上転移温度が高いことから、この組成比
をもつ薄膜により77にで安定して動作する種々のエレ
クトロニクスデバイスが実現できる。
[Effect of the invention] As explained above, the B1-5r-Ca-Cu-0-component (ternary if oxygen is included) based oxide, Bi:Sr:Ca
:Cu-, 07~1.1・1.4~3.1:0.85~
A compound with a ratio of 1.1:2.0 is a new material that exhibits a superconducting transition at an absolute temperature of 110°C, and in order to form a thin film that maintains this transition temperature, the thickness of a single deposition must be 2500 Å or less. This can be achieved by doing this. As a result, the liquid nitrogen temperature was 77
Since the transition temperature is 30 degrees higher than that of 77°C, various electronic devices that operate stably at 77°C can be realized using thin films with this composition ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は初期膜厚775人の Bl 1. +)8sr+、 4.Ca+、 08cu
2. Oo、薄膜の電気抵抗の温度変化を示す特性図、 第2図は初期膜厚1993人の Bio、 94sr14ocao、 aaCu2. o
o。薄膜の電気抵抗の温度変化を示す特性図、 第3図は初期膜圧2814人の Bio955r1.48Ca1. l0cu2.00x
薄膜の電気抵抗の温度変化を示す特性図、 第4図は本発明による基板MgO上の B1−5r−Ca−Cu−0超伝導薄膜のX線回折図、
第5図は堆積と熱処理を繰返し行った膜厚約4000人
の薄膜の電気抵抗の温度変化を示す特性図、 第6図は月莫厚2006人の Bio、 92sr3. oaca+、 04CIJ2
. OOX薄膜の電気抵抗の温度変化を示す特性図であ
る。 特許出願人  日本電信電話株式会社
Figure 1 shows the initial film thickness of 775 people. +)8sr+, 4. Ca+, 08cu
2. Oo, a characteristic diagram showing the temperature change of electrical resistance of a thin film. Figure 2 shows an initial film thickness of 1993 Bio, 94sr14ocao, aaCu2. o
o. A characteristic diagram showing temperature changes in electrical resistance of a thin film. Figure 3 shows an initial film pressure of 2814 people Bio955r1.48Ca1. l0cu2.00x
FIG. 4 is an X-ray diffraction diagram of a B1-5r-Ca-Cu-0 superconducting thin film on a MgO substrate according to the present invention;
Figure 5 is a characteristic diagram showing the temperature change in electrical resistance of a thin film with a thickness of approximately 4,000 after repeated deposition and heat treatment. oaca+, 04CIJ2
.. FIG. 2 is a characteristic diagram showing temperature changes in electrical resistance of an OOX thin film. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1)組成式Bi_uSr_vCa_wCu_xO_yで
表され、u:v:w:xの比が0.7〜1.1:1.4
〜3.1:0.85〜1.1:2であることを特徴とす
る酸化物超伝導体。 2)請求項1に記載された酸化物超伝導体を、2500
Å以下の厚さで基板上に堆積することを特徴とする酸化
物超伝導体膜の製造方法。 3)請求項1に記載された酸化物超伝導体を2500Å
以下の厚さで基板上に堆積し、熱処理する工程を複数回
繰り返すことを特徴とする酸化物超伝導体膜の製造方法
[Claims] 1) It is represented by the compositional formula Bi_uSr_vCa_wCu_xO_y, and the ratio of u:v:w:x is 0.7 to 1.1:1.4.
An oxide superconductor characterized in that the ratio is 3.1:0.85 to 1.1:2. 2) The oxide superconductor according to claim 1 is
A method for producing an oxide superconductor film, characterized in that it is deposited on a substrate to a thickness of Å or less. 3) The oxide superconductor described in claim 1 has a thickness of 2500 Å.
A method for producing an oxide superconductor film, characterized by repeating the steps of depositing it on a substrate to a thickness below and heat-treating it multiple times.
JP63065871A 1988-03-22 1988-03-22 Method for producing oxide superconductor film Expired - Fee Related JP2635355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065871A JP2635355B2 (en) 1988-03-22 1988-03-22 Method for producing oxide superconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065871A JP2635355B2 (en) 1988-03-22 1988-03-22 Method for producing oxide superconductor film

Publications (2)

Publication Number Publication Date
JPH01239027A true JPH01239027A (en) 1989-09-25
JP2635355B2 JP2635355B2 (en) 1997-07-30

Family

ID=13299478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065871A Expired - Fee Related JP2635355B2 (en) 1988-03-22 1988-03-22 Method for producing oxide superconductor film

Country Status (1)

Country Link
JP (1) JP2635355B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054897A (en) * 1991-06-24 1993-01-14 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Bi-sr-ca-cu-o-based superconductor film and production thereof
JPH05254995A (en) * 1992-03-06 1993-10-05 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Multilayer film consisting of superconducting layer of bisrcacuo system and bismuth oxide insulating layer and its production
US6613855B1 (en) 1997-04-09 2003-09-02 Sanyo Chemical Industries, Ltd. Polymerizable resin, and cured resins, insulators, components of electrical appliances, and electrical appliances made by using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS=1988 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054897A (en) * 1991-06-24 1993-01-14 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Bi-sr-ca-cu-o-based superconductor film and production thereof
JPH05254995A (en) * 1992-03-06 1993-10-05 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Multilayer film consisting of superconducting layer of bisrcacuo system and bismuth oxide insulating layer and its production
US6613855B1 (en) 1997-04-09 2003-09-02 Sanyo Chemical Industries, Ltd. Polymerizable resin, and cured resins, insulators, components of electrical appliances, and electrical appliances made by using the same

Also Published As

Publication number Publication date
JP2635355B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
DE3855246T2 (en) Superconducting thin film and process for its production
Cheung et al. Superconductor-substrate interactions of the Y–Ba–Cu oxide
DE3877116T2 (en) BODY WITH SUPER-CONDUCTIVE OXIDE AND THEIR PRODUCTION PROCESS.
DE3889160T2 (en) Superconducting thin film and method to prepare it.
Rice et al. Preparation of superconducting thin films of calcium strontium bismuth copper oxides by coevaporation
DE69016283T2 (en) Substrate with a superconducting layer.
JPH01239027A (en) Oxide superconductor and production of film made thereof
DE68923325T2 (en) Josephson facility.
DE68925239T2 (en) Thin superconductor layer and method for its deposition
DE68907295T2 (en) Method for producing a bismuth-type superconducting thin film.
JPH0358488A (en) Planar josephson element and manufacturing method of the same
DE68921138T2 (en) Process for producing an oxide compound superconductor of the Bi-Sr-Ca-Cu system.
JPS61194786A (en) Heat treatment method of oxide superconductor thin-film
JPS63301424A (en) Manufacture of oxide superconductor membrane
US5439878A (en) Method for preparing copper oxide superconductor containing carbonate radicals
EP0333513B1 (en) Oxide superconductor
US5583096A (en) Superconductive compounds and process for producing said compounds
JPH07106896B2 (en) Superconductor
JPH01219023A (en) Production of thin superconductor film
JP3058515B2 (en) Superconducting Josephson device and its manufacturing method
JPH01290530A (en) Multiple oxides superconducting material and production thereof
JPH04270117A (en) Oxide superconductor material
JPH03118148A (en) Laminated body of oriented superconductive substance and metal
JPH01105416A (en) Manufacture of thin film superconductor
JPH03205308A (en) Production of oxide superconducting thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees