JPH0123800Y2 - - Google Patents
Info
- Publication number
- JPH0123800Y2 JPH0123800Y2 JP1981072729U JP7272981U JPH0123800Y2 JP H0123800 Y2 JPH0123800 Y2 JP H0123800Y2 JP 1981072729 U JP1981072729 U JP 1981072729U JP 7272981 U JP7272981 U JP 7272981U JP H0123800 Y2 JPH0123800 Y2 JP H0123800Y2
- Authority
- JP
- Japan
- Prior art keywords
- phenol foam
- heat
- separation layer
- fire
- special separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 33
- 239000006260 foam Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 29
- 238000000926 separation method Methods 0.000 claims description 17
- 229920005989 resin Polymers 0.000 claims description 15
- 239000011347 resin Substances 0.000 claims description 15
- 239000000835 fiber Substances 0.000 claims description 12
- 230000009970 fire resistant effect Effects 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 229910052742 iron Inorganic materials 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000010425 asbestos Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 229910052895 riebeckite Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000582 polyisocyanurate Polymers 0.000 description 2
- 239000011495 polyisocyanurate Substances 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 229920003987 resole Polymers 0.000 description 2
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 238000005829 trimerization reaction Methods 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
Landscapes
- Building Environments (AREA)
- Laminated Bodies (AREA)
Description
本考案は不燃性基材とフエノールフオームの一
体化を強化すると共に、フエノールフオームの脆
性、亀裂、および剥落を抑制した耐火、断熱パネ
ルに関する。
省エネルギー部材の普及と共に、断熱建材、特
に防火性と断熱性を具備した複合建材が提案され
ている。その主な構造としては不燃性基材上にフ
エノールフオームを一体に積層した複合板があ
る。しかしながら、この複合板においてはフエノ
ールフオーム自体の欠点が直接に複合板の物性に
現れるため、実用性に欠ける不利があつた。
本考案はこのような欠点を除去するため、不燃
性基材とフエノールフオーム間に特殊な分離層を
介在し、フエノールフオームの耐火断熱性を有効
に活用すると共に、弱点である脆性、亀裂発
生、接着力の低さ、圧縮性の弱さ、酸性、
を抑制した耐火、断熱性パネルを提案する。
以下に図面を用いて本考案に係る耐火、断熱性
パネル(以下、単にパネルという)の一実施例に
ついて詳細に説明する。第1図、および第2図は
上記パネルの代表例を示す説明図であり、1は不
燃性基材で金属製板(鉄、アルミニウム、銅)か
らなり、主に表面材、化粧材、裏面材として機能
する。なお、その断面形状は任意である。2は特
殊分離層で不燃性基材1の背面1aに薄く積層一
体化するものであり、主にクツシヨン材、不燃性
基材1とフエノールフオーム6の接着力強化材、
隔離材、高熱下における寸法変形、亀裂のない断
熱層、およびフエノールフオーム6の補強材とし
て役立つものである。この特殊分離層2は弾性と
接着性、および耐火性を有する樹脂分3と補強材
としての不燃性繊維4、無機質多孔粒5の1種以
上を分布したものである。上記樹脂分3としては
イソシアヌレート樹脂であり、上記不燃性繊維4
としては短繊維状からなるアスベスト繊維、ロツ
クウール繊維、ガラス繊維等からなる。無機質多
孔粒5としてはパーライト粒、シラスバルーン、
焼成バーミキユライト等であり、粒径は1mm〜5
mm位のものである。さらに説明すると、特殊分離
層2は不燃性繊維4、無機質多孔粒5の一部が樹
脂分3より突出した状態で不燃性基材1の背面1
aに積層するものである。これはフエノールフオ
ーム6と不燃性基材1とを樹脂分3の持つ接着性
によつて一体化すると共に、樹脂分3より突出し
た不燃性繊維4、無機質多孔粒5がフエノールフ
オーム6にくい込み、特殊分離層2とフエノール
フオーム6の接着面積を増加させると共に、アン
カー効果により一体化を強化するためである。さ
らに、不燃性繊維4、無機質多孔粒5の一部がフ
エノールフオーム6にくい込むため、フエノール
フオーム6の脆性改善にも寄与するものである。
また不燃性繊維4、無機質多孔粒5はパネルが高
熱下にさらされた際に、樹脂分3およびフエノー
ルフオーム6が炭化層に変化する時の骨格とな
り、亀裂、寸法変形を阻止する機能を果たすもの
である。また、特殊分離層2はフエノールフオー
ム6と不燃性基材1を隔離しているため、フエノ
ールフオーム6の酸性成分が不燃性基材1に接触
するのを防止し、不燃性基材1の腐食、発錆を阻
止する機能も果たすものである。6はフエノール
フオームで、レゾールタイプの液状の樹脂原料を
現場発泡的に発泡させ、所定のフオームを形成す
るものである。7はシート状物でフエノールフオ
ーム6原料の延展を行うと共に、離型部材として
機能するものである。このシート状物7としては
金属箔(アルミニウム、銅、鉛、鉄)、不燃性不
織布、アスベスト紙、石膏紙、クラフト紙、合成
樹脂フイルム等の1種、もしくは2種以上をラミ
ネートしたものである。
次に耐火、断熱性パネルの製造法につき説明す
る。まず、不燃性基材1としては、表、裏面が平
坦な0.27mmの着色亜鉛鉄板、樹脂分3としては低
発泡性のポリイソシアヌレート樹脂、例えばイソ
シアネート成分としてミリオネートMR−100(日
本ポリウレタン社製)189重量部、ポリオールと
しては官能基数4、分子量498、OHVが498、当
量比498の原料を111重量部、適量の三量化触媒と
を約1〜4倍に発泡するように設定したものであ
る。また、不燃性繊維4は長さ3mmのガラス繊維
を10重量部とする。さらに、フエノールフオーム
6の原料としては、レゾールタイプの樹脂で、粘
度が1800CPS/20℃、不揮発分73〜85%、遊離フ
エノール4.6%、遊離フオルマリン0.1%、水分7
〜8%、比重1.1〜1.3(20℃)のものである。な
お、上記フエノールフオーム6原料には整泡剤と
してシリコーン系、例えばTween80(商品名、第
一工業製薬社製)を2重量部、発泡剤としてはフ
レオン11とフレオン113を50/50の割合で混
合したものを20重量部、硬化剤としてはパラトル
エンスルホン酸と燐酸混合水溶液を25重量部用意
した。シート状物7としてはアルミニウム箔(厚
さ0.1mm)にアスベスト紙(厚さ0.1mm)をラミネ
ートしたシート状物である。そこで、まず着色亜
鉛鉄板1を60℃に加温し、その背面1aにガラス
繊維とポリイソシアヌレート樹脂と混合した特殊
分離層2原料とを平均に吐出し、ガラス繊維が植
毛のようにランダム状態に突出した表面であり、
かつ厚さを1mm位に形成する。なお、この特殊分
離層2の発泡倍率は2倍、密度100Kg/m3であつ
た。次に、この特殊分離層2の表面に前記したフ
エノールフオーム6の原料を吐出し、その上にシ
ート状物7を積層し、ローラ等(図示せず)の延
展装置を介して延展した後にキユアオーブン(図
示せず)に送給し、約2分間キユアした後に取り
出した。このパネルのフオーム密度は50Kg/m3、
総厚さ20mmであつた。
次にこの耐火、断熱性パネルの難燃性をJIS−
A−1321の表面試験により特殊分離層2の介在さ
れていないパネルと比較した。その結果は次のよ
うであつた。
The present invention relates to a fire-resistant and heat-insulating panel that strengthens the integration of a noncombustible base material and phenol foam, and suppresses brittleness, cracking, and peeling of the phenol foam. BACKGROUND ART With the spread of energy-saving materials, heat-insulating building materials, particularly composite building materials with fire-retardant and heat-insulating properties, have been proposed. Its main structure is a composite plate in which phenol foam is integrally laminated on a noncombustible base material. However, in this composite plate, the drawbacks of the phenol foam itself directly appear in the physical properties of the composite plate, so there was a disadvantage that it lacked practicality. In order to eliminate these drawbacks, the present invention interposes a special separation layer between the non-combustible base material and the phenol foam, effectively utilizing the fire-resistant and heat-insulating properties of the phenol foam, while also eliminating the weak points of brittleness, cracking, and Low adhesive strength, weak compressibility, acidity,
We propose a fire-resistant and heat-insulating panel that suppresses DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a fire-resistant and heat-insulating panel (hereinafter simply referred to as a panel) according to the present invention will be described in detail below with reference to the drawings. Figures 1 and 2 are explanatory diagrams showing typical examples of the above-mentioned panels. 1 is a noncombustible base material made of metal plates (iron, aluminum, copper), and mainly consists of a surface material, a decorative material, and a back surface. Functions as a material. Note that the cross-sectional shape is arbitrary. 2 is a special separation layer that is thinly laminated and integrated on the back surface 1a of the non-combustible base material 1, and mainly serves as a cushion material, an adhesive strengthening material between the non-combustible base material 1 and the phenol foam 6,
It serves as an insulating material, a heat insulating layer that does not undergo dimensional deformation under high heat, does not crack, and as a reinforcing material for the phenolic foam 6. This special separation layer 2 has at least one type of resin component 3 having elasticity, adhesiveness and fire resistance, non-combustible fibers 4 as reinforcing materials, and inorganic porous particles 5 distributed therein. The resin component 3 is an isocyanurate resin, and the nonflammable fiber 4
It consists of short fibrous asbestos fibers, rock wool fibers, glass fibers, etc. The inorganic porous particles 5 include pearlite particles, shirasu balloons,
It is calcined vermiculite, etc., and the particle size is 1 mm to 5 mm.
It is about mm. To explain further, the special separation layer 2 is formed on the back surface of the noncombustible base material 1 with nonflammable fibers 4 and part of the inorganic porous particles 5 protruding from the resin component 3.
It is to be laminated on a. This integrates the phenol foam 6 and the non-flammable base material 1 through the adhesiveness of the resin component 3, and the non-flammable fibers 4 and inorganic porous particles 5 that protrude from the resin component 3 are embedded into the phenol foam 6. This is to increase the adhesion area between the special separation layer 2 and the phenol foam 6, and to strengthen the integration through the anchor effect. Furthermore, since a portion of the noncombustible fibers 4 and the inorganic porous particles 5 are embedded in the phenol foam 6, it also contributes to improving the brittleness of the phenol foam 6.
In addition, the noncombustible fibers 4 and inorganic porous particles 5 serve as a skeleton when the resin component 3 and phenol foam 6 change into a carbonized layer when the panel is exposed to high heat, and serve to prevent cracks and dimensional deformation. It is something. In addition, since the special separation layer 2 separates the phenol foam 6 and the non-flammable base material 1, it prevents the acidic components of the phenol foam 6 from coming into contact with the non-flammable base material 1, thereby preventing corrosion of the non-flammable base material 1. It also has the function of preventing rust. Reference numeral 6 is a phenol foam, which is formed by foaming a resol type liquid resin raw material in an in-situ foaming manner to form a predetermined foam. 7 is a sheet-like material that spreads the phenol foam 6 raw material and also functions as a mold release member. The sheet material 7 is laminated with one or more of metal foil (aluminum, copper, lead, iron), non-flammable nonwoven fabric, asbestos paper, gypsum paper, kraft paper, synthetic resin film, etc. . Next, a method for manufacturing the fireproof and heat-insulating panel will be explained. First, the nonflammable base material 1 is a 0.27 mm colored galvanized iron plate with flat front and back surfaces, and the resin component 3 is a low-foaming polyisocyanurate resin, such as Millionate MR-100 (manufactured by Nippon Polyurethane Co., Ltd.) as the isocyanate component. ) 189 parts by weight, the polyol has a functional group number of 4, a molecular weight of 498, an OHV of 498, and an equivalent ratio of 498. 111 parts by weight of the raw material and an appropriate amount of trimerization catalyst are set to foam approximately 1 to 4 times. be. In addition, the nonflammable fiber 4 is made of glass fiber having a length of 3 mm and contains 10 parts by weight. Furthermore, the raw material for Phenol Form 6 is a resol type resin with a viscosity of 1800 CPS/20°C, non-volatile content 73-85%, free phenol 4.6%, free formalin 0.1%, and moisture 7.
-8%, specific gravity 1.1-1.3 (20°C). In addition, the above-mentioned Phenol Foam 6 raw material contains 2 parts by weight of a silicone type such as Tween 80 (trade name, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) as a foam stabilizer, and Freon 11 and Freon 113 in a 50/50 ratio as foaming agents. 20 parts by weight of the mixture and 25 parts by weight of a mixed aqueous solution of para-toluenesulfonic acid and phosphoric acid as a curing agent were prepared. The sheet-like material 7 is a sheet-like material made by laminating asbestos paper (thickness: 0.1 mm) onto aluminum foil (thickness: 0.1 mm). Therefore, first, the colored galvanized iron plate 1 is heated to 60°C, and the special separation layer 2 raw material mixed with glass fibers and polyisocyanurate resin is uniformly discharged onto the back side 1a of the plate 1, so that the glass fibers are in a random state like flocking. It has a prominent surface,
And the thickness is about 1mm. The foaming ratio of this special separation layer 2 was 2 times, and the density was 100 kg/m 3 . Next, the above-mentioned raw material for the phenol foam 6 is discharged onto the surface of the special separation layer 2 , and the sheet-like material 7 is laminated thereon, and after being spread through a spreading device such as a roller (not shown), the material is placed in a cure oven. (not shown) and was cured for about 2 minutes before being removed. The form density of this panel is 50Kg/m 3 ,
The total thickness was 20mm. Next, the flame retardance of this fire-resistant and heat-insulating panel was determined by JIS-
The surface of A-1321 was tested and compared with a panel without special separation layer 2 . The results were as follows.
【表】【table】
【表】
(イ),(ロ)における差は特殊分離層2の添加材が(イ)
はガラス繊維、(ロ)は3mmφのパーライト粒であ
り、分布量は(イ)と同じである。なお、(ハ)は試験に
合格しているが、試験後に着色亜鉛鉄板1を剥離
してフエノールフオーム6を観察したところ、大
きな亀裂が不規則に多数形成されていた。なお、
この亀裂は上記試験の判定においてはフエノール
フオーム6の上層に表面材(着色亜鉛鉄板)が存
在するため、上記亀裂は判定の際に観察されない
ものである。これに対し、実施例1,2において
は、特殊分離層2の樹脂分3、フエノールフオー
ム6の特殊分離層2付近は炭化しているものの、
不燃性繊維4として用いたガラス繊維、無機質多
孔粒5であるパーライト粒が両炭化層にくい込
み、骨格となつて大きな亀裂がなく、小さい亀裂
が僅かに存在していたにすぎなかつた。また、不
燃性基材1である着色亜鉛鉄板とフエノールフオ
ーム6の接着強度を測定したところ、実施例1,
2では特殊分離層2とフエノールフオーム6の接
着強度は、2100g、1900gであつた。これに対
し、比較例は1000gであつた。なお、測定法とし
ては、不燃性基材1として用いた着色亜鉛鉄板の
1角に、フエノールフオーム6の原料吐出前に5
mmφの貫通孔を穿設しておき、その表面にテープ
で孔を封じてフオーム原料を吐出し、製品化され
た後に、耐火、断熱性パネルを水平に固定し、ば
ね秤のフツクを引つ掛けて垂直に引つ張り、着色
亜鉛鉄板がフエノールフオーム6から剥離したと
きの数値を強度としたものである。
以上説明したのは本考案に係る耐火、断熱性パ
ネルの一実施例にすぎず、例えば第3図に示すよ
うに特殊分離層2に不燃性繊維4、無機質多孔粒
5を一緒に混合させることもできる。
上述したように本考案に係る耐火、断熱性パネ
ルによれば、フエノールフオームの特性である耐
火、耐熱性を十分に発揮させ得る特徴がある。ま
た、フエノールフオームの弱点である低接着力、
圧縮性の弱さ、酸性による発錆、高熱下における
亀裂の発生を大幅に抑制できる特徴がある。[Table] The difference between (a) and (b) is that the additive material of special separation layer 2 is (a)
are glass fibers, (b) are pearlite grains with a diameter of 3 mm, and the distribution amount is the same as (a). Note that (c) passed the test, but when the colored galvanized iron plate 1 was peeled off after the test and the phenol foam 6 was observed, it was found that many large cracks were irregularly formed. In addition,
This crack is not observed in the judgment of the above test because the surface material (colored galvanized iron plate) is present in the upper layer of the phenol foam 6. On the other hand, in Examples 1 and 2, although the resin portion 3 of the special separation layer 2 and the phenol foam 6 near the special separation layer 2 were carbonized,
The glass fiber used as the noncombustible fiber 4 and the pearlite grains as the inorganic porous grains 5 were embedded in both carbonized layers and formed a skeleton, with no large cracks and only a few small cracks. In addition, when the adhesive strength of the colored galvanized iron plate, which is the noncombustible base material 1, and the phenol foam 6 was measured, it was found that Example 1,
In No. 2, the adhesive strength between special separation layer 2 and phenol foam 6 was 2100 g and 1900 g. On the other hand, the weight of the comparative example was 1000g. In addition, as a measurement method, before discharging the raw material of phenol foam 6, 5
A through hole of mmφ is drilled, the hole is sealed with tape on the surface, and the foam material is discharged. After the product is manufactured, the fireproof and heat insulating panel is fixed horizontally and the hook of the spring scale is pulled. The strength is defined as the value when the colored galvanized iron plate is peeled off from the phenol foam 6 by stretching it vertically. What has been described above is only one embodiment of the fire-resistant and heat-insulating panel according to the present invention. For example, as shown in FIG. You can also do it. As described above, the fire-resistant and heat-insulating panel according to the present invention has the feature of fully exhibiting the fire-resistant and heat-resistant properties of phenol foam. In addition, the weak adhesive strength of phenol foam,
It has the characteristics of being able to significantly suppress weak compressibility, rusting due to acidity, and cracking under high heat.
第1図、第2図は本考案に係る耐火、断熱性パ
ネルの一実施例を示す説明図、第3図はその他の
実施例を示す説明図である。
1……不燃性基材、2……特殊分離層、5……
無機質多孔粒、6……フエノールフオーム。
FIGS. 1 and 2 are explanatory diagrams showing one embodiment of the fireproof and heat-insulating panel according to the present invention, and FIG. 3 is an explanatory diagram showing another embodiment. 1...Nonflammable base material, 2 ...Special separation layer, 5...
Inorganic porous grain, 6...phenol form.
Claims (1)
層を介在させた耐火、断熱性パネルにおいて、上
記特殊分離層としてイソシアヌレート樹脂に不燃
性繊維、無機質多孔粒の1種以上を添加、混合
し、かつ、不燃性繊維、無機質多孔粒の一部をイ
ソシアヌレート樹脂より突出させた状態のものと
したことを特徴とする耐火、断熱性パネル。 In a fire-resistant, heat-insulating panel in which a special separation layer is interposed between a non-combustible base material and phenol foam, one or more of non-combustible fibers and inorganic porous particles are added and mixed with isocyanurate resin as the special separation layer, and A fire-resistant and heat-insulating panel characterized by having noncombustible fibers and inorganic porous particles partially protruding from an isocyanurate resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981072729U JPH0123800Y2 (en) | 1981-05-19 | 1981-05-19 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981072729U JPH0123800Y2 (en) | 1981-05-19 | 1981-05-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57185535U JPS57185535U (en) | 1982-11-25 |
JPH0123800Y2 true JPH0123800Y2 (en) | 1989-07-20 |
Family
ID=29868511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981072729U Expired JPH0123800Y2 (en) | 1981-05-19 | 1981-05-19 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0123800Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6041410U (en) * | 1983-08-30 | 1985-03-23 | 株式会社アイジ−技術研究所 | Insulated panels with fire retardant properties |
JPS61172728A (en) * | 1985-01-28 | 1986-08-04 | 群栄化学工業株式会社 | Manufacture of metallic siding board |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5563255A (en) * | 1978-11-06 | 1980-05-13 | Mitsui Petrochemical Ind | Phenol resin foam laminated board |
JPS5592451A (en) * | 1978-12-28 | 1980-07-12 | Takashi Ishikawa | Building panel and production of same |
-
1981
- 1981-05-19 JP JP1981072729U patent/JPH0123800Y2/ja not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5563255A (en) * | 1978-11-06 | 1980-05-13 | Mitsui Petrochemical Ind | Phenol resin foam laminated board |
JPS5592451A (en) * | 1978-12-28 | 1980-07-12 | Takashi Ishikawa | Building panel and production of same |
Also Published As
Publication number | Publication date |
---|---|
JPS57185535U (en) | 1982-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4024310A (en) | Laminates | |
CA1155748A (en) | Foamed plastics laminates | |
FI72078B (en) | ELDFAST LAMINARAD MASTIC PRODUCT | |
JPH0123800Y2 (en) | ||
JPH0882021A (en) | Heat insulating panel and manufacture thereof | |
JP4105784B2 (en) | Sound absorbing plate and manufacturing method thereof | |
JP2838982B2 (en) | Fireproof panel | |
JPH0126432Y2 (en) | ||
JPH0882020A (en) | Manufacture of heat insulating panel | |
JP2678058B2 (en) | Fireproof composite panel | |
JPS6140523Y2 (en) | ||
JPS6116119Y2 (en) | ||
JPH02273232A (en) | Fire-resistant composite panel | |
JPS627473Y2 (en) | ||
JPS6229521Y2 (en) | ||
JPS634722Y2 (en) | ||
JPH0820086A (en) | Heat insulating panel and production thereof | |
JPH0123801Y2 (en) | ||
JP3161975B2 (en) | Non-combustible decorative board | |
JPH0115376B2 (en) | ||
JP3865897B2 (en) | Fireproof ground plate | |
JPH0115378B2 (en) | ||
JPS627474Y2 (en) | ||
JPS6232846Y2 (en) | ||
JPS6127410Y2 (en) |