JPH01237080A - Manufacture of resistance welded steel tube - Google Patents

Manufacture of resistance welded steel tube

Info

Publication number
JPH01237080A
JPH01237080A JP6057288A JP6057288A JPH01237080A JP H01237080 A JPH01237080 A JP H01237080A JP 6057288 A JP6057288 A JP 6057288A JP 6057288 A JP6057288 A JP 6057288A JP H01237080 A JPH01237080 A JP H01237080A
Authority
JP
Japan
Prior art keywords
flux
side edges
steel
welding
resistance welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6057288A
Other languages
Japanese (ja)
Inventor
Yuji Hashimoto
裕二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6057288A priority Critical patent/JPH01237080A/en
Publication of JPH01237080A publication Critical patent/JPH01237080A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title resistance welded steel tube having a seam part with few weld defects by manufacturing the tube while adding flux to both side edges in the course getting to squeeze rolls from the feeding position of a tube stock formed by bending a steel strip. CONSTITUTION:The streel strip fed continuously is bent so that both side edges Sa and Sb in its width direction are opposed mutually and formed to the tube stock. A nozzle 4 to add the flux to both side edges Sa and Sb in the course up to a V convergent point, O1 from a feeding part 1 is then arranged and the flux is supplied by the prescribed quantity from a flux adding device 5.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、T4縫鋼管の製造方法に係り、特に電縫溶接
における溶接欠陥の発生を防止するのに好適な製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of manufacturing a T4 sewn steel pipe, and particularly to a manufacturing method suitable for preventing the occurrence of weld defects during electric resistance welding.

〈従来の技術〉 電縫鋼管の一般的な!!8!I5a過程は、第3図に模
式的に示すように、両側縁部が相対向するフォーミング
ロール(図示せず)にて断面形状がC形に湾曲された鋼
帯Sは、例えばワークコイルまたはコンタクトチップな
どの給電位置を経てその両側縁部s a 、  S b
が加熱されつつスクイズロール2に送り込まれ、このス
クイズロール2において側圧が加えられていわゆるVシ
ェープが形成され、溶融状態になった両側縁部Sa、S
b同士が衝合4懺 接されて鋼管Pが製造される。
<Conventional technology> General use of ERW steel pipes! ! 8! In the I5a process, as schematically shown in FIG. 3, the steel strip S, which has been curved into a C-shaped cross section by forming rolls (not shown) with opposite side edges, is formed into a work coil or a contact, for example. After passing through the power supply position of the chip etc., its both side edges S a , S b
is fed into the squeeze roll 2 while being heated, and side pressure is applied in the squeeze roll 2 to form a so-called V shape, and both side edges Sa and S are in a molten state.
The steel pipes P are manufactured by abutting and contacting each other.

前記給電部1からスクイズロール2の中心位置0□に至
る直前で、両側縁部Sa、Sbが相互に接触する■シェ
ープの交点位置即ち■収束点0、に向けて溶接電流10
が、表皮効果ならびに近接効果によって一方の側縁部S
aから点線経路に沿って流れてもう一方の側縁部sbに
到達する間に、この溶接電流10によって両側縁部Sa
、Sbが加熱・溶融されて衝合溶接される。
Immediately before reaching the center position 0□ of the squeeze roll 2 from the power supply part 1, a welding current of 10 is applied toward the intersection position of the ■shape, that is, ■convergence point 0, where both side edges Sa and Sb contact each other.
However, due to the skin effect and proximity effect, one side edge S
While flowing from a to the dotted line path and reaching the other side edge sb, this welding current 10 causes the both side edges Sa
, Sb are heated and melted and butt welded.

〈発明が解決しようとする課題〉 しかしながら、上記の製造方法を用いて例えばス、テン
レス鋼などのように表面張力や粘性の太きい?8鋼の発
生し易い鋼種を衝合溶接する場合は、側縁部に生成した
溶鋼が外部に押し出されにくく、第4図に拡大して示す
ように、溶鋼3が凝集して両側縁部Sa、Sbが短絡さ
れて、点線経路で示すように溶接部tXi oの大部分
が分流して真の溶接施工点であるV収束点OIに十分な
熱が与えられず、いわゆる冷接欠陥といわれる溶接欠陥
を生じる原因となっている。
<Problems to be Solved by the Invention> However, if the above manufacturing method is used to produce materials with high surface tension and viscosity, such as steel and stainless steel, for example When butt welding steel types that are susceptible to Sa 8 steel, the molten steel generated on the side edges is difficult to be pushed out, and as shown in an enlarged view in Fig. 4, the molten steel 3 aggregates and forms on both side edges Sa. , Sb is short-circuited, and as shown by the dotted line path, most of the welding part tXio is shunted, and sufficient heat is not given to the V convergence point OI, which is the true welding point, resulting in a so-called cold welding defect. This causes welding defects.

また、両側縁部Sa、Sbの間を短絡する溶鋼3は、こ
の分流電流によりスパークして溶断されてスパッタが発
生する原因ともなっている。
Further, the molten steel 3 short-circuited between the side edge portions Sa and Sb is sparked and fused by this shunt current, causing spatter to occur.

さらに、衝合溶接時に溶鋼が外部に押し出されにくいた
め、酸化された溶!1il(酸化物)が溶接部に残留し
、いわゆるベネトレータ欠陥の原因となっている。
Furthermore, since molten steel is difficult to be pushed out during butt welding, oxidized molten steel is removed! 1il (oxide) remains in the weld and causes so-called Venetrator defects.

このような問題点を改善するために、給電部1からV収
束点OIに至る間で、両側縁部Sa、Sbで形成される
Vシェーブの角度を大きくすることにより溶鋼の両側縁
部における短絡現象を減少させる策などがとられてきた
例もあるが、この方法は若干の効果はあるものの十分な
対策ではなかった。
In order to improve this problem, by increasing the angle of the V-shape formed by both side edges Sa and Sb from the power supply part 1 to the V convergence point OI, short circuits at both side edges of molten steel are avoided. In some cases, measures have been taken to reduce the phenomenon, but although these methods have some effect, they are not sufficient countermeasures.

本発明は、上記のような課題を解決すべくなされたもの
であって、溶鋼により発生する溶接欠陥やスパッタを防
止するのに好適な電縫鋼管の溶接方法を提供することを
目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a welding method for electric resistance welded steel pipes suitable for preventing welding defects and spatter caused by molten steel.

く!!I題を解決するための手段〉 本発明者は、ステンレス調のような溶鋼の表面張力や粘
性の大きい鋼種においては、■シェープの加熱部に塩基
度の小さいフラックスを添加すれば効果のあることを見
出し、この知見に基づいて本発明を完成させるに至った
Ku! ! Means for Solving Problem I> The present inventor has found that for steel types such as stainless steel, where the surface tension and viscosity of molten steel are large, it is effective to add a flux with a low basicity to the heated part of the shape. The present invention was completed based on this finding.

すなわち、本発明は、連続的に送り込まれる鋼帯を、そ
の幅方向の両側縁部が相対向するように湾曲させて素管
に成形した後、前記両側縁部側に溶接電流を印加して加
熱溶融させつつ衝合溶接する電縫鋼管の製造方法におい
て、前記両側縁部に対する給電位置からスクイズロール
に至る間でフラックスを前記両側縁部に添加しながら造
管するこ、とを特徴とする電縫鋼管の製造方法である。
That is, in the present invention, a continuously fed steel strip is formed into a blank pipe by curving the steel strip so that both edges in the width direction face each other, and then a welding current is applied to the both edges. A method for manufacturing an electric resistance welded steel pipe in which the pipe is butt welded while being heated and melted, characterized by forming the pipe while adding flux to the both side edges from the power supply position to the squeeze roll. This is a method for manufacturing ERW steel pipes.

以下に、本発明の具体的構成について図面を参照して説
明する。
The specific configuration of the present invention will be explained below with reference to the drawings.

第1図は、本発明方法に係る実施例を模式的に示す平面
図である6図中、従来例と同一部材は、同一符号を付し
て説明を省略する。
FIG. 1 is a plan view schematically showing an embodiment of the method of the present invention. In FIG. 6, the same members as those in the conventional example are given the same reference numerals and explanations are omitted.

図に示すように、給電位置からV収束点o1までの間で
フラックスを両側縁部Sa、Sbに添加するノズル4を
配置し、フラックス添加装置5からフラックスを供給す
るようにする。
As shown in the figure, a nozzle 4 for adding flux to both side edges Sa and Sb is arranged between the power feeding position and the V convergence point o1, and the flux is supplied from a flux adding device 5.

このノズル4の材質としては、溶鋼3の高温に十分耐え
得る耐熱性を存し、かつ絶縁性を有することなどが好ま
しく、例えばセラミックスが用いられる。
The material of this nozzle 4 is preferably heat resistant enough to withstand the high temperature of the molten steel 3 and has insulating properties, such as ceramics.

このような装置を構成して、電縫溶接時に■シェーブの
両側縁部Sa、Sbにフラックスを所定量ずつ添加する
のである。
Such a device is configured to add a predetermined amount of flux to both side edges Sa and Sb of the shaver during electric resistance welding.

なお、■シェープの両側縁部Sa、Sbに添加されたフ
ラックスをそのままにしておくと、スクイズロール2の
周辺に散乱して堆積し、環境衛生上好ましくなく、また
スクイズロール2に噛み込まれて鋼管Pに凹み疵を生じ
る原因になるので、フラックス除去装置を設けるのが望
ましい。
Note that if the flux added to both side edges Sa and Sb of the shape is left as is, it will scatter and accumulate around the squeeze roll 2, which is unfavorable in terms of environmental hygiene, and it will also get caught in the squeeze roll 2. It is desirable to provide a flux removal device since this may cause dents in the steel pipe P.

〈作 用〉 以下に、本発明の作用について説明する。<For production> The operation of the present invention will be explained below.

一般に、フラックスの塩基度(以下、単にB。Generally, basicity of flux (hereinafter simply referred to as B).

という)は下記(1)式で表される。) is expressed by the following formula (1).

B L −6,31N 5iJ−4,97N Ti1t
−0,2N /UtOs + 4.8 NMn0+4.
0 NMgO+6.05(NCaO+NCaFz)・−
・−・・・・−・−・−・−・・・・−・・・・−・・
・・・−・・・・−・・−・・・(1)ここで、N;モ
ル分率 本発明者は、フラックスのB、と溶接欠陥発生率の関係
を調べるために、下記のような実験を行った。
B L -6,31N 5iJ-4,97N Ti1t
-0,2N/UtOs + 4.8 NMn0+4.
0 NMgO+6.05(NCaO+NCaFz)・-
・−・・−・−・−・−・・・・−・・・・−・・
・・・-・・・・・・・・・・・・-・・・(1) Here, N: molar fraction The present inventor conducted the following research in order to investigate the relationship between B of flux and welding defect incidence rate. We conducted an experiment.

BLが−0,8〜5.0のフラックスを用いて、電縫溶
接時に■シュー1部にフラックスを約500g/sin
ずつ添加し、板厚3I!11の5jlS304の調帯を
造管速度30m/m111で衝合溶接した。そのときの
フラックスのB、値と溶接欠陥発生率との関係を第2図
に示した。ここで、溶接欠陥発生率とは、造管本数に対
する溶接欠陥発生個数を百分率で表したものである。
Using a flux with a BL of -0.8 to 5.0, apply approximately 500 g/sin of flux to one part of the shoe during electric resistance welding.
Add each layer to a plate thickness of 3I! 11 5jlS304 belts were butt welded at a tube making speed of 30 m/m111. The relationship between the B value of the flux and the incidence of welding defects at that time is shown in FIG. Here, the welding defect occurrence rate is the number of welding defects occurring as a percentage of the number of pipes produced.

図かられかるように、BL値が2.0を超えると溶鋼の
両側縁部で短絡現象が生じて溶接欠陥が発生し易い、こ
のことは、5OS304の溶鋼の粘性9表面張力が大き
いことから溶鋼が凝集するためと考えられ、フラックス
の添加効果がないことを示している。また、BL値が−
0,5〜2.0の範囲での溶接欠陥発生率は0.1%以
下であり、両側縁部で短絡現象が生じていない。これは
、フラックスを添加したことにより、溶鋼の粘性2表面
張力が低下したためと考えられる。さらに、B、値が−
0,5未満では溶接金属部の酸素濃度が高くなって、溶
接シーム部の材質が劣化して溶接欠陥発生率が高くなる
As can be seen from the figure, when the BL value exceeds 2.0, a short circuit phenomenon occurs on both side edges of the molten steel and welding defects are likely to occur.This is because the viscosity 9 surface tension of the molten steel of 5OS304 is large. This is thought to be due to agglomeration of molten steel, indicating that the addition of flux has no effect. Also, the BL value is -
The welding defect occurrence rate in the range of 0.5 to 2.0 is 0.1% or less, and no short circuit phenomenon occurs at both side edges. This is considered to be because the addition of flux lowered the viscous 2 surface tension of the molten steel. Furthermore, B, the value is -
If it is less than 0.5, the oxygen concentration in the weld metal part becomes high, the material quality of the weld seam part deteriorates, and the weld defect occurrence rate increases.

したがって、溶接欠陥の発生がなく、かつ溶接シーム部
の材質を劣化させないためには、BL(+ffを−0,
5〜2.0の範囲内にする必要がある。
Therefore, in order to prevent welding defects from occurring and to prevent deterioration of the material of the weld seam, it is necessary to set BL (+ff to −0,
It needs to be within the range of 5 to 2.0.

上記適正範囲を満足する添加するフラックスの好適な代
表組成の一例を第1表に示す。
Table 1 shows an example of a suitable representative composition of the flux to be added that satisfies the above appropriate range.

第    1    表 (重量%) つぎに、フラックスの適正な添加tX(g)については
、下記(2)式で与えるようにすればよい。
Table 1 (% by weight) Next, the appropriate addition tX (g) of flux may be given by the following equation (2).

X−f Ca、t、EF、IP、V、  θ) −−−
(2)ここで、 α;鋼種によって決定される係数 L;板厚(ff11) EP ニブレート電圧(V) ■? ;プレート電流(A) V ;造管速度(m/分) θ :■シェープ角度(@) フラックス添加fiXの目安は、給電位置から■収束点
01の間での鋼板Sの両側縁部Sa、Sbの溶融重量の
約175程度の量とするとよい0例えば、5OS304
鋼種で板厚3mの調帯を速度30m/winで溶接する
場合のフラックス添加量は約500g/sin程度にす
るとよい。
X-f Ca, t, EF, IP, V, θ) ---
(2) Here, α: Coefficient L determined by steel type: Plate thickness (ff11) EP Nibrate voltage (V) ■? ; Plate current (A) V ; Pipe forming speed (m/min) θ : ■Shape angle (@) The guideline for flux addition fiX is: The amount should be approximately 175% of the melted weight of Sb. For example, 5OS304
When welding a 3 m thick steel plate at a speed of 30 m/win, the amount of flux added is preferably about 500 g/sin.

なお、ここで用いられるフラックスの種類としては固形
状のフラックスでも効果はあるが、溶融状のフラックス
の方が溶鋼との反応速度を早めるなどの効果があること
から、溶融フラックスを用いるのが望ましい。
Although solid flux is effective, it is preferable to use molten flux because it has the effect of accelerating the reaction rate with molten steel. .

また、造管速度が速くなると、フラックスと溶鋼との反
応時間が短(なってフラックスの添加の効果を小さくす
る傾向にある。それ故、造管速度は、100m/win
以〒とするのが望ましい。
Also, as the pipe-making speed increases, the reaction time between flux and molten steel becomes shorter (which tends to reduce the effect of flux addition. Therefore, the pipe-making speed is 100 m/win).
It is preferable to do the following.

〈実施例〉 以下に、本発明の実施例について説明する。<Example> Examples of the present invention will be described below.

前出第1表に示す成分のフラックスを用いて、5llS
304および5US410の2鋼種について第2表に示
す2種類の造管サイズで電縫鋼管を製造した。なお、こ
こで用いたフラックスのBL値は、−〇、2とした。
Using the flux of the components shown in Table 1 above, 5llS
Electric resistance welded steel pipes were manufactured using two steel types, 304 and 5US410, in two sizes shown in Table 2. Note that the BL value of the flux used here was -0,2.

また、比較のためにフラックスを用いない従来法でも造
管を行った。それらによる溶接欠陥発生率の状況を第2
表に併せて示した。
For comparison, a conventional method without using flux was also used to form pipes. The status of the welding defect occurrence rate due to these
It is also shown in the table.

この表から明らかなように、従来法ではペネトレータや
冷接欠陥などの溶接欠陥が多発したが、第    2 
   表 本発明法では5US304.5US410のいずれの鋼
種も溶接欠陥が殆どな(、健全なシーム部を有する電縫
鋼管の製造ができた。
As is clear from this table, welding defects such as penetrators and cold welding defects occurred frequently in the conventional method, but
Table 1: According to the method of the present invention, electric resistance welded steel pipes with almost no welding defects (and having sound seams) were produced for all steel types, 5US304.5US410.

〈発明の効果〉 以上説明したように、本発明によれば、■シェープの両
側縁部にフラックスを添加するようにしたので、溶接欠
陥の発生の少ない健全なンーム部を有する電縫鋼管を極
めて安定して製造することが可能である。
<Effects of the Invention> As explained above, according to the present invention, ■Flux is added to both side edges of the shape, so it is possible to extremely produce an electric resistance welded steel pipe having a healthy beam part with few welding defects. It is possible to manufacture stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法に係る実施例を模式的に示す平面
図、第2図は、フラックスの塩基度と溶接欠陥発生率の
関係を示す特性図、第3図は、従来例を模式的に示す平
面図、第4図は、要部を拡大して示す平面図である。 ■・・・給電部、     2・・・スクイズロール。 3・・・78鋼、      4・・・ノズル。 5・・・フラックス添加装置。 S・・・鋼板、      P・・・鋼管(電縫鋼管)
。 Sa、Sb・・・側縁部、io・・・溶接電流。 特許出願人   川崎製鉄株式会社 第1図 第2図 フラックスの塩基度(at)
Figure 1 is a plan view schematically showing an example of the method of the present invention, Figure 2 is a characteristic diagram showing the relationship between flux basicity and welding defect incidence rate, and Figure 3 is a schematic diagram of a conventional example. FIG. 4 is a plan view showing an enlarged main part. ■...Power supply part, 2...Squeeze roll. 3...78 steel, 4...nozzle. 5...Flux addition device. S...Steel plate, P...Steel pipe (ERW steel pipe)
. Sa, Sb... side edge, io... welding current. Patent applicant: Kawasaki Steel Corporation Figure 1 Figure 2 Basicity of flux (at)

Claims (1)

【特許請求の範囲】[Claims] 連続的に送り込まれる鋼帯を、その幅方向の両側縁部が
相対向するように湾曲させて素管に成形した後、前記両
側縁部側に溶接電流を印加して加熱溶融させつつ衝合溶
接する電縫鋼管の製造方法において、前記両側縁部に対
する給電位置からスクイズロールに至る間でフラックス
を前記両側縁部に添加しながら造管することを特徴とす
る電縫鋼管の製造方法。
The continuously fed steel strip is curved so that both edges in the width direction face each other and formed into a blank tube, and then a welding current is applied to both edges to heat and melt them while abutting them. A method for manufacturing an electric resistance welded steel pipe to be welded, characterized in that the pipe is formed while adding flux to both side edges from a power supply position to a squeeze roll.
JP6057288A 1988-03-16 1988-03-16 Manufacture of resistance welded steel tube Pending JPH01237080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6057288A JPH01237080A (en) 1988-03-16 1988-03-16 Manufacture of resistance welded steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6057288A JPH01237080A (en) 1988-03-16 1988-03-16 Manufacture of resistance welded steel tube

Publications (1)

Publication Number Publication Date
JPH01237080A true JPH01237080A (en) 1989-09-21

Family

ID=13146110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6057288A Pending JPH01237080A (en) 1988-03-16 1988-03-16 Manufacture of resistance welded steel tube

Country Status (1)

Country Link
JP (1) JPH01237080A (en)

Similar Documents

Publication Publication Date Title
JPH0615447A (en) Manufacture of welded tube
JPH08290296A (en) Manufacture of flux cored seamless wire for welding
US3131284A (en) Non-consumable electrode arc welding of tubing
JPH01237080A (en) Manufacture of resistance welded steel tube
JPH0418954B2 (en)
US4645893A (en) Method for manufacturing spiral-welded steel pipe
JPH0248349B2 (en)
JP2666647B2 (en) Manufacturing method of welded pipe
JP2861528B2 (en) Laser welding method for steel sheet for press forming
JPH07108475B2 (en) Method of manufacturing powder-filled tube
JP3622679B2 (en) Combined manufacturing equipment for different types of steel pipes
JP2924716B2 (en) Manufacturing method of welded pipe
JPH06198440A (en) Wear detecting method for arc welding nozzle
JP2732936B2 (en) Manufacturing method of powder filled tube
JP2732935B2 (en) Manufacturing method of powder filled tube
JPH0852513A (en) Manufacture of welded tube
JPH07204863A (en) Manufacture of resistance welded tube
JPH0753317B2 (en) Heat input control method for high frequency electric resistance welding combined with laser beam
JP3624787B2 (en) Metal strip connection method by lap seam welding
JPH052428B2 (en)
JPH06246484A (en) Production of powder and granular material packed pipe
TW202313231A (en) Laser welding method for Si-containing steel sheets
JPH0647406A (en) Method for joining sheet bar completely continuously rolled
JPS5870984A (en) Manufacture of electric welded pipe
JPH0471601B2 (en)