JPH01235527A - Dwarfing of normal plant using 5-azacitidine - Google Patents
Dwarfing of normal plant using 5-azacitidineInfo
- Publication number
- JPH01235527A JPH01235527A JP63061581A JP6158188A JPH01235527A JP H01235527 A JPH01235527 A JP H01235527A JP 63061581 A JP63061581 A JP 63061581A JP 6158188 A JP6158188 A JP 6158188A JP H01235527 A JPH01235527 A JP H01235527A
- Authority
- JP
- Japan
- Prior art keywords
- plants
- dna
- plant
- dwarfing
- azacitidine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 title claims abstract description 16
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 claims description 12
- 229960002756 azacitidine Drugs 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 206010013883 Dwarfism Diseases 0.000 claims 1
- 229940079593 drug Drugs 0.000 claims 1
- 239000003814 drug Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 241000196324 Embryophyta Species 0.000 description 24
- 108020004414 DNA Proteins 0.000 description 17
- 240000008042 Zea mays Species 0.000 description 15
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 15
- 241000209094 Oryza Species 0.000 description 12
- 235000007164 Oryza sativa Nutrition 0.000 description 12
- 235000009566 rice Nutrition 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 11
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 10
- 235000005822 corn Nutrition 0.000 description 10
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 5
- 235000009973 maize Nutrition 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000011987 methylation Effects 0.000 description 4
- 238000007069 methylation reaction Methods 0.000 description 4
- 230000007067 DNA methylation Effects 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229930191978 Gibberellin Natural products 0.000 description 2
- 102000004867 Hydro-Lyases Human genes 0.000 description 2
- 108090001042 Hydro-Lyases Proteins 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- IXORZMNAPKEEDV-UHFFFAOYSA-N gibberellic acid GA3 Natural products OC(=O)C1C2(C3)CC(=C)C3(O)CCC2C2(C=CC3O)C1C3(C)C(=O)O2 IXORZMNAPKEEDV-UHFFFAOYSA-N 0.000 description 2
- 239000003448 gibberellin Substances 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000004660 morphological change Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- HWPZZUQOWRWFDB-UHFFFAOYSA-N 1-methylcytosine Chemical compound CN1C=CC(N)=NC1=O HWPZZUQOWRWFDB-UHFFFAOYSA-N 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- 229930192334 Auxin Natural products 0.000 description 1
- 230000035131 DNA demethylation Effects 0.000 description 1
- 244000058871 Echinochloa crus-galli Species 0.000 description 1
- 102100020948 Growth hormone receptor Human genes 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 206010063385 Intellectualisation Diseases 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 108020004487 Satellite DNA Proteins 0.000 description 1
- 108010068542 Somatotropin Receptors Proteins 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000019552 anatomical structure morphogenesis Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000002363 auxin Substances 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 235000018927 edible plant Nutrition 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 210000002816 gill Anatomy 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010153 self-pollination Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Cultivation Of Plants (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、栽培植物の遺伝子工学に関するものであって
、特に、イネ、トウモロコシなどの栽培植物の知性化に
利用される。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to genetic engineering of cultivated plants, and is particularly used for making cultivated plants such as rice and corn intelligent.
(従来の技術)
栽培植物の知性は農業にとってたいへん有用な形質であ
る。知性の発現機構は多様であって、同じ品種とはいえ
形態的には全く別種と思われるような嬌性株が少なくな
い。個々の遺伝子発現の状態も正常株とはたいへん異な
っている。(Prior Art) Intelligence in cultivated plants is a very useful trait for agriculture. The mechanisms by which intelligence is expressed are diverse, and even though they are the same variety, there are quite a few intelligent plants that appear to be morphologically completely different species. The state of individual gene expression is also very different from that of the normal strain.
こうした知性現象を分子生物学的手法で解明しようとす
る場合、知性化の第一要因をつきとめようとする手段(
前者ンと、知性植物全体としての遺伝子発現様式を探そ
うとする手段(後者ンとが考えられる。これまで知られ
ている知性現象の研究は主に前者の手段で行われており
、かなりの成果が得られている。すなわち、短性突然変
異株を使った生理学的解析により内性ホルモンの異常が
その主な原因のひとつであることが突きとめられた。図
式的に見れば知性の発現はホルモンの異常が第−因とな
り、連鎖的に細胞分裂環、@胸壁合成、代謝、吸水など
植物の生活環のすべてに派生してゆくと考えられる。When attempting to elucidate such intelligence phenomena using molecular biological methods, methods to identify the primary cause of intelligence (
The former method and the latter method are considered to be methods of searching for the gene expression pattern of intelligent plants as a whole.Research on the known phenomena of intelligence has been carried out mainly by the former method, and a considerable amount of research has been done so far. Results have been obtained.In other words, through physiological analysis using short-lived mutant strains, it has been determined that abnormalities in endogenous hormones are one of the main causes.Looking at it schematically, it is the expression of intelligence. It is thought that this is caused by hormonal abnormalities, and that it is linked to all aspects of the plant's life cycle, including cell division, chest wall synthesis, metabolism, and water absorption.
それらにおいて、ジベレリン生合成糸の欠損がいくつか
の矩性植物、イネ、トウモロコシで見い出されている。Among them, defects in gibberellin biosynthetic threads have been found in some dwarf plants, rice, and maize.
オーキシン生合成糸の異常は大麦で発見された。その他
、生長ホルモンの受容体に異常が起っていると思われる
ものにトウモロコシのD8、小麦のRhtなどがあげら
れる。こうした銹性突然変異株はいずれも単純なメンデ
ル遺伝を示すことがら一遺伝子変異と考えられ、その遺
伝子座を探すためにジベレリン生合成系に異常ごもつ植
物で研究が進められてきた。Abnormalities in auxin biosynthetic threads were discovered in barley. Other growth hormone receptors that are thought to have abnormalities include corn D8 and wheat Rht. Since these mutant strains exhibit simple Mendelian inheritance, they are thought to be monogenic mutations, and research has been carried out on plants with abnormalities in the gibberellin biosynthesis system in order to search for the genetic locus.
前記の後者の手段、すなわち、矩性植物全体としての遺
伝子発現様式の研究に従った成果はほとんど見あたって
いない。最近、植物の遺伝子(以下、DNAと記す。ン
における探し出す手法(以下、RIFLP と記す。Almost no results have been found based on the latter method, that is, research on the gene expression pattern of the whole rectangular plant. Recently, a method for searching for plant genes (hereinafter referred to as DNA) (hereinafter referred to as RIFLP) has been developed.
ンを探して種々な品種の遺伝マーカーに使用しようとい
う試みがされている。ppLpf’n性植物のDNAに
応用して知性特異的な変異を発見しようという試みがさ
れている。動物細胞での研究によると、活発にmRNA
e転写しているDNAは不活性状7jl(7)DNAに
比べてメチル化シントン(以下、mOと記す。ンの量が
少ないことが見い出されている。DNAメチル化と遺伝
子発現は逆相関にある、というものである。この点に関
して植物細胞での研究は少ないが、noは遺伝子発現の
スイッチになっている可能性ご示唆している。Attempts are being made to find genes and use them as genetic markers for various breeds. Attempts have been made to apply this method to the DNA of ppLpf'n plants to discover intelligence-specific mutations. Studies in animal cells show that actively mRNA
It has been found that e-transcribed DNA has a lower amount of methylated synthon (hereinafter referred to as mO) than inactive 7jl (7) DNA. DNA methylation and gene expression are inversely correlated. Although there is little research on this point in plant cells, it is suggested that no may act as a switch for gene expression.
(発明が解決しようとする課題〕
上記従来の研究経過に1みて、正常と矯性とのあいだで
の遺伝子発現の差ごmOを遺伝マーカーとして調査し、
mC分布に差があれば、5−アザシチジンというメチル
化阻害剤を用いて強制的に内在m1Ufi企下げ、植物
の矯性化を図ろうとするものである。(Problem to be solved by the invention) In view of the above-mentioned conventional research progress, we investigated the difference in gene expression between normal and orthogonal cases as a genetic marker,
If there is a difference in mC distribution, an attempt is made to forcibly lower endogenous m1Ufi using a methylation inhibitor called 5-azacytidine, thereby making the plant more orthogonal.
(課題号解決するための手段フ
イネ及びトウモロコシの催芽種子すなわち細胞分裂初期
の種子を、いろいろの濃度の5−アザシチジン溶液に1
2〜66時間程度浸漬し、その後に水洗して薬剤を除去
し通常の栽培を行うことにより、上記植物を珪化させる
と共に次代植物に遺伝させようとする。(Means for solving the problem) Germinated seeds of fines and maize, that is, seeds in the early stage of cell division, were added to 5-azacytidine solutions of various concentrations.
By soaking for about 2 to 66 hours, then washing with water to remove the chemicals, and cultivating normally, the plants are silicified and passed on to the next generation plants.
(作 用)
イネ及びトウモロコシの正常株のDNAにおけるアデニ
ン、グアニン、シトシン、チミンがら成る鎖において、
細胞内のDNAメチラーゼによってメチル化される5−
メチルシトシン(以下、同じくmCと記す。)が5−ア
ザシチジンによりメチル化が阻害され、DNA発現糸に
関与し矯性化という形態が形成され、その形態変化は次
世代に遺伝した。(Effect) In the chain consisting of adenine, guanine, cytosine, and thymine in the DNA of normal strains of rice and maize,
5- methylated by intracellular DNA methylase
Methylation of methylcytosine (hereinafter also referred to as mC) is inhibited by 5-azacytidine, participates in the DNA expression thread, and forms a form called orthogonalization, which is inherited by the next generation.
(実施例λ 本発明の研究結果を実施例に代えて以下詳記する。(Example λ The research results of the present invention will be described in detail below in place of Examples.
常種、dl、d5系統を、イネはdxlay、その他正
常型を使用した。植物体より全DNAを抽出し、その塩
基組成及び近接塩基頻度を調べた。moはOpGという
近接塩基頻度分析に最も多くあられれた。トウモロコシ
でハ全Op Gの+780%がmopG であり、イ
ネでは約40%であった。知性トウモロコシではOpG
のメチル化が約4〜5%低下し、イネでは有なの差が認
められなかった。これらの結果は、DNA全体としての
mC含有量には正シ/矯性間にあまり差のないことを示
している。ただし、トウモロコシに見られるmoiの低
下が本当なら、600bpのDNAあたり−か所のno
に違いがあることであり、遺伝子レベルではかなり大き
な差であるといえよう。For rice, dxlay and other normal types were used. Total DNA was extracted from the plant body, and its base composition and frequency of adjacent bases were investigated. mo appeared most frequently in OpG, a proximal base frequency analysis. In maize, +780% of the total OpG was mopG, and in rice it was about 40%. OpG in intelligence corn
methylation decreased by about 4-5%, and no difference was observed in rice. These results indicate that there is not much difference in mC content as a whole between normal and normal DNA. However, if the decrease in moi observed in corn is true, then per 600 bp of DNA - some no.
This can be said to be a fairly large difference at the genetic level.
特異配列中のmo 個々の遺伝子におけるmC@
を測定するためにサザンハイプリダイぜ−シコン法を用
いた。全DNAをCpGとm0pGとに区別できる制限
酵素で消化して切り出されたDNA断片の分子盾を比較
した。検出にはトウモロコシより得たアルコール脱水酵
素のcDNA及びイネより得た960bpDNAを使用
した。アルコール脱水酵素を用いた場合、そのOpGに
はイネ、トウモロコシとも正常/矯性間にあきらかな差
が認められた。960bpDNAを検出に用いた場合も
同様の結果が得られた。mo in specific sequences mC in individual genes
The Southern hybridization method was used to measure the . Total DNA was digested with restriction enzymes that can distinguish between CpG and m0pG, and the molecular shields of the excised DNA fragments were compared. For detection, cDNA of alcohol dehydratase obtained from corn and 960 bp DNA obtained from rice were used. When alcohol dehydratase was used, there was a clear difference in OpG between normal and orthogonal in both rice and corn. Similar results were obtained when 960 bp DNA was used for detection.
このことは正町/蒔性植物でn0分布に違いがあり、そ
れぞれに特有な遺伝子発現にかかわっていることを示唆
している。This suggests that there is a difference in n0 distribution between Masamachi and sowing plants, and that each is involved in unique gene expression.
5−アザシチジンによる正常植物の知性化もしI!IC
が本当に植物の遺伝子発現にかかわっており、知性株で
その含有1に差があるとすれば、人工的に正常株のmo
e?e作することによって知性型に近い形態を示す植物
体が得られよう。そのため次のような実験糸を組んだ。If normal plants become intelligent with 5-azacytidine I! IC
is really involved in gene expression in plants, and if there is a difference in its content among intelligent strains, then artificially the normal strain's mo
e? By e-cultivation, a plant exhibiting a morphology close to an intelligent type can be obtained. For this reason, I constructed the following experimental thread.
5−アザシチジンは現在知られている最も特異性の高い
DNAメチル化の咀害剤である。これに正常型のイネ及
びトウモロコシの種子を発芽直後−晩浸3ffi Lだ
。薬剤を完全に水洗除去後、普通に播種してその生長?
測定した。その結果、5−アザシチジン処理株はその高
さ全高において約15%の減少がみられた。この植物の
tT長を制定したところ知性型と似た1頃向を示した。5-azacytidine is the most specific DNA methylation inhibitor currently known. To this, normal rice and corn seeds were soaked immediately after germination and late at 3ffi L. After completely removing the chemical with water, can you sow the seeds normally and let them grow?
It was measured. As a result, the total height of the 5-azacytidine-treated strain was reduced by about 15%. When we established the tT length of this plant, it showed a direction of about 1, similar to that of the intelligent type.
トウモロコシでも同じ結果を得た。これらのデータはI
)NAのメチル化が植物においても何らかの形で遺伝子
発現糸に関与しており、最終的には形態形成にまでかか
わっていることを示す。The same results were obtained with corn. These data are I
) This shows that NA methylation is involved in gene expression in some way in plants, and is ultimately involved in morphogenesis.
5−アザシチジンによるgθnomicDNAの低メチ
ル化 5−アザシチジンによって形態的に知性化し
た前物体でDNA中の!!1c(1が低下したかどうか
をサザンプロット法で調べた。Hypomethylation of gθnomic DNA by 5-azacytidine Pre-objects morphologically intellectualized by 5-azacytidine in DNA! ! 1c (1) was decreased using the Southern blot method.
方法は前記のようにnoを区別できる制限酵素で全DN
Aを消化後、適当な検出によって検出配列内のnoの有
無を調べた。トウモロコシの場合、イネ960bPサテ
ライトDNAと同じ配列のDNAを含んでおり、このI
)NA断片内のゲアニンーシトシンーグアニンーシトシ
ンの一部が5−アザシチジン処理によって脱メチル化さ
れた。イネの場合も同様にかなり脱メチル化された。こ
れらの結果は処理によって誘導された知性的な形態変化
はDNAの脱メチル化と併行関係にあることを示してい
る。The method is as described above, using a restriction enzyme that can distinguish between no.
After digesting A, the presence or absence of no in the detection sequence was examined by appropriate detection. In the case of maize, it contains DNA with the same sequence as rice 960bP satellite DNA, and this I
) A part of geanine-cytosine-guanine-cytosine in the NA fragment was demethylated by treatment with 5-azacytidine. In the case of rice, it was also significantly demethylated. These results indicate that the treatment-induced intelligent morphological changes are parallel to DNA demethylation.
理したトウモロコシから自家受粉によってF1揮子を得
た。この種子を普通に播種して生長号明定した。処理の
親から得た株は未処理の親がら得た株に比べてあきらか
に全高が低い。すなわち、処理によって誘起された形態
変化は子孫に遺伝することが示された。F1 gills were obtained by self-pollination from cultivated corn. These seeds were sown normally and growth was determined. The total height of plants obtained from treated parents is clearly lower than that obtained from untreated parents. In other words, it was shown that the morphological changes induced by the treatment were inherited by the offspring.
上記は実験結果の大略であるが、実験に対する考察及び
今後の課題は省略する。The above is a summary of the experimental results, but discussion of the experiment and future issues are omitted.
なお、実施例においてイネとトウモロコシB挙げたが千
木科の食用植物たとえば麦、キビ、ヒエも同様の結果を
得られると推測する。また、5−アザシチジン水溶液の
濃度は実験においては0% 1 m MとQ、3mMを
用いたがこれに限定するものでない。さらに、同水溶液
への催芽種子の浸漬時間は一晩(12時間)に限定せず
濃度の低い場合は66時間でもよかった。Although rice and corn B are mentioned in the examples, it is assumed that similar results can be obtained with edible plants of the Chigiaceae family, such as wheat, millet, and barnyard grass. Furthermore, the concentrations of the 5-azacytidine aqueous solution were 0%, 1 mM, Q, and 3mM in the experiment, but are not limited thereto. Furthermore, the immersion time of the germinated seeds in the same aqueous solution was not limited to overnight (12 hours), but could be as long as 66 hours if the concentration was low.
(発明の効果ン
本発明によれば知性化植物をきわめて容易に得られ、そ
の知性化は次代植物に遺伝し再現性があるので、こうし
た変異株を中間母体に使って有M、義な有用株を創出で
きることが期待される。(Effects of the invention) According to the present invention, intelligent plants can be obtained very easily, and the intellectualization is inherited and reproducible to the next generation of plants. It is expected that stocks can be created.
Claims (1)
し、その後前記薬剤を除去して通常の栽培を行うことに
より、前記植物が矮化すると共に次代植物に矮化が遺伝
することを特徴とする5−アザシチジンによる正常植物
の矮性化法。By immersing germinated seeds of normally cultivated plants in a 5-azacytidine solution, then removing the drug and performing normal cultivation, the plants become dwarfed and the dwarfism is inherited by the next generation plants. Method for dwarfing normal plants using 5-azacytidine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63061581A JPH01235527A (en) | 1988-03-14 | 1988-03-14 | Dwarfing of normal plant using 5-azacitidine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63061581A JPH01235527A (en) | 1988-03-14 | 1988-03-14 | Dwarfing of normal plant using 5-azacitidine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01235527A true JPH01235527A (en) | 1989-09-20 |
JPH0511927B2 JPH0511927B2 (en) | 1993-02-16 |
Family
ID=13175242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63061581A Granted JPH01235527A (en) | 1988-03-14 | 1988-03-14 | Dwarfing of normal plant using 5-azacitidine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01235527A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0609785A1 (en) * | 1993-01-28 | 1994-08-10 | Japan Tobacco Inc. | Method for dwarfing lilies and lily bulbs, submitted to the dwarfing treatment |
CN102487698A (en) * | 2011-12-13 | 2012-06-13 | 河南大学 | Method for promoting chrysanthemum to bloom in advance by using 5-azaC |
CN103181322A (en) * | 2013-04-19 | 2013-07-03 | 河北冀南种业有限公司 | Breeding method of br-2 short-gene-type maize dwarf 268 |
-
1988
- 1988-03-14 JP JP63061581A patent/JPH01235527A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0609785A1 (en) * | 1993-01-28 | 1994-08-10 | Japan Tobacco Inc. | Method for dwarfing lilies and lily bulbs, submitted to the dwarfing treatment |
CN102487698A (en) * | 2011-12-13 | 2012-06-13 | 河南大学 | Method for promoting chrysanthemum to bloom in advance by using 5-azaC |
CN103181322A (en) * | 2013-04-19 | 2013-07-03 | 河北冀南种业有限公司 | Breeding method of br-2 short-gene-type maize dwarf 268 |
Also Published As
Publication number | Publication date |
---|---|
JPH0511927B2 (en) | 1993-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Talebi et al. | Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination | |
Stephenson et al. | A rich TILLING resource for studying gene function in Brassica rapa | |
Gottwald et al. | TILLING in the two-rowed barley cultivar'Barke'reveals preferred sites of functional diversity in the gene HvHox1 | |
CN106470544B (en) | The melon plant that fruit yield improves | |
DE69231551T2 (en) | Imidazolinone resistant AHAS mutants | |
Brock | The role of induced mutations in plant improvement | |
Ammar et al. | Mapping of QTLs controlling Na+, K+ and CI− ion concentrations in salt tolerant indica rice variety CSR27 | |
Chen et al. | Fine mapping identifies CsGCN5 encoding a histone acetyltransferase as putative candidate gene for tendril-less1 mutation (td-1) in cucumber | |
Song et al. | OsJMJ703, a rice histone demethylase gene, plays key roles in plant development and responds to drought stress | |
BR112013028306B1 (en) | plants with useful characteristics and related processes | |
Bird et al. | Induced mutations in maize | |
US11479784B2 (en) | Modulation of seed vigor | |
Koornneef | Classical mutagenesis in higher plants | |
Ding et al. | Unraveling waterlogging tolerance-related traits with QTL analysis in reciprocal intervarietal introgression lines using genotyping by sequencing in rapeseed (Brassica napus L.) | |
Leung et al. | Deletion mutants for functional genomics: progress in phenotyping, sequence assignment, and database development | |
Abid et al. | Changes in DNA-methylation during zygotic embryogenesis in interspecific hybrids of beans (Phaseolus ssp.) | |
Kumar et al. | Mutation breeding in chickpea | |
Ubert et al. | Genetics and molecular mapping of the naked grains in hexaploid oat | |
JPH01235527A (en) | Dwarfing of normal plant using 5-azacitidine | |
US20230212601A1 (en) | Mutant gene conferring a compact growth phenotype in watermelon | |
WO2023202038A1 (en) | Genes for regulating and controlling included angle and lodging resistance of corn root system, and use thereof | |
Ono et al. | Artificial control of the Prunus self-incompatibility system using antisense oligonucleotides against pollen genes | |
Park et al. | Genetic variation through Dissociation (Ds) insertional mutagenesis system for rice in Korea: progress and current status | |
Williams | Epigenetics, Plant Genetic Resources, and Their Management | |
US11987799B2 (en) | Downy mildew resistance in Cucurbitaceae plants |