JPH01235331A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH01235331A
JPH01235331A JP6250888A JP6250888A JPH01235331A JP H01235331 A JPH01235331 A JP H01235331A JP 6250888 A JP6250888 A JP 6250888A JP 6250888 A JP6250888 A JP 6250888A JP H01235331 A JPH01235331 A JP H01235331A
Authority
JP
Japan
Prior art keywords
layer
type
concentration
epitaxial growth
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6250888A
Other languages
Japanese (ja)
Inventor
Mitsuru Hanakura
満 花倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6250888A priority Critical patent/JPH01235331A/en
Publication of JPH01235331A publication Critical patent/JPH01235331A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the heat treatment time and to reduce the occurrence of a hot spot and the concentration of a surface electric field by a method wherein, after an N-type epitaxial growth layer has been formed on one main face of a silicon wafer, an N-type layer is distributed again by a heat treatment and a low-concentration and thick N-type layer is formed. CONSTITUTION:An N-type epitaxial growth layer 12 is formed on an N-type silicon substrate 11. After this N-type epitaxial growth layer 12 has been formed, a pushing diffusion operation is executed. When this pushing diffusion operation is executed, an N-type impurity in the epitaxial growth layer is diffused to the N<-> layer 11 due to a difference in concentration; a concentration gradient on the side of an N-layer near a junction of the N<-> layer and the N-layer becomes gentle. Since the low-concentration and thick N-layer can be formed by epitaxial growth in this manner, the heat treatment time can be shortened sharply.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、サイリスタなどの半導体素子を製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method of manufacturing semiconductor devices such as thyristors.

B9発明の概要 本発明は、シリコンウェハーの一主面にN型エピタキシ
ャル成長を行い、この後、加熱処理することにより、高
順阻止耐圧のサイリスクなどで必要とする低濃度の深い
N型拡散層を形成するとともに、このN型拡散層を形成
するときの熱処理時間を大幅に短縮できるようにし、且
つホットスポットの発生や表面電界の集中の少ない半導
体素子の製造を可能としたものである。
B9 Summary of the Invention The present invention performs N-type epitaxial growth on one main surface of a silicon wafer, and then heat-treats it to form a deep, low-concentration N-type diffusion layer, which is required for high forward blocking voltage and silicon risk. At the same time, it is possible to significantly shorten the heat treatment time when forming this N-type diffusion layer, and it is possible to manufacture a semiconductor element with less generation of hot spots and less concentration of surface electric field.

C0従来の技術 サイリスタは、第6図に示すようにPN−r−’N(P
エミッター1.N−ベース2、Pベース3、Nエミッタ
ー4)の4層構造を持っている。この場合、順阻止電圧
の高圧化に伴い、空間電荷層がPエミッター層に突き抜
けるのを防ぐためにN−ベース層2を厚くする必要があ
る。このため、順電圧降下が大きくなるという問題点が
生ビる。
The C0 prior art thyristor is PN-r-'N (P
Emitter 1. It has a four-layer structure: N-base 2, P base 3, and N emitter 4). In this case, as the forward blocking voltage increases, it is necessary to increase the thickness of the N-base layer 2 in order to prevent the space charge layer from penetrating into the P emitter layer. Therefore, a problem arises in that the forward voltage drop becomes large.

それで、最近では第7図に示すように比較的濃度の高い
N層5をN−ベース2中に形成し、このN層5で空間T
ri荷層がPエミッター層1に突き抜け(パンデスルー
)るのを防いでN−ベース層2の薄い、つまり順電圧降
下の小さい高順素子電圧素子を得ることが提案されてい
る。N層5を形成するには、第8図(a)に示すように
基板(N−ベース)2にN層をデポジションし、1τ1
1シ込み拡散を行っている(第8図(b))。
Therefore, recently, a relatively high concentration N layer 5 is formed in the N-base 2 as shown in FIG.
It has been proposed to prevent the RI load layer from penetrating into the P emitter layer 1 to obtain a thin N-base layer 2, that is, to obtain a high forward voltage device with a small forward voltage drop. To form the N layer 5, deposit the N layer on the substrate (N-base) 2 as shown in FIG.
One-shot diffusion is performed (Fig. 8(b)).

このN層5の厚みは、N層5内での空間電荷層の広がり
分だけでなく、Pエミッター層Iからの少数キャリアの
拡散長も考慮しなければならない。
The thickness of the N layer 5 must be determined not only by the spread of the space charge layer within the N layer 5 but also by the diffusion length of minority carriers from the P emitter layer I.

少数キャリアの拡散長はライフタイムに依存するが、少
数キャリアのライフタイムが数μsecのとき、5KV
程度の順阻止耐圧を得ようとすると、N層5の厚みは略
60〜100 ltmとかなりの厚さを必要とする。更
に、Pエミ゛ツタ−の注入効率への影響を考えると、こ
のN層5のピーク不純物濃度は、Pエミッターlの表面
不純物濃度よりも数桁低いことが要求される。
The diffusion length of minority carriers depends on their lifetime, but when the lifetime of minority carriers is several μsec, the diffusion length is 5KV.
In order to obtain a similar forward blocking breakdown voltage, the N layer 5 needs to have a considerable thickness of about 60 to 100 ltm. Furthermore, considering the influence of the P emitter on the injection efficiency, the peak impurity concentration of the N layer 5 is required to be several orders of magnitude lower than the surface impurity concentration of the P emitter I.

D1発明が解決しようとする課題 しかしながら、N型不純物を低濃度で、しかも深く拡散
するには、高温で長時間の熱処理を行わなければならな
い。
D1 Problems to be Solved by the Invention However, in order to deeply diffuse the N-type impurity at a low concentration, it is necessary to perform heat treatment at a high temperature for a long time.

例え“ば、基板濃度1.5 X I 013cm−’の
N型シリコンウェファ−にリンをN型不純物として適量
デポジションし、これを押し込み拡散(酸化)によりピ
ーク不純物濃度I X l 1 cm −3、拡散深さ
100μmしようとすると、1250℃で約300時間
も要することになる。
For example, an appropriate amount of phosphorus is deposited as an N-type impurity on an N-type silicon wafer with a substrate concentration of 1.5 X I 013 cm-', and this is pushed in and diffused (oxidized) to give a peak impurity concentration of I X I 1 cm-3. If the diffusion depth is 100 μm, it will take about 300 hours at 1250°C.

そこでもう1つの方法として第8図(b)のN層5の部
分をすべてN型エピタキシャル成長によって形成する方
法も考えられている。この方法は確かに前記の方法はど
は高温長時間の熱処理を必要としないが下記のような大
きな欠点を有する。
Therefore, another method has been considered in which the N layer 5 shown in FIG. 8(b) is entirely formed by N-type epitaxial growth. Although this method does not require high-temperature and long-term heat treatment like the above-mentioned methods, it has the following major drawbacks.

■サイリスタ等では、このN層を形成した後、P型不純
物を拡散することによってPベース及びPエミッター層
を形成する。この方法では第9図に示すように、NGが
すべてエピタキシャル成長層によって形成されているの
でエピタキシャル成長時に発生する結晶欠陥のところで
Pエミッター1がスパイク状に侵入して形成されてしま
い、PベースWJ3とN−層2との接合に逆電圧を印加
した場合、スパイク状の部分で局部的パンチスルー現象
により局部的にもれ電流が増加するいわゆるホットスポ
ットが発生してしまう。このホットスポットは素子の順
耐圧特性を劣化させるばかりか、素子を永久破壊させる
原因になる。エピタキシャル成長時に発生する結晶欠陥
の発生率は面積に比例して増加するから特に素子を大面
積化しようとするとき問題となる。
(2) In thyristors and the like, after forming this N layer, a P base and a P emitter layer are formed by diffusing P type impurities. In this method, as shown in FIG. 9, since all NG is formed by the epitaxial growth layer, the P emitter 1 is formed in a spike shape at the crystal defects that occur during epitaxial growth, and the P emitter 1 is formed in the form of a spike, causing the P base WJ3 and the N - When a reverse voltage is applied to the junction with layer 2, a so-called hot spot occurs in which the leakage current locally increases due to a local punch-through phenomenon in the spike-shaped portion. This hot spot not only deteriorates the forward breakdown voltage characteristics of the device, but also causes permanent destruction of the device. Since the incidence of crystal defects that occur during epitaxial growth increases in proportion to the area, this becomes a problem especially when attempting to increase the area of the device.

■N層をエピタキシャル成長のみで形成しているので、
第10図に示すようにN−層とN層の接合付近のN層側
の濃度勾配がかなり急峻になってしまう。
■Since the N layer is formed only by epitaxial growth,
As shown in FIG. 10, the concentration gradient on the N layer side near the junction between the N- layer and the N layer becomes quite steep.

サイリスタ等では、このN層を形成した後、Pベース層
、Pエミッター層、Nエミッター層を形成し順耐圧特性
を達成するため、ベベルと呼ばれる表面処理を行う。こ
のベベルはPベース層とN−層間の主接合の理論上のブ
レークダウン電圧にくらべて、表面でのブレークダウン
電圧があまり低くならないように表面電界を弱めるため
に行うものである。一方、Nベース層をN−層とN層と
で構成した構造においては、N層層とN層の接合付近の
N層側の濃度勾配が急峻であればあるほど表面電界がそ
の部分に集中しやすくなる。それで、このエピタキシャ
ル成長のみでN層を形成する方法では、ベベルにより表
面電界を弱めても表面電界がN層に集中してしまうため
、理論的ブレークダウン電圧よりもかなり低い耐圧特性
しか達成できないという問題がある。
In thyristors and the like, after forming this N layer, a surface treatment called bevel is performed to form a P base layer, a P emitter layer, and an N emitter layer to achieve normal breakdown voltage characteristics. The purpose of this bevel is to weaken the surface electric field so that the breakdown voltage at the surface is not too low compared to the theoretical breakdown voltage of the main junction between the P base layer and the N- layer. On the other hand, in a structure in which the N base layer is composed of an N- layer and an N layer, the steeper the concentration gradient on the N layer side near the junction between the N layers, the more the surface electric field is concentrated in that part. It becomes easier to do. Therefore, with this method of forming the N layer using only epitaxial growth, even if the surface electric field is weakened by the bevel, the surface electric field is concentrated in the N layer, so there is a problem that only a breakdown voltage characteristic that is considerably lower than the theoretical breakdown voltage can be achieved. There is.

そこで、本発明は、低a度の深いN型拡散層を形成する
ときの熱処理時間を大幅に短縮できる、且つホットスポ
ットの発生や表面電界の集中の少ない半導体素子の製造
方法を提供することを目的とする。
Therefore, it is an object of the present invention to provide a method for manufacturing a semiconductor device that can significantly shorten the heat treatment time when forming a deep N-type diffusion layer with a low a degree, and also reduces the occurrence of hot spots and concentration of surface electric field. purpose.

E 課題を解決するための手段 シリコンウェファ−(基板)の−主面にエビキタシセル
成長によってN型エピキタシセル成長層を形成し、次に
これを加熱処理してN型層を再分布させて低濃度の厚い
N型層を形成する。
E Means for solving the problem An N-type epitaxial cell growth layer is formed on the main surface of a silicon wafer (substrate) by epitaxial cell growth, and then this is heat-treated to redistribute the N-type layer to form a low concentration layer. Form a thick N-type layer.

F1作用 このN層の大部分はエビキタシセル成長によって形成さ
れ、また、基板とエビギタシセル成長層との界面がN−
層とN層との接合よつづれて形成される。更にエビギタ
シセル成長層のN型不純物は、濃度差によって、N−層
に拡散していき、N −1とN層の接合付近のN層側の
濃度勾配がゆるやかになる。
F1 action Most of this N layer is formed by the growth of long-term cells, and the interface between the substrate and the long-term cell growth layer is N-
It is formed by joining the layer and the N layer. Furthermore, the N-type impurity in the extracellular growth layer diffuses into the N- layer due to the concentration difference, and the concentration gradient on the N-layer side near the junction between the N-1 and N layers becomes gentle.

G、実施例 以下、本発明の一実施例について説明する。G. Example An embodiment of the present invention will be described below.

まず、第1図(a)に示すようにN型シリコン基板11
にN型エピキタシセル成長層12を形成する。このとき
の濃度分布は第2図の点線へで示すようになった。この
N型エピタキシャル成長層12を形成した後押し込み拡
散を行う。押し込み拡散を行うと、エピタキシャル成長
層のN型不純物は、濃度差によってN−F!j11に拡
散していき、第2図の実践Bに示ずようにN−層とN層
の接合付近のN層側の濃度勾配がゆるやかになる。 更
に具体例について説明すると、基板濃度8×lO目cm
−’、直径10011.厚み570μmのN型FZ結晶
シリコンウェファ−の片面に不純物濃度1゜5 X I
 O”cm−”、厚み80μmのN型エピタキシャル成
長を行い、1250℃、60時間の押し込み拡散を行っ
たところ、第3図に示すような濃度分布の層が得られた
First, as shown in FIG. 1(a), an N-type silicon substrate 11
Then, an N-type epitaxial cell growth layer 12 is formed. The concentration distribution at this time was as shown by the dotted line in FIG. After forming this N-type epitaxial growth layer 12, forced diffusion is performed. When forced diffusion is performed, the N-type impurity in the epitaxial growth layer becomes N-F! due to the concentration difference. j11, and the concentration gradient on the N layer side near the junction of the N− layer and the N layer becomes gentler, as shown in practice B in FIG. To explain a more specific example, the substrate concentration is 8×lO cm
-', diameter 10011. Impurity concentration 1°5×I on one side of a 570 μm thick N-type FZ crystal silicon wafer
When N-type epitaxial growth was performed to a thickness of 80 μm and a thickness of 80 μm, and forced diffusion was performed at 1250° C. for 60 hours, a layer with a concentration distribution as shown in FIG. 3 was obtained.

さらに、このウェファ−に1250℃、60時間の熱処
理条件でガリウムを拡散したところ、第4図に示すよう
な一度分布の層が得られた。
Furthermore, when gallium was diffused into this wafer under heat treatment conditions of 1250 DEG C. for 60 hours, a layer with a single distribution as shown in FIG. 4 was obtained.

このウェファ−を直径88zxの円板に切り出し、端面
を表面電界を弱めるためにベベル加工し、さらにパッシ
ベーションゴトで端面の表面を保護した後、主接合の耐
圧を測定した。結果は、直径88■という大口径(大面
積)の素子であるにもかかわらずホットスポットは存在
せず、もれ電流1mA以下で6000Vというほぼ理論
上のブレークダウン1丁に等しい耐圧特性が得られた。
This wafer was cut into a disk with a diameter of 88zx, the end face was beveled to weaken the surface electric field, and the end face was further protected with a passivation go, and the withstand voltage of the main junction was measured. As a result, despite the large diameter (large area) element with a diameter of 88 square centimeters, there were no hot spots, and the leakage current was less than 1 mA, and the breakdown voltage was 6000 V, which was almost the same as a single theoretical breakdown voltage. It was done.

1−1 、発明の効果 本発明は以上の方法で製造することにより、次に記載の
効果が得られた。
1-1. Effects of the Invention By manufacturing the present invention using the above method, the following effects were obtained.

(1)低濃度で厚いN層を形成するのに、従来の不純物
拡散の方法によってのみ形成する場合にくらべて、本発
明ではN型層の大部分は、エピタキシャル成長によって
形成されるので熱処理時間が大幅に短縮される。
(1) Compared to forming a thick N-layer with a low concentration using only the conventional impurity diffusion method, in the present invention, most of the N-type layer is formed by epitaxial growth, so the heat treatment time is reduced. will be significantly shortened.

(2)サイリスク等でN層を形成した後、P型不純物を
拡散することによってPベース及びPエミブター層を形
成する場合にくらべて、第5図に示すように、基板とエ
ピタキシャル成長層との界面がN−層とN層との接合よ
りずれているため、エピタキシャル成長時に発生ずる結
晶欠陥の所でホットスポットが発生しない。
(2) Compared to the case where a P base layer and a P emitter layer are formed by diffusing P type impurities after forming an N layer using Cyrisk etc., as shown in FIG. Since this is shifted from the junction between the N− layer and the N layer, hot spots do not occur at crystal defects that occur during epitaxial growth.

(3)N層をエピタキシャル成長によってのみ形成した
場合にくらべて、第2図に示すようにN−層とN層の接
合付近のN層側の濃度勾配がゆるやかになるため、サイ
リスク構造にしてベベル加工を行った場合、表面電界が
集中せず、主接合の理論上のブレークダウン電圧とほぼ
同じ耐圧特性が得られる。
(3) Compared to the case where the N layer is formed only by epitaxial growth, the concentration gradient on the N layer side near the junction of the N- layer and the N layer becomes gentler as shown in Figure 2, so it is possible to form a silisk structure with a bevel. When processed, the surface electric field is not concentrated, and a breakdown voltage characteristic that is almost the same as the theoretical breakdown voltage of the main junction can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は、本発明の括仮にN型エピタキシ
ャル成長層を形成する構造説明図、第2図は、本発明の
Nベース部分の不純物濃度分布説明図、第3図は本発明
のNベース部分の不純物濃度分布図、第4図は、PNP
構造部分の不純物濃度分布図、第5図は本発明の構造説
明図、第6図は一般的なサイリスタの構造説明図、第7
図は高順阻止耐圧のサイリスクの構造説明図、第8図は
、第7図のN層形成方法の説明図、第9図は従来のサイ
リスタの結晶欠陥の説明図、第1O図は従来のNベース
部分の不純物濃度分布図である。 II・・・N型シリコン基板、12.12’ ・・・N
型エピタキシャル成長層。 第1図 (a)     (b) 第2図 不純物濃度(任合目盛) A エピタキシャル成長直後の濃度分布B −11F 
L込み拡散後の濃實分布第3図 不純物14文(cm’) 第4図 【 不純物濃度(cm−3) 第5図 第6図   第7図 (a) (b) 不純物濃度(任意目盛)
FIGS. 1(a) and (b) are structural explanatory diagrams for forming an N-type epitaxial growth layer according to the present invention, FIG. 2 is an explanatory diagram of impurity concentration distribution in the N base portion of the present invention, and FIG. The impurity concentration distribution diagram of the N base part of the invention, FIG.
Figure 5 is an explanatory diagram of the structure of the present invention, Figure 6 is an explanatory diagram of the structure of a general thyristor, and Figure 7 is an impurity concentration distribution diagram of the structural part.
The figure is an explanatory diagram of the structure of a thyristor with high forward blocking voltage, Figure 8 is an explanatory diagram of the N layer forming method of Figure 7, Figure 9 is an explanatory diagram of crystal defects in a conventional thyristor, and Figure 1O is an explanatory diagram of the conventional thyristor. FIG. 3 is an impurity concentration distribution diagram of an N base portion. II...N type silicon substrate, 12.12'...N
type epitaxial growth layer. Figure 1 (a) (b) Figure 2 Impurity concentration (composition scale) A Concentration distribution immediately after epitaxial growth B -11F
Concentration distribution after diffusion including L Figure 3 Impurity 14 lines (cm') Figure 4 [Impurity concentration (cm-3) Figure 5 Figure 6 Figure 7 (a) (b) Impurity concentration (arbitrary scale)

Claims (1)

【特許請求の範囲】[Claims] (1)シリコンウェハーの一主面に、エピタキシャル成
長によってN型エピタキシャル成長層を形成した後、加
熱処理してN型層を再分布させて低濃度の厚いN型層を
形成するようにしたことを特徴とした半導体素子の製造
方法。
(1) After forming an N-type epitaxial growth layer on one main surface of a silicon wafer by epitaxial growth, heat treatment is performed to redistribute the N-type layer to form a thick, low-concentration N-type layer. A method for manufacturing semiconductor devices.
JP6250888A 1988-03-16 1988-03-16 Manufacture of semiconductor element Pending JPH01235331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6250888A JPH01235331A (en) 1988-03-16 1988-03-16 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6250888A JPH01235331A (en) 1988-03-16 1988-03-16 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH01235331A true JPH01235331A (en) 1989-09-20

Family

ID=13202187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6250888A Pending JPH01235331A (en) 1988-03-16 1988-03-16 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH01235331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136848A1 (en) * 2011-04-06 2012-10-11 Abb Technology Ag Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136848A1 (en) * 2011-04-06 2012-10-11 Abb Technology Ag Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device
CN103597602A (en) * 2011-04-06 2014-02-19 Abb技术有限公司 Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device
US9006041B2 (en) 2011-04-06 2015-04-14 Abb Technology Ag Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device
CN103597602B (en) * 2011-04-06 2016-05-18 Abb技术有限公司 The method of bipolar break-through semiconductor devices and this semiconductor devices of manufacture

Similar Documents

Publication Publication Date Title
US5156981A (en) Method of making a semiconductor device of a high withstand voltage
US3579815A (en) Process for wafer fabrication of high blocking voltage silicon elements
JPH0222869A (en) Symmetrical blocking high breakdown voltage semiconductor device and its manufacture
JP2014056946A (en) Semiconductor device and semiconductor device manufacturing method
US4338481A (en) Very thin silicon wafer base solar cell
Lindholm et al. Heavily doped polysilicon-contact solar cells
US4089020A (en) High power semiconductor diode
US3982315A (en) Photoelectric device
EP0214485B1 (en) Asymmetric thyristor and method of making the same
US5223442A (en) Method of making a semiconductor device of a high withstand voltage
CN111933705B (en) Manufacturing method of power semiconductor device and power semiconductor device
JPS5933272B2 (en) semiconductor equipment
JPH01235331A (en) Manufacture of semiconductor element
US4963509A (en) Gold diffusion method for semiconductor devices of high switching speed
JP4951872B2 (en) Manufacturing method of semiconductor device
US3439239A (en) Semiconductor rectifier diode for power current with a particular doping
US3573113A (en) Method of preparing a p-n junction
JPH0543192B2 (en)
JPS60138968A (en) Manufacture of semiconductor element
Parkes et al. Welded silicon for power electronic devices
JPS58155769A (en) Semiconductor rectifier diode
JP2649803B2 (en) Manufacturing method of high-speed rectifier
JPS61102783A (en) Manufacture of semiconductor light receiving element
JPS6354212B2 (en)
Parkes et al. Characterization of electronic devices employing silicon bonding technology