JPH01235144A - Controlling of electron beam quantity - Google Patents

Controlling of electron beam quantity

Info

Publication number
JPH01235144A
JPH01235144A JP5986588A JP5986588A JPH01235144A JP H01235144 A JPH01235144 A JP H01235144A JP 5986588 A JP5986588 A JP 5986588A JP 5986588 A JP5986588 A JP 5986588A JP H01235144 A JPH01235144 A JP H01235144A
Authority
JP
Japan
Prior art keywords
electron beam
metal foil
cathode
vacuum container
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5986588A
Other languages
Japanese (ja)
Inventor
Hisamichi Ishioka
石岡 久道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5986588A priority Critical patent/JPH01235144A/en
Publication of JPH01235144A publication Critical patent/JPH01235144A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily follow the change when the electron beam quantity set for an object to be radiated is changed by calculating the quantity of the electron beam permeating a metal foil and changing the electric power fed into a vacuum container from a high-frequency power source. CONSTITUTION:When the electric power is fed into a vacuum container from a high-frequency power source 11 to generate plasma, it collides with a cathode to generate secondary electrons. The cathode current Ic is the sum of the ion current and the secondary electron current, this current Ic is inputted to an arithmetic unit 15. Emitted secondary electrons permeate a metal foil hermetically closing the opening section of the vacuum container, the quantity of the electron beam permeating the metal foil when the electron beam is radiated to an object to be radiated arranged on the outside of the metal foil is calculated based on the current value flowing into the cathode from a high-voltage power source applying the more negative potential than the container to the cathode, the electric power fed into the vacuum container from the high-frequency power source is changed until this calculated value becomes equal to the electron beam quantity set for the radiated object. When the electron beam quantity set for the radiated object is changed, the change can be easily followed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、金属箔により気密に閉鎖される開口部を備
えた真空容器内に導入されたプラズマ原料カスに高周波
電界を作用させてプラズマを生成し、このプラズマ中の
イオンを前記真空容器内に配され該容器より負の電位に
課電された陰極に衝突させて2次電子を放出させ、この
放出された2次電子を前記容器と陰極との間の電位差に
より加速して前記真空容器の開口部を気密に閉鎖する金
属箔を進退させ、この金属箔の外憐に配されている被照
射物に電子線を照射する電子線照射装置に係り、特に被
照射物に電子線を照射する際に金属箔を透過する電子線
の量を制御する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention generates plasma by applying a high-frequency electric field to plasma raw material scum introduced into a vacuum container having an opening that is hermetically closed with metal foil. The generated ions in the plasma collide with a cathode arranged in the vacuum container and charged with a negative potential from the container to emit secondary electrons, and the emitted secondary electrons are transferred to the container. Electron beam irradiation, in which a metal foil that airtightly closes the opening of the vacuum container is advanced and retreated by acceleration due to a potential difference between the cathode and the object to be irradiated placed on the outer surface of the metal foil is irradiated with an electron beam. The present invention relates to an apparatus, and particularly to a method of controlling the amount of electron beam that passes through a metal foil when irradiating an object with an electron beam.

〔従来の技術〕[Conventional technology]

第2図は従来の電子線照射装置の主要部である電子線主
成部構成の一例を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the main electron beam components, which are the main parts of a conventional electron beam irradiation device.

一方の開放端側か金属箔4により気密に閉鎖された筒状
の金属製真空容器1内の空間はこの容器と同電位にある
グリ、ド3により上下に分離され、この分離された下方
の空間には図示されないガス導入管からHe、Arなど
の不活性ガスが導入され、高周波電源l】から導入端子
5を介して導入された高側e電界によりプラズマ化され
る。一方、分離された上方の空間上部には、高電圧電源
12により、接地電位にある真空容器1に対して一20
0kV程度の負電位に課電される陰極2が配され、この
ため、前記下方の空間で生成されたプラズーf6中のイ
オンが負電位に課電された陰極2に向かって静電加速さ
れ、イオンビーム7となって陰極2に衝突し、陰極から
2次電子を放出させる。この放出された2次電子は陰極
2とグリ、ド3との間の電位差200kVによってイオ
ンと逆にグリ、ド3に向かって加速され、電子ビーム8
となってグリ、ド3を通り、さらにプラズマ6を横切っ
て金属箔4に達する。
The space inside a cylindrical metal vacuum container 1, which is hermetically closed by a metal foil 4 on one open end side, is separated into upper and lower parts by a grid and a grid 3 which are at the same potential as the container, and the separated lower part An inert gas such as He or Ar is introduced into the space from a gas introduction pipe (not shown), and is turned into plasma by a high-side electric field introduced from a high frequency power source 1 through an introduction terminal 5. On the other hand, in the upper part of the separated space, a high voltage power supply 12 connects the vacuum container 1, which is at ground potential, to
A cathode 2 charged with a negative potential of about 0 kV is disposed, so that ions in the plasma f6 generated in the space below are electrostatically accelerated toward the cathode 2 charged with a negative potential, The ion beam 7 collides with the cathode 2, causing secondary electrons to be emitted from the cathode. The emitted secondary electrons are accelerated toward the ion beam 3 due to the potential difference of 200 kV between the cathode 2 and the ion beam 8.
Then, it passes through the holes 3 and 3, and further crosses the plasma 6 to reach the metal foil 4.

金属箔4は例えば厚さ数十ミクロンのTi膜であり、真
空を保持するには十分な厚さであるが、200kVに加
速された電子ビームの一部はこの箔を透過して大気中へ
放出され、大気中の被照射物に照射される。なお、図中
、符号9.10は本発明者の発明に係る電極(、出願中
、出願番号未詳)であり、ともに平面状のメ、シ、電極
として形成され、それぞれグリ、ド3および陰極2の前
面に配されて陰極とグリ、ドとの間の等電位面の湾曲を
矯正するとともに適当な電位を与えられて2次電子を効
率よく金属箔まで到達させる役目を果たす、このように
して金属箔を透過し被照射物に照射される照射電子線1
3の量は、従来、高電圧電源12から陰極2に供給され
る負の高電位や、高周波電源1】からプラズマ中へ投入
される投入電力の各設定値ごとに真空容器外に配置され
た感光材を用いて確認していたため、確認に非常に手間
がかがりでいた。
The metal foil 4 is, for example, a Ti film with a thickness of several tens of microns, and is thick enough to maintain a vacuum, but a part of the electron beam accelerated to 200 kV passes through this foil and enters the atmosphere. It is released and irradiates objects in the atmosphere. In the figure, reference numerals 9 and 10 indicate electrodes according to the present inventor's invention (pending application, application number unknown), both of which are formed as flat electrodes, with a grid, a dowel, and a cathode, respectively. It is placed in front of the metal foil to correct the curvature of the equipotential surface between the cathode and the electrodes, and also plays the role of applying an appropriate potential to allow the secondary electrons to efficiently reach the metal foil. Irradiation electron beam 1 that passes through the metal foil and irradiates the object to be irradiated.
Conventionally, the amount of 3 was placed outside the vacuum vessel for each set value of the negative high potential supplied to the cathode 2 from the high voltage power supply 12 and the input power input into the plasma from the high frequency power supply 1. Confirmation was very time-consuming because it was confirmed using a photosensitive material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明は、前記従来の問題点に鑑み、電子線照射中に
金属箔を透過して被照射物へ向かう電子線量を確認しつ
つその電子線量が予め被照射物に対して設定された電子
線量に自動的に等しくなるように電子線生成部を制御す
る方法であってかつ被照射物に設定される電子線量が変
わっても容易にこれに追随しつる制御方法を実現するこ
とをその解決すべき課題とする。
In view of the above-mentioned conventional problems, the present invention has been developed to confirm the amount of electron beam that passes through the metal foil and goes to the object to be irradiated during electron beam irradiation, and to adjust the amount of electron beam to the object that is set in advance for the object to be irradiated. It is an object of the present invention to provide a method for controlling an electron beam generating unit so that the electron beam is automatically equal to , and to realize a control method that can easily follow the electron beam dose set to the irradiated object even if it changes. This should be an important issue.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するために、この発明によれば、金属箔
により気密に閉鎖される開口部を備えた真空容器内に導
入されたプラズマ原料ガスに高周波電界を作用させてプ
ラズマを生成し、このプラズマ中のイオンを前記真空容
器内に配され該容器より負の電位に課電された陰極に衝
突させて2次電子を放出させ、この放出された2次電子
を前記容器と陰極との間の電位差により加速して前記真
空容器の開口部を気密に閉鎖する金属箔を透過させ、こ
の金属箔の外側に配されている被照射物に電子線を照射
する際の該金属箔を透過する電子線の量を自動的に制御
する方法を、前記陰極に容器より負の電位を与える高電
圧電源から該陰極に流入する電流値を用いて前記金属箔
を透過する電子線の量を演算し、この演算値が前記被照
射物に対して設定された電子線量と等しくなるまで前記
原料ガスプラズマ化のための高周波電源から真空容器内
へ投入される電力を変化させる方法とするものとする。
In order to solve the above problems, according to the present invention, a high-frequency electric field is applied to a plasma raw material gas introduced into a vacuum container having an opening hermetically closed with a metal foil to generate plasma. Ions in the plasma collide with a cathode arranged in the vacuum container and charged with a negative potential from the container to emit secondary electrons, and the emitted secondary electrons are transferred between the container and the cathode. The electron beam passes through a metal foil that airtightly closes the opening of the vacuum container by being accelerated by the potential difference of A method for automatically controlling the amount of electron beam is to calculate the amount of electron beam passing through the metal foil using the current value flowing into the cathode from a high voltage power source that applies a negative potential to the cathode from a container. The method is such that the electric power input from the high frequency power source for converting the raw material gas into plasma is changed into the vacuum vessel until this calculated value becomes equal to the electron beam dose set for the object to be irradiated.

〔作用〕[Effect]

この方法は、被照射物に照射される電子線を構成する。 This method configures an electron beam that is irradiated onto an object.

陰極2から放出される2次電子の量とこの陰極2に高電
圧電源12から流入する陰極電流との間に電子線生成部
の構成とその運転条件とによってきまる一定の条件が存
在し、従ってこの陰極電流を利用することによる照射電
子線量制御の可能性に着目したものであり、次のように
展開される。すなわち、まず、陰極2の2次電子放出嘉
γすなわち衝突イオンが形成するイオン電流1iに対す
る放出電子による電子電流1eの比を測定してこれを関
数発生器に入力しておく。この2次電子放出srは陰極
2の構成材料、イオン種とその工鬼ルギに依存するから
、前記放出率の測定はこれら因子の各1組合わせについ
て行い、電子線生成部の構成とその運転条件とに対応し
た値が出力として得られるように入力する。そこで、高
電圧電源12から陰極に流入する電流をIcとすれば。
There is a certain condition between the amount of secondary electrons emitted from the cathode 2 and the cathode current flowing into the cathode 2 from the high voltage power supply 12, which is determined by the configuration of the electron beam generating section and its operating conditions. This study focuses on the possibility of controlling the irradiation electron dose by utilizing this cathode current, and is developed as follows. That is, first, the secondary electron emission value γ of the cathode 2, that is, the ratio of the electron current 1e due to the emitted electrons to the ion current 1i formed by the colliding ions is measured and inputted into the function generator. Since this secondary electron emission sr depends on the constituent material of the cathode 2, the ion species, and its manufacturer, the emission rate is measured for each combination of these factors, and the configuration of the electron beam generating section and its operation are measured. input so that the value corresponding to the condition is obtained as the output. Therefore, if the current flowing into the cathode from the high voltage power supply 12 is Ic.

このIcは陰極2に流入するイオン電流1iと電子電流
1eとの和であり、かつIe=yIiであるから、Ic
=Ii−)1e=÷Ie + Ie = (工+l )
 Ieとナリ、これから2次電子電流がI e = +
 I c  として求まる。そして、この2次電子電流
1eは電子ビーム8として陰極2を出てから金属箔4を
透過するまでに散乱により減衰し、電極9,10および
グリ、ド3の開口率(電子ビーム8の進行方向に垂直な
平面への電極の総投影面積に対するビームの通過可能投
影面穆の比)をそれぞれP、、P2およびPSとしプラ
ズマ6および金属箔4の透過率をそれぞれP、、P、と
すれば、金属箔4を透過する照射電子線量1rad i
i Irad=Ie op、 *P2 aP3 op4
*P5 =T十丁1c m PH−P2 spa a 
P4 * PSとなる。ここで、P1〜P3は各電極の
形状と寸法から決まる定数であり、従ってP、xP2x
P3=α(定数)とおくことかで営る。P4については
高周波電源11からの投入電力と相関を有するプラズマ
密度、電子の二兆ルギとの関係を、またPsについては
金属箔4の構成材料、厚さ、電子の工木ルギとの関係を
実測し、これら各因子に対応した透過率p4.p。
This Ic is the sum of the ionic current 1i flowing into the cathode 2 and the electron current 1e, and since Ie=yIi, Ic
=Ii-)1e=÷Ie+Ie=(Eng+l)
From Ie and Nari, the secondary electron current is Ie = +
It is found as Ic. This secondary electron current 1e is attenuated by scattering from the time it leaves the cathode 2 as an electron beam 8 until it passes through the metal foil 4, and the aperture ratio of the electrodes 9, 10 and the grid 3 (progress of the electron beam 8) is attenuated by scattering. Let the ratio of the projection surface area through which the beam can pass to the total projected area of the electrodes on a plane perpendicular to the direction be P, , P2 and PS, respectively, and the transmittance of the plasma 6 and the metal foil 4 be P, , P, respectively. For example, the irradiation electron dose transmitted through the metal foil 4 is 1 rad i
i Irad=Ie op, *P2 aP3 op4
*P5 = T tenth 1cm PH-P2 spa a
It becomes P4 * PS. Here, P1 to P3 are constants determined from the shape and dimensions of each electrode, so P, xP2x
It operates by setting P3 = α (constant). Regarding P4, the relationship between the plasma density, which has a correlation with the input power from the high-frequency power source 11, and 2 trillion rugi of electrons, and regarding Ps, the relationship between the constituent material of the metal foil 4, its thickness, and the 2 trillion rugi of electrons. The transmittance p4. was actually measured and corresponded to each of these factors. p.

が出力されるように関数発生器に入力する。is input to the function generator so that it is output.

このようにして、電子線生成部の構成とその運転条件と
から、これらに対応するr、αg P4 + PSの値
をそれぞれ関数発生器から出力させるとともに、これら
の出力と陰極電流Icとを組合わせることにより、金属
箔を透過する電子線量が、Irad=+ * Ic 1
1 a * P4 * PSとして求められる。従って
この電子線量を、被照射物に対してあらかじめ設定され
た量と比較し、両者が等しくなるまで高周波電源からプ
ラズマ中へ投入される電力を変化させれば、所定の電子
線量による照射が自動的に可能となり、また被照射物に
対して設定される電子線量が変わっても容易にこれに追
随することができる。
In this way, based on the configuration of the electron beam generator and its operating conditions, the corresponding values of r and αg P4 + PS are output from the function generator, and these outputs are combined with the cathode current Ic. By combining, the amount of electron beam transmitted through the metal foil is Irad=+*Ic 1
1 a * P4 * PS. Therefore, by comparing this electron dose with a preset amount for the irradiated object and changing the power input from the high-frequency power source into the plasma until the two become equal, irradiation with the predetermined electron dose is automatically performed. Furthermore, even if the electron beam dose set for the object to be irradiated changes, it can be easily followed.

〔実施例〕〔Example〕

第】図に本発明の一実旅例を示す、まず、高周波電源1
】から真空容器内へ電力を投入してプラズマを発生させ
ると、プラズマ中のイオンが陰極に向かって加速され、
陰極に衝突して2次電子を発生ずる。高電圧電源12か
ら陰極に流入する電流すなわち陰極電流Icはイオン電
流と2次電子電流との和であり、この電流1cを演算器
15に入力する。一方、電子線生成部の歯極材料、イオ
ン種。
Figure 1 shows a practical example of the present invention. First, a high frequency power source 1
] When electricity is input into the vacuum chamber to generate plasma, the ions in the plasma are accelerated toward the cathode,
It collides with the cathode and generates secondary electrons. A current flowing into the cathode from the high-voltage power supply 12, that is, a cathode current Ic, is the sum of an ion current and a secondary electron current, and this current 1c is input to the calculator 15. On the other hand, the tooth electrode material and ionic species of the electron beam generating section.

イオン種に対して高電圧電源12から与えられる加速エ
ネルギは電子線生成部の構成とその運転条件とから与え
られるから、これらを関数発生器14に入力して2次電
子放出srを演算、出力させる。
Since the acceleration energy given to the ion species from the high voltage power supply 12 is given by the configuration of the electron beam generation section and its operating conditions, these are input to the function generator 14 to calculate and output the secondary electron emission sr. let

さらに、プラズマ密度を与える高周波電源11からの投
入電力、2次電子を加速する高電圧電源12からの加速
エネルギも電子線生成部の運転条件から与えられるから
、これらを関数発生器14に入力して2次電子のプラズ
マ透過率P4を出力させる。
Furthermore, since the input power from the high frequency power source 11 that provides plasma density and the acceleration energy from the high voltage power source 12 that accelerates secondary electrons are also given from the operating conditions of the electron beam generator, these are input to the function generator 14. to output the plasma transmittance P4 of secondary electrons.

また、金属箔の構成材料、厚さも電子線発生部の構成か
ら与えられるから、これらを関数発生器14に入力し、
さきに入力された2次電子加速エネルギと組み合わせて
2次電子の金属箔透過率P、を出力させる。また、第2
図の電極9.10およびグリ、ド3のそれぞれの開口率
から得られるαは電子線主成部固有の定数であるから、
これらのα。
Furthermore, since the constituent material and thickness of the metal foil are also given by the configuration of the electron beam generator, these are input to the function generator 14,
In combination with the previously input secondary electron acceleration energy, the secondary electron metal foil transmittance P is output. Also, the second
Since α obtained from the aperture ratio of each of the electrodes 9 and 10 and the grid and gate 3 in the figure is a constant specific to the main component of the electron beam,
These α.

p4. p、 、γを演算器15に入力し、さきに入力
されたIcと合わせて金属箔を透過する電子線量1 r
adを演算し、被照射物に対して予め設定された電子線
量との差を求め、この差を用いて高周波電源からの投入
電力を変化させ、この差が零すなわち制御入力が零とな
るまで投入電力を変化させる。
p4. Input p, , γ into the calculator 15, and combine with the previously input Ic to calculate the electron dose 1 r that passes through the metal foil.
ad is calculated, the difference from the preset electron dose for the irradiated object is found, and this difference is used to change the input power from the high frequency power source until this difference becomes zero, that is, the control input becomes zero. Change input power.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、電子線生成部の
構成とその運転条件とが決まれば、高電圧電源から陰極
へ流入する陰極電流から金属箔を透過して被照射物へ向
かう電子線の量を求めることができるから、各運転条件
ごとに電子線量を確認する手間が省け1、かつ被照射物
に対して設定される電子線量が変わっても容易にこれに
追随して透過電子線量の制御が行われるから、被照射物
に対する電子線量の自動設定も可能になる。
As described above, according to the present invention, once the configuration of the electron beam generating section and its operating conditions are determined, the cathode current flows from the high voltage power supply to the cathode and passes through the metal foil to the irradiated object. Since the amount of electron beam can be determined, the effort of checking the electron beam amount for each operating condition is saved1, and even if the electron dose set for the irradiated object changes, it can be easily followed and transmitted. Since the electron dose is controlled, it is also possible to automatically set the electron dose to the irradiated object.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は未発明による電子線量制御方法の一実y6例を
示す機能プロ、り図、第2図は電子線照射装置における
電子線生成部の構成例を示す概略断面図である。 1・・・真空容器、2・・・陰極、4・・・金属箔、6
・・・プラズマ、7・・・イオンビーム、8・−・電子
ビーム、1】・・・高周波電源、12・・・高電圧電源
、13・・・照射電子第1図
FIG. 1 is a functional diagram showing an example of an uninvented electron dose control method, and FIG. 2 is a schematic sectional view showing an example of the configuration of an electron beam generating section in an electron beam irradiation apparatus. 1... Vacuum container, 2... Cathode, 4... Metal foil, 6
... Plasma, 7... Ion beam, 8... Electron beam, 1]... High frequency power supply, 12... High voltage power supply, 13... Irradiated electrons Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)金属箔により気密に閉鎖される開口部を備えた真空
容器内に導入されたプラズマ原料ガスに高周波電界を作
用させてプラズマを生成し、このプラズマ中のイオンを
前記真空容器内に配され該容器より負の電位に課電され
た陰極に衝突させて2次電子を放出させ、この放出され
た2次電子を前記容器と陰極との間の電位差により加速
して前記真空容器の開口部を気密に閉鎖する金属箔を透
過させ、この金属箔の外側に配されている被照射物に電
子線を照射する際の該金属箔を透過する電子線の量を制
御する方法であって、前記陰極に容器より負の電位を与
える高電圧電源から該陰極に流入する電流値を用いて前
記金属箔を透過する電子線の量を演算し、この演算値が
前記被照射物に対して設定された電子線量と等しくなる
まで前記原料ガスプラズマ化のための高周波電源から真
空容器内へ投入される電力を変化させることを特徴とす
る電子線量制御方法。
1) Plasma is generated by applying a high-frequency electric field to a plasma raw material gas introduced into a vacuum container equipped with an opening that is hermetically closed with metal foil, and ions in this plasma are arranged in the vacuum container. The container collides with a cathode charged with a negative potential to emit secondary electrons, and the emitted secondary electrons are accelerated by the potential difference between the container and the cathode to open the opening of the vacuum container. A method for transmitting an electron beam through a metal foil that airtightly closes the metal foil, and controlling the amount of an electron beam that passes through the metal foil when irradiating an object to be irradiated placed outside the metal foil with the electron beam, The amount of electron beam transmitted through the metal foil is calculated using the current value flowing into the cathode from a high voltage power source that applies a negative potential to the cathode from the container, and this calculated value is set for the irradiated object. 1. A method for controlling an electron dose, comprising changing the electric power input into a vacuum container from a high-frequency power source for converting the source gas into plasma until it becomes equal to the electron dose applied to the source gas.
JP5986588A 1988-03-14 1988-03-14 Controlling of electron beam quantity Pending JPH01235144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5986588A JPH01235144A (en) 1988-03-14 1988-03-14 Controlling of electron beam quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5986588A JPH01235144A (en) 1988-03-14 1988-03-14 Controlling of electron beam quantity

Publications (1)

Publication Number Publication Date
JPH01235144A true JPH01235144A (en) 1989-09-20

Family

ID=13125496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5986588A Pending JPH01235144A (en) 1988-03-14 1988-03-14 Controlling of electron beam quantity

Country Status (1)

Country Link
JP (1) JPH01235144A (en)

Similar Documents

Publication Publication Date Title
US9451688B2 (en) Device and method for particle beam production
US8410730B2 (en) Device and method for fast beam current modulation in a particle accelerator
JP3912364B2 (en) Particle beam therapy system
JP3328498B2 (en) Fast atom beam source
JP2007311125A (en) Beam emission control method of charged particle beam accelerator, and particle beam irradiation system using charged beam accelerator
JPH05198397A (en) Circular accelerator and, beam emitting method and device
JPH06176725A (en) Ion source
JPH01235144A (en) Controlling of electron beam quantity
Ferry Recent developments in electrostatic accelerator technology at NEC
JP4399604B2 (en) Charged particle beam trajectory control apparatus and control method therefor
JPH04196708A (en) Frequency adjustment device and method for piezoelectric element
JP3052957B2 (en) Charged particle beam extraction method and circular accelerator
JP2021065413A (en) Particle beam treatment device and energy adjustment method
CN113454748B (en) Ion generating device, method, and program
JP3135864B2 (en) Ion plasma type electron gun and its control method
Astrelin et al. Numerical simulation of diodes with plasma electrodes
JP3047830B2 (en) Charged particle beam extraction method, circular accelerator, and circular accelerator system
Shin et al. Energy density distribution of a modulated electron beam in a source with a plasma cathode based on a low pressure arc
JPH1172599A (en) Irradiation method of electron beam and its device
JPH11151310A (en) Proton radiation therapy device
JPH05225935A (en) Ion irradiating device and control method thereof
JP2022169060A (en) Charged particle beam transport system
JP2024058747A (en) Charged particle beam transport device, method for manufacturing the charged particle beam transport device, and method for neutralizing a charged particle beam
JPH0254850A (en) Control method of ion processor
Larson Design of an electrostatic accelerator for use in intermediate energy electron cooling