JPH01235036A - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JPH01235036A
JPH01235036A JP63061274A JP6127488A JPH01235036A JP H01235036 A JPH01235036 A JP H01235036A JP 63061274 A JP63061274 A JP 63061274A JP 6127488 A JP6127488 A JP 6127488A JP H01235036 A JPH01235036 A JP H01235036A
Authority
JP
Japan
Prior art keywords
objective lens
optical
light source
laser light
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63061274A
Other languages
Japanese (ja)
Inventor
Hideyoshi Horigome
秀嘉 堀米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63061274A priority Critical patent/JPH01235036A/en
Publication of JPH01235036A publication Critical patent/JPH01235036A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the optical limitation and to increase a range of accesses in the viewfield of an objective lens with shift of this lens by setting a polarizing means in a radiating optical path covering a laser light source through the objective lens and also in a return optical path covering the objective lens through a photodetector and moving the beams sent from the laser light source in parallel according to the shift of the objective lens. CONSTITUTION:A polarizer 30 contains a glass block 31 having its both sides set in parallel with each other and a coil 32 and is set between an objective lens 15 of an optical pickup 10A and a 1/4 wavelength plate 14. The coil 32 is wound round the block 31 of the polarizer 30 and then set into the magnetic field of a permanent magnet 34 with a shaft 33 kept in parallel. A deflecting current is supplied to the coil 32 form a displacement/rotational angle converter 48. Then the light beams sent from a laser light source 11 are moved in parallel and by an equal extent in accordance with the shift of the lens 15. As a result, a range of accesses is increased in the viewfield of the lens 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学ピンクアップ装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to optical pink-up devices.

〔発明の概要〕[Summary of the invention]

本発明は、光学ピックアップ装置において、射出光路及
び戻り光路の重複部分に光偏向手段を設け、レーザ光源
からの光ビームを対物レンズの移動に応じて平行移動さ
せることにより、視野内アクセスの範囲を拡大するよう
にしたものである。
The present invention provides an optical pickup device in which an optical deflection means is provided in the overlapping portion of the output optical path and the return optical path, and the optical beam from the laser light source is moved in parallel according to the movement of the objective lens, thereby widening the range of access within the field of view. It is designed to expand.

〔従来の技術〕[Conventional technology]

周知の光学式オーディオディスク、いわゆるコンパクト
ディスクは、例えばポリカーボネートから成る基板の表
面に、ビットと呼ばれる一連の凹部としてディジタル音
声信号が記録されている。
In a well-known optical audio disc, a so-called compact disc, digital audio signals are recorded as a series of recesses called bits on the surface of a substrate made of, for example, polycarbonate.

ディスクの全面にわたってアルミニウムが蒸着されて反
射膜が形成される。ピントの深さは、信号を読み取るた
めのレーザ光の波長の174に設定されており、レーザ
光の回折現象により、実効的には反射光の強度変化とし
て記録情報が読み取られる。
Aluminum is deposited over the entire surface of the disk to form a reflective film. The depth of focus is set to 174 wavelengths of the laser beam used to read the signal, and due to the diffraction phenomenon of the laser beam, the recorded information is effectively read as a change in the intensity of the reflected light.

読み取りのための光学ピンクアップ001は、例えば第
4図に示すように、光源としてのレーザダイオード01
1と、ディスク+11からの反射光を検出する光検出器
Qωとを備える。ダイオードOυから射出されたレーザ
光は、コリメートレンズ叩によって平行光束(光ビーム
)に形成され、偏向ビームスプリッタ03. 1/4波
長板Oa及び対物レンズθつを経て、ディスク(1)上
に集束する。
The optical pink-up 001 for reading uses a laser diode 01 as a light source, for example, as shown in FIG.
1 and a photodetector Qω that detects reflected light from the disk +11. The laser light emitted from the diode Oυ is formed into a parallel light beam (light beam) by a collimating lens, and is formed into a parallel light beam (light beam) by the deflection beam splitter 03. The light passes through a quarter-wave plate Oa and an objective lens θ, and is focused onto the disk (1).

この対物レンズαつは、2軸デバイス0[0に搭載され
て、光軸に平行及び垂直の2方向、即ち、ディスク+1
1に垂直な方向と、ディスク+11の半径方向とに自在
に移動し得るように支持される。この移動のため、2輪
デバイスQ61はフォーカスコイル(17f)及びトラ
ッキングコイル(17t)を有する。
This objective lens α is mounted on a two-axis device 0[0, and is arranged in two directions parallel and perpendicular to the optical axis, that is, the disk +1
1 and in the radial direction of the disk +11. For this movement, the two-wheeled device Q61 has a focus coil (17f) and a tracking coil (17t).

ディスク(1)からの戻り光は、対物レンズαつ及び1
74波長板04]を経て、偏向ビームスプリッタα君こ
入射し、その斜面(+3r)で反射されて、レンズ0乃
及びシリンドリカルレンズQglを介して、光検出器節
に到達する。
The return light from the disk (1) is transmitted through objective lenses α and 1.
74 wavelength plate 04], enters the polarizing beam splitter α, is reflected by its slope (+3r), and reaches the photodetector node via the lens 0 and the cylindrical lens Qgl.

第6図に示すように、この光検出器(2mは、「田j字
状に4分割された受光領域(20A)〜(20D)を有
する。
As shown in FIG. 6, this photodetector (2m) has light receiving areas (20A) to (20D) divided into four parts in a square shape.

ディスク(1)の再生時には、この光検出器(2)の各
検出出力Sa −Sdから形成されたフォーカス誤差信
号Sf及びトラッキング誤差信号Stが2軸デバイス叫
のコイル(17f)及び(17t)にそれぞれ供給され
て、ピックアップ0ωからのレーザ光のスポットが常に
トランク上に結像するように、フォーカシング及びトラ
ッキング等のサーボ制御が行なわれる。
During reproduction of the disc (1), the focus error signal Sf and tracking error signal St formed from each detection output Sa - Sd of the photodetector (2) are sent to the coils (17f) and (17t) of the two-axis device. Servo control such as focusing and tracking is performed so that the spot of laser light from the pickup 0ω is always focused on the trunk.

(発明が解決しようとする課題〕 ところで、前述のような光学ピンクアップ叫がディスク
i11の所望のトラックにアクセスしようとする場合、
この所望のトラックと現にアクセスしているトランクと
の距離に応じて、光学ビノクア710ωは次のように移
動する。
(Problem to be Solved by the Invention) By the way, when the above-mentioned optical pink-up scream attempts to access a desired track of disk i11,
Depending on the distance between this desired track and the currently accessed trunk, the optical binoqua 710ω moves as follows.

まず、図示を省略したりニアモータ等によって、光学ピ
ックアップO[9の全体が所望のトラックの近傍まで粗
(移動する。
First, the entire optical pickup O[9 is roughly moved (moved) to the vicinity of a desired track by a near motor or the like (not shown).

次に、2軸デバイスQGにより、対物レンズQSIだけ
が数10〜数100本のトラックの範囲で移動するマル
チトラックジャンプを行なう。
Next, the two-axis device QG performs a multi-track jump in which only the objective lens QSI moves over a range of several tens to hundreds of tracks.

更に、所望のトラックまでの数本のトランクを対物レン
ズa!9だけが1木ずつ移動するシングルトラックジャ
ンプを行なう。
Furthermore, objective lens a! several trunks to the desired track! Only 9 performs single track jumps, moving one tree at a time.

なお、上述のような光学ピックアップ0ωの全体または
対物レンズaつだけの移動のいずれにおいても、図示を
省略したンステム制御装置により、移動範囲内の各トラ
ックの7ドレスに基づいて、精粗の移動モードの切換や
移動量の制御が行なわれる。
In addition, whether the entire optical pickup 0ω or only one objective lens is moved as described above, a system control device (not shown) controls fine and coarse movements based on the seven dresses of each track within the movement range. Mode switching and movement amount control are performed.

ところが、前述のように、光学ピックアップαωは、構
成が複雑であって形状及び重量が大きいため、その全体
を移動させるために多くの時間を要し、所望トランクへ
のアクセスが遅くなるという問題があった。
However, as mentioned above, the optical pickup αω has a complicated configuration and is large in shape and weight, so it takes a lot of time to move the entire device, which poses the problem of slow access to the desired trunk. there were.

この問題を解消するために、対物レンズQSIの移動に
よる視野内アクセスの範囲を拡大することが考えられる
が、従来の光学ピックアップでは、対物レンズの移動範
囲が光学的に制約を受けており、視野内アクセス範囲の
拡大が困難であるという問題があった。
In order to solve this problem, it is possible to expand the range of access within the field of view by moving the objective lens QSI, but in conventional optical pickups, the range of movement of the objective lens is optically restricted, and the field of view is There was a problem in that it was difficult to expand the access range within the network.

即ち、第5図に実線で示す中立位置から、同図に破線で
示すように、対物レンズ051が右方へ移動した場合、
ディスク(1)からの戻りビームの光路は対物レンズ0
5)が移動した分だけずれてしまい、偏向ビームスプリ
ッタq1の斜面(13r)で反射した後、第6図に示す
ように、光検出器(2Ql上のスポットが下方に移動し
てしまい、サーボ誤差信号に影ツする。
That is, when the objective lens 051 moves to the right from the neutral position shown by the solid line in FIG. 5 as shown by the broken line in the same figure,
The optical path of the return beam from the disk (1) is the objective lens 0.
5) is shifted by the amount moved, and after being reflected on the slope (13r) of the deflection beam splitter q1, the spot on the photodetector (2Ql) moves downward, as shown in Figure 6, and the servo It affects the error signal.

また、対物レンズ09の口径が例えば5曽蔵、光ビーム
の直径はこれより稍大きく、例えば6m1程度に選定さ
れるため、第5図において、対物レンズ霞が更に右方へ
移動した場合、対物レンズQSIの一部が光ビームの外
に出てしまい、ディスク(1)上に集束する光量が減少
すると共に、「けられ」による収差が発生して、光検出
器112IfIの検出出力のS/Nや位相特性が劣化し
てしまう。このため、対物レンズ!!9の移動可能範囲
は、機構上、例えば±l asを超えるが、光学的には
十数100μm程度に制限される。
In addition, since the aperture of the objective lens 09 is selected to be, for example, 5 mm, and the diameter of the light beam is slightly larger than this, for example, about 6 m1, if the objective lens haze moves further to the right in FIG. A part of the lens QSI comes out of the light beam, reducing the amount of light focused on the disk (1) and causing aberrations due to "vignetting", resulting in an S/ of the detection output of the photodetector 112IfI. N and phase characteristics deteriorate. For this reason, the objective lens! ! Mechanically, the movable range of 9 exceeds, for example, ±las, but optically it is limited to about 10-odd 100 μm.

なお、光ビームの直径を大きくすれば、再生専用光ディ
スクについては、上述の光景減少等の問題は解消するが
、追記型(ライトワンス)や書換可能型のように、問エ
ネルギーのレーザ光が必要な光ディスクの場合、カップ
リング効率が減少してしまい、実用的でないという問題
が生ずる。
Increasing the diameter of the light beam will solve the above-mentioned problems such as reduced visibility for read-only optical discs, but for write-once and rewritable discs, a laser beam with low energy is required. In the case of optical discs, the problem arises that the coupling efficiency decreases, making it impractical.

かかる点に鑑み、本発明の目的は、光学的制約を除去し
て、対物レンズの移動による視野内アクセスの範囲を拡
大した光学ピックアップ装置を提供するところにある。
In view of this, an object of the present invention is to provide an optical pickup device that eliminates optical constraints and expands the range of access within the field of view by moving the objective lens.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は、レーザ光源αυと、光軸に平行及び垂直の2
方向に移動可能に支持されて、レーザ光源から射出され
る光ビームを光学記録媒体(li上に集束させる対物レ
ンズa9と、この対物レンズを介して光学記録媒体から
の戻り光を受光する光検出器−とを備える光学ピンクア
ップ装置(IOA)において、レーザ光源から対物レン
ズまでの射出光路中で、かつ対物レンズから光検出器ま
での戻り光路中に光偏向手段(30)を設け、レーザ光
源からの光ビームを対物レンズの移動に応じて平行移動
させるようにした光学ピンクアップ装置である。
The present invention provides a laser light source αυ and two parallel and perpendicular to the optical axis.
an objective lens a9 that is supported movably in a direction and focuses a light beam emitted from a laser light source onto an optical recording medium (li); and a photodetector that receives return light from the optical recording medium through this objective lens. In an optical pink-up apparatus (IOA) comprising a laser light source, a light deflection means (30) is provided in the exit light path from the laser light source to the objective lens and in the return light path from the objective lens to the photodetector. This is an optical pink-up device that moves the light beam from the mirror in parallel according to the movement of the objective lens.

〔作用〕[Effect]

かかる構成によれば、レーザ光源からの光ビームが対物
レンズの移動に追随して等量だけ平行移動し、視野内ア
クセスの範囲が拡大される。
According to this configuration, the light beam from the laser light source follows the movement of the objective lens and moves in parallel by an equal amount, thereby expanding the range of access within the field of view.

〔実施例〕〔Example〕

以下、第1図〜第3図を参照しながら、本発明による光
学ピックアップ装置の一実施例について説明する。
Hereinafter, an embodiment of an optical pickup device according to the present invention will be described with reference to FIGS. 1 to 3.

本発明の一実施例の構成を第1図に示す。この第1図に
おいて、前出第4図に対応する部分には同一の符号を付
けて重複説明を省略する。
FIG. 1 shows the configuration of an embodiment of the present invention. In FIG. 1, parts corresponding to those in FIG. 4 are given the same reference numerals and redundant explanation will be omitted.

第1図において、(30)は光偏向器であって、両面が
平行なガラスブロック(3I)とコイル(32)を備え
、光学ピックアップ(10^)の対物レンズ(151と
174波長板041との間に配設される。第2図に示す
ように、光偏向器(30)のガラスブロック(31)は
、その周囲にコイル(32)が巻装され、軸(33)を
水平にして、永久磁石(34)の磁界中に配設される。
In FIG. 1, (30) is an optical deflector, which is equipped with a glass block (3I) and a coil (32) with parallel surfaces, and is equipped with an objective lens (151 and 174 of a wavelength plate 041) of an optical pickup (10^). As shown in Fig. 2, the glass block (31) of the optical deflector (30) has a coil (32) wound around it, and the axis (33) is set horizontally. , are arranged in the magnetic field of the permanent magnet (34).

コイル(32)には後述の変位・回動角変換器(48)
から偏向電流が供給される。光学ピンクアップ(IOA
)のその余の構成は前出第4図と同様である。
The coil (32) is equipped with a displacement/rotation angle converter (48), which will be described later.
Deflection current is supplied from Optical pink up (IOA)
) The rest of the structure is the same as that shown in FIG. 4 above.

(41)はマトリクス回路であって、光検出器(2I1
1の各受光領域(2OA) 〜(20D)の検出出力S
a = Sdが供給され、次の(11〜(3)式に示す
ような演算が行なわれて、高周波信号sh、フォーカス
誤差信号Sf及びトラフキング誤差信号Stが得られる
(41) is a matrix circuit, which includes a photodetector (2I1
Detection output S of each light receiving area (2OA) to (20D) of 1
a = Sd is supplied, and calculations as shown in the following equations (11 to (3)) are performed to obtain a high frequency signal sh, a focus error signal Sf, and a tracking error signal St.

Sh = Sa + Sb + Sc + Sd   
         口)Sf= (Sa+Sc) −(
Sb+Sd)   (21St= (Sa+Sb) −
(Sc+Sd)   (31高周波信号shは信号処理
回路(42)に供給され、復調、D−A変換等の処理が
施されて、音声信号SAFが再生される。
Sh = Sa + Sb + Sc + Sd
mouth) Sf= (Sa+Sc) −(
Sb+Sd) (21St= (Sa+Sb) −
(Sc+Sd) (31) The high frequency signal sh is supplied to the signal processing circuit (42), where it undergoes processing such as demodulation and DA conversion, and reproduces the audio signal SAF.

フォーカス誤差信号Sfがサーボ増幅器(23)を介し
て、2軸デバイス叫のコイル(17f)に供給される。
The focus error signal Sf is supplied to the coil (17f) of the two-axis device via the servo amplifier (23).

トラッキング誤差信号Stは、再生時に図示とは逆に切
換えられるスイッチ(45)と、サーボ増幅器(44)
とを介して、コイル(17t)に供給される。
The tracking error signal St is generated by a switch (45) which is switched in the opposite direction to that shown in the figure during reproduction, and a servo amplifier (44).
and is supplied to the coil (17t).

(46)はジャンプパルス発生器であって、前述のシス
テム制御装置(図示を省略)に制御されて、ジャンプす
べきトラック数に対応して、適宜のパルス幅のジャンプ
パルスPjを出力する。このパルスPjがスイッチ(4
5)及びサーボ増幅器(44)を介して、2軸デバイス
OQのコイル(17t)に供給されると共に、スイッチ
(47)を介して、変位・回動角変換器(以下X−θ変
換器と呼ぶ)(48)に供給される。
Reference numeral 46 denotes a jump pulse generator, which is controlled by the aforementioned system control device (not shown) and outputs a jump pulse Pj of an appropriate pulse width in accordance with the number of tracks to be jumped to. This pulse Pj is the switch (4
5) and a servo amplifier (44), it is supplied to the coil (17t) of the two-axis device OQ, and is also supplied to a displacement/rotation angle converter (hereinafter referred to as an X-θ converter) via a switch (47). (48).

次に、第3図をも参照しながら、本実施例の視野内アク
セス動作について説明する。
Next, referring also to FIG. 3, the intra-field-of-view access operation of this embodiment will be described.

ジャンプモード時、スイッチ(45)及び(47)が連
動して図示の状態に切り換えられ、トラッキングサーボ
は非動作状態とされる。パルス発生器(46)からのジ
ャンプパルスPjが増幅器(44)を経て2軸デバイス
a61のコイル(17t)に供給されて、図示のように
、対物レンズ09が例えば右方向に変位する。
In the jump mode, switches (45) and (47) are switched to the illustrated state in conjunction with each other, and the tracking servo is rendered inactive. A jump pulse Pj from the pulse generator (46) is supplied to the coil (17t) of the two-axis device a61 via the amplifier (44), and the objective lens 09 is displaced, for example, to the right as shown.

同時に、増幅器(44)からのジャンプパルスPjがX
−θ変換器(48)に供給され、×−θ変換器(48)
からの偏向電流が光偏向器(30)のコイル(32)に
供給されて、ガラスブロック(31)が、例えば時計方
向に回動する。
At the same time, the jump pulse Pj from the amplifier (44)
-θ converter (48) and ×-θ converter (48)
A deflection current from is supplied to the coil (32) of the optical deflector (30), and the glass block (31) is rotated, for example, clockwise.

第3図に示すように、回動状態のガラスブロック(31
)に下方から入射する光線は、互いに平行な下面(31
1)と上面(31u)とで2回屈折し、回動方向に平行
移動して上方に射出される。
As shown in Figure 3, the glass block (31
) is incident from below on the lower surface (31
1) and the upper surface (31u), the light beam is refracted twice, moves parallel to the rotating direction, and is emitted upward.

ガラスブロック(31)の屈折率をn、厚さをL、回動
角をθとすれば、入射角はθとなり、屈折角をφとして
、入射光線に対する射出光線の平行移tJ]ff1Xは
次の(4)式のように表わされる。
If the refractive index of the glass block (31) is n, the thickness is L, and the rotation angle is θ, then the incident angle is θ, and the refraction angle is φ, and the parallel shift of the exiting ray with respect to the incident ray tJ]ff1X is as follows. It is expressed as equation (4) below.

X = t (tanθ−tanφ)cosθCOSφ 入射角θ及び屈折角φの間には、スネルの法則により、
次の(5)式が成立する。
X = t (tanθ-tanφ) cosθCOSφ According to Snell's law, between the incident angle θ and the refraction angle φ,
The following equation (5) holds true.

sinθ=nsinφ          (5)+4
1. f51両式からφを消去すれば、次の(6)式が
得られる。
sinθ=nsinφ (5)+4
1. By eliminating φ from both f51 equations, the following equation (6) is obtained.

この(6)式で表わされるような変換特性をX−θ変I
O!器(4日)に持たせて光偏向器(30)による射出
光の平行移動量を対物レンズ051の変位量と等しくす
れば、前述のような光学的制約が除去されて、対物レン
ズQSIの移動による視野内アクセスの範囲が拡大され
る。
The conversion characteristic expressed by this equation (6) is
O! If the amount of parallel movement of the emitted light by the optical deflector (30) is made equal to the amount of displacement of the objective lens 051, the above-mentioned optical constraints are removed and the objective lens QSI is The range of access within the visual field by movement is expanded.

例えば、屈折率がn=1.51のガラスブロック(31
)を±30°または±45゛ まで回動させた場合、対
物レンズα9の移動可能範囲はそれぞれ次の(7a)式
及び(7b)式のようになる。
For example, a glass block with a refractive index of n=1.51 (31
) is rotated by ±30° or ±45°, the movable range of the objective lens α9 is expressed by the following equations (7a) and (7b), respectively.

〔±X)zo−±0.19t    (7a)〔±x)
、、#±0.33t    (7b)ガラスブロック(
31)の厚さが例えば15nの場合、(7b)式による
全移動範囲は9.9711にも達し、従来の大数100
μmと比べて、格段に拡大されている。
[±X) zo-±0.19t (7a) [±x)
,, #±0.33t (7b) Glass block (
31) is, for example, 15n, the total movement range according to equation (7b) reaches 9.9711, which is smaller than the conventional large number 100.
Compared to μm, it is significantly enlarged.

なお、上述の実施例では、簡単のために、ディジタルオ
ーディオディスクの再生に好適な、一体型光学ビックア
ップ装置について説明したが、追記型及び書換可能型の
光ディスク等にも好適な、適宜に変形された光学ピック
アップ装置に対しても同様に適用することができる。
In the above embodiment, for the sake of simplicity, an integrated optical pickup device was described which is suitable for playing digital audio discs, but it can be modified as appropriate and is also suitable for recordable and rewritable optical discs. The present invention can be similarly applied to optical pickup devices.

また、本発明にかかる光偏向器(30)に、ディスクの
偏心や、ピックアップの光軸の傾き (スキュー)に起
因する、プッシュプル型のトラッキング誤差信号の直流
変動分を供給することにより、スキューや偏心にも強い
光学ピックアップ装置にすることもできる。
Furthermore, by supplying the optical deflector (30) according to the present invention with a DC fluctuation component of a push-pull type tracking error signal caused by the eccentricity of the disk or the inclination (skew) of the optical axis of the pickup, it is possible to reduce the skew. It is also possible to create an optical pickup device that is resistant to eccentricity and eccentricity.

〔発明の効果〕〔Effect of the invention〕

以上詳述のように、本発明によれば、射出光路及び戻り
光路の重複部分に光偏向手段を設け、レーザ光源からの
光ビームを対物レンズの移動に応して平行移動させるよ
うにしたので、視野内アクセスの範囲を拡大した光学ピ
ックアップ装置が得られる。
As described in detail above, according to the present invention, a light deflecting means is provided in the overlapping portion of the output optical path and the return optical path, and the light beam from the laser light source is moved in parallel according to the movement of the objective lens. , an optical pickup device with an expanded range of in-field access can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光学ピックアップ装置の一実施例
の構成を示すブロック図、第2図は本発明の一実施例の
要部の構成を示す斜視図、第3図は本発明の詳細な説明
するための線図、第4図は従来の光学ピックアップ装置
の構成例を示す断面図、第5図及び第6図は本発明の説
明のための断面図及び正面図である。 (1)は光学記録媒体、001. (]、OA)は光学
ピックアップ、00はレーザダイオード、09は対物レ
ンズ、0ωは2軸デバイス、QllDは光検出器、(3
0)は光偏向器、(46)はジャンプパルス発生器、(
4日)は変位・回動角変換器である。
FIG. 1 is a block diagram showing the configuration of an embodiment of an optical pickup device according to the present invention, FIG. 2 is a perspective view showing the configuration of essential parts of an embodiment of the present invention, and FIG. FIG. 4 is a cross-sectional view showing a configuration example of a conventional optical pickup device, and FIGS. 5 and 6 are a cross-sectional view and a front view for explaining the present invention. (1) is an optical recording medium, 001. (], OA) is an optical pickup, 00 is a laser diode, 09 is an objective lens, 0ω is a two-axis device, QllD is a photodetector, (3
0) is an optical deflector, (46) is a jump pulse generator, (
4) is a displacement/rotation angle converter.

Claims (1)

【特許請求の範囲】 レーザ光源と、光軸に平行及び垂直の2方向に移動可能
に支持されて、上記レーザ光源から射出される光ビーム
を光学記録媒体上に集束させる対物レンズと、この対物
レンズを介して上記光学記録媒体からの戻り光を受光す
る光検出器とを備える光学ピックアップ装置において、 上記レーザ光源から上記対物レンズまでの射出光路中で
、かつ上記対物レンズから上記光検出器までの戻り光路
中に光偏向手段を設け、 上記レーザ光源からの光ビームを上記対物レンズの移動
に応じて平行移動させるようにしたことを特徴とする光
学ピックアップ装置。
[Scope of Claims] A laser light source, an objective lens that is supported movably in two directions parallel and perpendicular to the optical axis and that focuses a light beam emitted from the laser light source onto an optical recording medium, and this objective lens. an optical pickup device comprising a photodetector that receives return light from the optical recording medium via a lens, in an emission optical path from the laser light source to the objective lens and from the objective lens to the photodetector An optical pickup device, characterized in that a light deflecting means is provided in the return optical path of the laser light source, and the light beam from the laser light source is moved in parallel according to the movement of the objective lens.
JP63061274A 1988-03-15 1988-03-15 Optical pickup device Pending JPH01235036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63061274A JPH01235036A (en) 1988-03-15 1988-03-15 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63061274A JPH01235036A (en) 1988-03-15 1988-03-15 Optical pickup device

Publications (1)

Publication Number Publication Date
JPH01235036A true JPH01235036A (en) 1989-09-20

Family

ID=13166468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63061274A Pending JPH01235036A (en) 1988-03-15 1988-03-15 Optical pickup device

Country Status (1)

Country Link
JP (1) JPH01235036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671880B2 (en) 2003-01-17 2010-03-02 Hewlett-Packard Development Company, L.P. Optical disk labeling system and method
KR101016680B1 (en) * 2002-02-27 2011-02-25 리핑 양 Use of total coumarins of cnidium fruit in preparing medicaments for treating psoriasis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093647A (en) * 1983-10-28 1985-05-25 Asahi Optical Co Ltd Reproducing optical system control means of optical type disc player
JPS62283428A (en) * 1986-05-31 1987-12-09 Asahi Optical Co Ltd Optical pickup

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093647A (en) * 1983-10-28 1985-05-25 Asahi Optical Co Ltd Reproducing optical system control means of optical type disc player
JPS62283428A (en) * 1986-05-31 1987-12-09 Asahi Optical Co Ltd Optical pickup

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016680B1 (en) * 2002-02-27 2011-02-25 리핑 양 Use of total coumarins of cnidium fruit in preparing medicaments for treating psoriasis
US7671880B2 (en) 2003-01-17 2010-03-02 Hewlett-Packard Development Company, L.P. Optical disk labeling system and method

Similar Documents

Publication Publication Date Title
JP4850703B2 (en) Confocal optical system aperture position control device, optical head device, and optical information processing device
KR100458038B1 (en) Optical head
JPH10134400A (en) Optical head
JP2633535B2 (en) Optical pickup device
JPS5971142A (en) Optical information reproducer
US5898653A (en) Optical head unit for use in an information read/write apparatus
JPH11271608A (en) Polarization hologram lens, optical pickup, information reproducing device and information recorder
JPH01235036A (en) Optical pickup device
JPH10134399A (en) Optical head
JPH09265639A (en) Optical pickup
JPH1074328A (en) Optical pickup and disk player
JP2001052367A (en) Optical pickup apparatus and optical information- recording/reproducing apparatus
JP2000322760A (en) Optical pickup device
JPH103685A (en) Optical pickup device sharing cd/dvd
JPS6093647A (en) Reproducing optical system control means of optical type disc player
JPH10149560A (en) Optical pickup and optical disk device
JP3582291B2 (en) Optical pickup device
JPH09161306A (en) Optical disk device
JPH10312573A (en) Optical pickup and reproducer
JPS62164232A (en) Optical recording and reproducing device
JPH10233026A (en) Optical pickup and optical disk device
JP3810055B2 (en) Optical disk device
JP2825552B2 (en) Optical information recording / reproducing device
JPH056562A (en) Tilt detecting device
JPS6145419A (en) Optical pickup