JPH01234881A - Method of developing phase type hologram - Google Patents

Method of developing phase type hologram

Info

Publication number
JPH01234881A
JPH01234881A JP6022188A JP6022188A JPH01234881A JP H01234881 A JPH01234881 A JP H01234881A JP 6022188 A JP6022188 A JP 6022188A JP 6022188 A JP6022188 A JP 6022188A JP H01234881 A JPH01234881 A JP H01234881A
Authority
JP
Japan
Prior art keywords
solvent
speed
development
hologram
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6022188A
Other languages
Japanese (ja)
Inventor
Yasuo Yamagishi
康男 山岸
Takeshi Ishizuka
剛 石塚
Toshiyuki Ichikawa
稔幸 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6022188A priority Critical patent/JPH01234881A/en
Publication of JPH01234881A publication Critical patent/JPH01234881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Holo Graphy (AREA)

Abstract

PURPOSE:To obtain a uniform hologram which is free from unequal development with good reproducibility by setting a pulling up speed and immersing speed at the speeds set within the range of the adequate pulling up speed from a swellable solvent and the adequate immersing speed in a bad solvent. CONSTITUTION:An exposed hologram dry plate 1 is immersed in the solvent A and is pulled up from the solvent and is immersed into the solvent B in a developing device P. The degree of swelling of the polymer is small and the development weakens if the amt. the deposition of the solvent A is small. Conversely, the rapid elution of the solvent A in the carrier into the solvent B is retarded by the shielding effect of the excess solvent A and the development weakens if the deposition is too large. The specified deposition is maintained by the principle similar to the principle of dip coating by controlling the pulling up speed of the immersed dry plate. The immersing speed is set at this value by empirically determining the speed at which the unequalness is least. The uniform development with the good reproducibility is thereby executed without the unequal development over a wide area.

Description

【発明の詳細な説明】 〔概 要〕 本発明は位相型ホログラムの現像方法に関し、回折効率
の低下等のため、現像後に発生する液垂れ模様や筋模様
の問題を解決にするため膨潤性溶媒からの引き上げ速度
と貧溶媒への浸漬速度を制御するように構成したもので
ある。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for developing a phase-type hologram, and in order to solve the problem of dripping patterns and streaks that occur after development due to a decrease in diffraction efficiency, etc., a swelling solvent is used. The device is configured to control the rate of lifting from the tank and the rate of immersion in the poor solvent.

(産業上の利用分野〕 本発明は、写真の1つの利用形態であるホログラムを作
製するに際しての、フォトポリマーの現像方法に関する
(Industrial Application Field) The present invention relates to a method for developing a photopolymer when producing a hologram, which is one form of use of photography.

〔従来技術および発明が解決しようとする課題〕フォト
ポリマーは、フォトレジストや印刷用製版、写真等広い
分野で利用されている。いずれの分野においても、感光
性ポリマーは露光後、現像処理され現像によって所望の
像が形成される。
[Prior Art and Problems to be Solved by the Invention] Photopolymers are used in a wide range of fields such as photoresists, printing plates, and photography. In any field, a photosensitive polymer is subjected to a development treatment after being exposed to light to form a desired image.

ホログラム記録用材料として近年、フォトポリマーが用
いられている。ホモダラムには、振幅型ホログラムと位
相型ホログラムがある。この位相型ホログラムには、サ
ーモプラスチックやフォトレジストのように表面の凹凸
によって光を回折させるものと、重クロム酸ゼラチン(
DG)やポリビニルカルバゾール(PVCz)系材n 
(特開昭53−15153.5PICProceedi
ng Vol、60Q (03))のように担体材料の
屈折率分布によって回折させるものがある。前者は表面
の凹凸を金型に転写することで多数の複製が可能である
が、ホログラムが厚い場合や凹凸が基板に垂直でなく傾
いている場合には金型の引き抜きが出来ない。このため
、量産に適しているものの応用範囲が限定される。一方
、後者は膜厚の厚いものや干渉縞が基板にほぼ平行な反
射型ホログラム(リップマン型)へも適用が可能であり
、応用範囲が広いが、1枚ずつ露光現像する必要がある
。しかし、ホログラムの現像プロセスは一般に極めてデ
リケートであり、製造上の歩留は低い。歩留りについて
はフォトレジストも事情は同様であるが、フォトレジス
トでは一枚マスクホログラムを作製すれば多数の複製が
可能なので、マスクであるレジストホログラムの歩留り
はそれほど問題にならない。これに対し後者の屈折率分
布型では一枚各に、現像するので現像プロセスでの歩留
り向上は極めて重要である。
Photopolymers have recently been used as hologram recording materials. There are two types of homodulum: amplitude holograms and phase holograms. This phase-type hologram consists of materials that diffract light due to their surface irregularities, such as thermoplastics and photoresists, and dichromate gelatin (
DG) and polyvinylcarbazole (PVCz) materials n
(Unexamined Japanese Patent Publication No. 53-15153.5 PIC Proceedi
ng Vol, 60Q (03)), which causes diffraction to occur due to the refractive index distribution of the carrier material. In the former case, a large number of copies can be made by transferring the surface irregularities to the mold, but if the hologram is thick or the irregularities are not perpendicular to the substrate but are inclined, the mold cannot be pulled out. Therefore, although it is suitable for mass production, its range of applications is limited. On the other hand, the latter can be applied to thick films and reflective holograms (Lippmann type) in which interference fringes are almost parallel to the substrate, and has a wide range of applications, but requires exposure and development one by one. However, the hologram development process is generally very delicate and the manufacturing yield is low. Regarding yield, the situation is similar for photoresists, but with photoresist, if one mask hologram is produced, many copies can be made, so the yield of the resist hologram, which is a mask, is not so much of an issue. On the other hand, in the latter refractive index distribution type, each sheet is developed, so it is extremely important to improve the yield in the development process.

屈折率分布型位相ホログラム(以下単にホログラムと呼
ぶ)の現像プロセスを代表的な材料であるDCとPVC
zを例に以下説明する。
The development process for refractive index gradient phase holograms (hereinafter simply referred to as holograms) is performed using DC and PVC, which are typical materials.
This will be explained below using z as an example.

■ 干渉露光後、記録担体となるポリマーに対して膨潤
性を有する溶媒Aに担体を浸す。DCでは35℃の水(
Applied 0ptics Vol、7.No1O
P2102)、PVCzでは40℃のキシレン(特開昭
53−15153)を使用する。このときの担体の状態
については詳しい報告はないが、露光部(光が強め合っ
た部分)と未露光部(光が弱め合った部分)で膨潤率に
差が生じているものと推測される。
(2) After interference exposure, the carrier is immersed in a solvent A that has swelling properties for the polymer that will become the recording carrier. In DC, water at 35℃ (
Applied Optics Vol.7. No1O
P2102) and PVCz use xylene at 40°C (Japanese Patent Application Laid-Open No. 53-15153). Although there are no detailed reports on the state of the carrier at this time, it is presumed that there is a difference in the swelling rate between the exposed areas (areas where the light strengthens each other) and the unexposed areas (areas where the light weakens each other). .

−の溶剤Aに浸漬した後、担体ポリマに対しては貧溶媒
□として作用し、かつ溶媒Aと相溶性を有する他の溶媒
Bにて、担体ポリマに含まれる溶媒Aを除去する。
- After immersion in solvent A, solvent A contained in the carrier polymer is removed with another solvent B that acts as a poor solvent □ for the carrier polymer and is compatible with solvent A.

このとき干渉パターンに対応した屈折率分布が発現し現
像される。溶媒Bとしては、DGではイソプロピルアル
コールが、PVCzではn−ヘキサンが用いられる。な
お■の処理により屈折率分布が形成される理由について
は、いずれの材料についても明らかになっていない。
At this time, a refractive index distribution corresponding to the interference pattern is developed. As the solvent B, isopropyl alcohol is used in DG, and n-hexane is used in PVCz. Note that the reason why the refractive index distribution is formed by the treatment (2) is not clear for any of the materials.

以上のようなプリセスによって回折効率の高いホログラ
ムが形成され得る。しかし、広い面積に恒って所定の回
折効率やブラッグ角を得ることは極めて難しく、場所に
よって効率の低下やブラッグ角のずれが発生したり、液
垂れ模様などが発生する。こうした傾向はDGよりもP
VCzで著しく、また膜厚が厚いほど顕著である。
A hologram with high diffraction efficiency can be formed by the above-described precess. However, it is extremely difficult to consistently obtain a predetermined diffraction efficiency and Bragg angle over a wide area, and depending on the location, a decrease in efficiency, a shift in the Bragg angle, or a dripping pattern may occur. This tendency is more pronounced in P than in DG.
This is noticeable at VCz, and becomes more noticeable as the film thickness increases.

従って、屈折率分布型ホログラムでは、現像ムラのない
均一なホログラムを再現性良く得られる現像プロセスの
確立が強く望まれていたのである。
Therefore, for refractive index distribution type holograms, it has been strongly desired to establish a development process that can obtain uniform holograms with good reproducibility without development unevenness.

〔課題を解決するための手段、発明の作用および効果〕[Means for solving the problem, action and effects of the invention]

本発明は上記課題を解決するためになされたもので、 記録担体に膨潤性を有する溶媒に干渉縞の潜像を形成し
た記録担体を浸漬した後、膨潤した担体を担体に対し貧
溶媒として作用する溶媒に浸漬することでホログラムを
現像する位相型ホログラムの現像方法において、前記膨
潤性溶媒からの引き上げ適正速度と前記貧溶媒への適正
浸漬速度の範囲内に設定した速度に、前記引き上げ速度
と浸漬速度を設定することを特徴とする。
The present invention has been made in order to solve the above problems, and after immersing a recording carrier on which a latent image of interference fringes has been formed in a solvent that has swelling properties on the recording carrier, the swollen carrier acts as a poor solvent on the carrier. In a method for developing a phase-type hologram in which a hologram is developed by immersing the hologram in a solvent, the pulling speed is set within a range of an appropriate lifting speed from the swelling solvent and an appropriate immersion speed into the poor solvent. It is characterized by setting the dipping speed.

すなわち、本発明においては記録担体を膨潤性溶媒Aか
ら引き上げ速度を制御しながら引き上げ、所定の速度で
溶媒Bに浸漬することにより、広い面積に恒って均一で
かつ再現性の良い現像が可能となる。
That is, in the present invention, by pulling the recording carrier from the swelling solvent A while controlling the pulling speed and immersing it in the solvent B at a predetermined speed, uniform development over a wide area and with good reproducibility can be achieved. becomes.

現像ムラとは、換言すれば現像強度の場所によるちがい
である。現像強度を定量化するのは難しいが、定性的に
は溶媒Aの温度を上げたり溶媒を変えてポリマーに対す
る溶解性を高くすると現像が強まる。同一露光条件にお
いては、現像が強くなると担体中の屈折率変調幅Δnが
大きくなる傾向がある。
In other words, development unevenness refers to differences in development strength depending on location. Although it is difficult to quantify the development strength, qualitatively speaking, development becomes stronger when the temperature of solvent A is increased or the solvent is changed to increase the solubility of the polymer. Under the same exposure conditions, the stronger the development, the larger the refractive index modulation width Δn in the carrier.

前出の公知例では、現像条件として溶媒ABの種類や液
温、浸漬時間が記載されているが、これらの条件は面内
でほとんど一様であるから、現像ムラが存在することは
、前記以外にも現像強度に影響を与えるパラメータの存
在を意味している。
In the above-mentioned known example, the type of solvent AB, liquid temperature, and immersion time are described as development conditions, but since these conditions are almost uniform within the surface, the existence of development unevenness is not explained above. This means that there are other parameters that affect development strength.

そこで、現像に影響を与える要因を検討した結果、溶媒
Bに浸漬する直前での溶媒Aの担体面への付着量と、担
体中の溶媒Aが溶媒B中に溶出するスビードが現像強度
に大きく依存することが判明した。
Therefore, as a result of examining the factors that affect development, we found that the amount of solvent A attached to the carrier surface immediately before immersion in solvent B and the speed at which solvent A in the carrier dissolves into solvent B have a large effect on development strength. It turned out to be dependent.

以下、更に説明する。This will be further explained below.

第1図における現像装置Pにおいて露光したホログラム
乾板1は溶媒Aに浸漬した後、引き上げられ溶媒Bに浸
漬される。このとき、引き上げた乾板の担体ポリマ膜面
に付着しているAの量と現像強度との関係を概念的に示
したものが第2図(a)である。溶媒Aの付着量が少い
とポリマの膨潤の程度が小さく現像は弱(なる。逆に多
過ぎると過剰の溶媒Aの遮閉効果により担体中の溶媒A
の溶媒Bへの速やかな溶出が阻害され現像は弱くなる。
The hologram dry plate 1 exposed in the developing device P shown in FIG. FIG. 2(a) conceptually shows the relationship between the amount of A adhering to the surface of the carrier polymer film of the pulled-up dry plate and the development strength. If the amount of attached solvent A is small, the degree of swelling of the polymer will be small and the development will be weak.On the other hand, if the amount is too large, the blocking effect of excess solvent A will cause the solvent A in the carrier to
Rapid elution into solvent B is inhibited, and development becomes weak.

次に、Aから取り出した乾板を溶媒Bに浸漬するとき、
乾板と溶媒Bとの摩擦により溶媒Bが乾板に引きずられ
て流れが生じるが、基板エツジのわずかな凹凸や膜面の
小さなゴミ等、液面の波等により流れに不均一さが生じ
る。流速の不均一は、溶媒Aの溶媒Bへの溶出速度の差
となり現像強度差として浸漬方向に平行な細い筋模様が
現われる。
Next, when the dry plate taken out from A is immersed in solvent B,
The friction between the dry plate and the solvent B causes the solvent B to be dragged by the dry plate, causing a flow, but unevenness in the flow occurs due to slight irregularities on the edge of the substrate, small dust on the film surface, waves on the liquid surface, etc. Non-uniformity in flow rate results in a difference in the elution rate of solvent A into solvent B, and a thin striped pattern parallel to the immersion direction appears as a difference in development strength.

この傾向は、浸漬速度が速いほど、またBの粘度が高い
程顕著である。一方浸漬速度が遅いと、液面近傍の溶媒
Bの蒸気が膜面のAに吸収され貧溶媒化されて現像が進
む。このとき−様に現像されれば良いが、担体膜中から
引き抜がれた溶媒が。
This tendency is more pronounced as the dipping speed is faster and the viscosity of B is higher. On the other hand, if the dipping speed is slow, the vapor of solvent B near the liquid surface is absorbed by A on the film surface and becomes a poor solvent, so that development progresses. At this time, it is sufficient if the development is carried out in a similar manner, but the solvent is drawn out from the carrier film.

「しずく」となって垂れるため液垂れの模様が発生する
。液垂れ模様は溶媒Bの沸点が低い場合や、ポリマに対
する膨潤性が極めて小さい場合に著しい。以上の現像ム
ラの様子を第2図(b)に示す。
The liquid drips in the form of "drops", creating a dripping pattern. The dripping pattern is noticeable when the boiling point of the solvent B is low or when the swelling property for the polymer is extremely low. The appearance of the above development unevenness is shown in FIG. 2(b).

以上溶媒Aの付着量ムラや溶媒Bへの浸漬速度の不適切
が現像ムラの原因となることを示した。
It has been shown above that unevenness in the amount of attached solvent A and inappropriate immersion speed in solvent B cause uneven development.

従ってこれらの条件を適切に制御すれば現像ムラを低減
あるいは解消できるのである。
Therefore, by appropriately controlling these conditions, uneven development can be reduced or eliminated.

このため、本発明方法では上記に特定した方法を採用す
る。
For this reason, the method specified above is adopted in the method of the present invention.

更に以下に説明する。This will be further explained below.

まず溶媒Aの付着量であるが、これは浸漬した乾板の引
き上げ速度を制御することで(第2図(d)中Xで示す
)、デイプコーティングと同様の原理により付着量を一
定にすることができる。浸漬速度は最もムラの少い速度
を実験的に求めてこの値に設定する(第2図(b)中Y
で示す)。
First, the amount of attached solvent A can be fixed by controlling the lifting speed of the immersed dry plate (indicated by X in Figure 2 (d)) using the same principle as deep coating. be able to. The immersion speed is experimentally determined to be the most uniform speed (Y in Figure 2 (b)).
).

なお、ホログラムのサイズが大きい場合には、ホログラ
ム面の上と下とでAから取り出してから溶媒Bに浸漬す
るまでの時間が大幅に異なるため、上部では溶媒Aが乾
いて現像が弱くなる。これは第2図(b)で示した現像
ムラとは異なる。このような場合には、溶媒Aからの引
き上げ速度を上部ではやや速く下部では遅(することで
現像強度差を低減できる。
Note that when the size of the hologram is large, the time taken from the time it is taken out from A to the time it is immersed in solvent B is significantly different between the top and bottom of the hologram surface, so that solvent A dries in the upper part, making development weaker. This is different from the development unevenness shown in FIG. 2(b). In such a case, the difference in development strength can be reduced by setting the pulling speed from solvent A to be slightly faster in the upper part and slower in the lower part.

ところで、現像ムラの程度は、材料やプロセスによって
大きく異なり、また、その許容範囲は使用目的によって
異なる。一般に厚い膜や干渉縞が基板に対して傾いてい
るものではムラが顕著である。また溶媒Aと溶媒B液と
の担体ポリマに対する溶解性の差が大きい方が顕著であ
る。例えばDCの場合水で膨潤させイソプロピルアルコ
ール(IPA)で脱水するが、IPAに浸漬した瞬間、
DC膜近傍のrPAは膜に付着していた水と混合されD
C膜からの脱水能力が低下す゛る。このため脱水が比較
的ゆっくり進行するので場所による現像強度のちがい、
すなわち現像ムラは少ない。これに対し、PVCzでは
溶媒Bとしてヘキサンを使用した場合、溶媒Aであるキ
シレンがヘキサンと混合されると直に貧溶媒化されるの
でPVCz膜からのキシレンの溶出が極めて短時間で進
行する。このため溶出時間の場所によるちがいΔtの、
平均溶出時間【に対する比、Δ1/1が相対的に大きく
なり現像ムラが現われやすい。
Incidentally, the degree of development unevenness varies greatly depending on the material and process, and the allowable range varies depending on the purpose of use. In general, unevenness is noticeable in thick films or in films where the interference fringes are tilted with respect to the substrate. Further, the larger the difference in solubility in the carrier polymer between solvent A and solvent B, the more remarkable it is. For example, in the case of DC, it is swollen with water and dehydrated with isopropyl alcohol (IPA), but the moment it is immersed in IPA,
The rPA near the DC membrane is mixed with the water attached to the membrane and D
The dehydration ability from the C membrane decreases. For this reason, dehydration progresses relatively slowly, so the strength of development varies depending on the location.
In other words, there is little development unevenness. On the other hand, when hexane is used as the solvent B in PVCz, xylene, which is the solvent A, is immediately converted into a poor solvent when mixed with hexane, so that elution of xylene from the PVCz film proceeds in an extremely short time. Therefore, the difference Δt in elution time depending on location,
The ratio Δ1/1 to the average elution time becomes relatively large, and uneven development tends to occur.

〔実施例〕〔Example〕

以下、現像ムラの現われやすい膜厚の厚いPVCzホロ
グラムの現像例により本発明の詳細な説明する。
Hereinafter, the present invention will be explained in detail using an example of developing a thick PVCz hologram that is likely to exhibit development unevenness.

(1)感光材料・・・平均分子量(πW)が75万のP
VCz70gをテトラヒドロフランとモノクロルベンゼ
ンの等重量混合液920gに溶解し、感光剤としてトリ
ー(ターシャリブチルパーオキシカルボニル)ベンゼン
7.0gとチオピリリウム塩1.4gを加えて溶解し2
.0μのフィルタを通して塗液とした。次にスピンコー
ド法により、178x168 x1、1 mmのガラス
基板上に上記塗液を塗布し膜厚6声の感光膜を作成し乾
板とした。
(1) Photosensitive material: P with an average molecular weight (πW) of 750,000
70 g of VCz was dissolved in 920 g of an equal weight mixture of tetrahydrofuran and monochlorobenzene, and 7.0 g of tri(tert-butylperoxycarbonyl)benzene as a photosensitizer and 1.4 g of thiopyrylium salt were added and dissolved.
.. The coating solution was passed through a 0μ filter. Next, the above coating liquid was applied onto a 178 x 168 x 1, 1 mm glass substrate by a spin code method to form a photoresist film with a thickness of 6 tones, which was then used as a dry plate.

(2)Arレーザ(488nm)光により乾板全域に2
光束干渉露光を行った。干渉縞の空間周波数は1400
本/1mで、露光量は350〜250m−J / ct
Aとした。
(2) Ar laser (488 nm) light is applied to the entire dry plate area.
Luminous interference exposure was performed. The spatial frequency of interference fringes is 1400
Line/1m, exposure amount is 350-250m-J/ct
I gave it an A.

(3) (2)の露光済乾板を第1図に示す現像器を用
いて現像した。溶媒Aはトルエン30−t%とキシレン
70wt%の混合液とし21℃に温度調整した。溶媒B
はペンタンで23℃とした。引き上げ、浸漬速度はパソ
コンに接続したステップモータにより制御されており、
500ステツプが1龍の移動距離に対応している。乾板
を溶媒Aに1分間浸漬した後v =18−0.015 
x x −(mm/ s )で引き上げた。ここでXは
乾板上部から液面までの距離(1m)で乾板下部では引
き上げ速度が遅くなるよう調節されている。浸漬速度は
40mm/sとした。
(3) The exposed dry plate of (2) was developed using the developing device shown in FIG. Solvent A was a mixture of 30-t% toluene and 70 wt% xylene, and the temperature was adjusted to 21°C. Solvent B
The temperature was set to 23°C with pentane. The lifting and dipping speeds are controlled by a step motor connected to a computer.
500 steps corresponds to the distance traveled by one dragon. After immersing the dry plate in solvent A for 1 minute, v = 18-0.015
It was pulled up at x x - (mm/s). Here, X is the distance (1 m) from the top of the dry plate to the liquid level, and is adjusted so that the pulling speed becomes slower at the bottom of the dry plate. The immersion speed was 40 mm/s.

上記プロセスによりホログラム全域で回折効率70%以
上を得た。また第2図に示すような現像ムラは見られな
かった。
Through the above process, a diffraction efficiency of 70% or more was obtained over the entire hologram area. Further, uneven development as shown in FIG. 2 was not observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を示す説明図であり、第2図(a)
および第2図(b)は現像強度と溶媒Aの付着量の関係
および現像ムラ頻度と溶媒Bの浸漬速度の関係をそれぞ
れ示すグラフである。 P・・・ホログラム現像装置、 1・・・ホログラム乾板、2・・・作成ホログラム。
FIG. 1 is an explanatory diagram showing the method of the present invention, and FIG. 2(a)
FIG. 2(b) is a graph showing the relationship between the development strength and the amount of attached solvent A, and the relationship between the frequency of uneven development and the immersion speed of solvent B, respectively. P... Hologram developing device, 1... Hologram dry plate, 2... Creation hologram.

Claims (1)

【特許請求の範囲】[Claims] 1、記録担体に膨潤性を有する溶媒に干渉縞の潜像を形
成した記録担体を浸漬した後、膨潤した担体を担体に対
し貧溶媒として作用する溶媒に浸漬することでホログラ
ムを現像する位相型ホログラムの現像方法において、前
記膨潤性溶媒からの引き上げ適正速度と前記貧溶媒への
適正浸漬速度の範囲内に設定した速度に、前記引き上げ
速度と浸漬速度を設定することを特徴とする前記位相型
ホログラムの現像方法。
1. A phase type in which a record carrier with a latent image of interference fringes formed thereon is immersed in a solvent that has swelling properties on the record carrier, and then a hologram is developed by immersing the swollen carrier in a solvent that acts as a poor solvent for the carrier. In the method for developing a hologram, the pulling speed and the dipping speed are set within a range of an appropriate speed of lifting from the swelling solvent and an appropriate dipping speed in the poor solvent. How to develop a hologram.
JP6022188A 1988-03-16 1988-03-16 Method of developing phase type hologram Pending JPH01234881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6022188A JPH01234881A (en) 1988-03-16 1988-03-16 Method of developing phase type hologram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6022188A JPH01234881A (en) 1988-03-16 1988-03-16 Method of developing phase type hologram

Publications (1)

Publication Number Publication Date
JPH01234881A true JPH01234881A (en) 1989-09-20

Family

ID=13135891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6022188A Pending JPH01234881A (en) 1988-03-16 1988-03-16 Method of developing phase type hologram

Country Status (1)

Country Link
JP (1) JPH01234881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559243B1 (en) * 2001-12-29 2006-03-15 학교법인 인제학원 Novel extracts PF-01, PF-02 and PF-03 from chicken egg

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315153A (en) * 1976-07-27 1978-02-10 Canon Inc Hologram
JPS5848087A (en) * 1981-09-17 1983-03-19 Ricoh Co Ltd Processing method for hologram dry plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315153A (en) * 1976-07-27 1978-02-10 Canon Inc Hologram
JPS5848087A (en) * 1981-09-17 1983-03-19 Ricoh Co Ltd Processing method for hologram dry plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559243B1 (en) * 2001-12-29 2006-03-15 학교법인 인제학원 Novel extracts PF-01, PF-02 and PF-03 from chicken egg

Similar Documents

Publication Publication Date Title
Smothers et al. Photopolymers for holography
US5235449A (en) Polarizer with patterned diacetylene layer, method for producing the same, and liquid crystal display device including such polarizer
US3944420A (en) Generation of permanent phase holograms and relief patterns in durable media by chemical etching
US4567123A (en) Diffusing plate
KR920006800A (en) Mask, manufacturing method thereof, pattern formation method using the same and mask blank
US4187111A (en) Sensitized porous bodies useful for producing thick refractive index recordings
EP1044396A1 (en) Method for continuous and maskless patterning of structured substrates
DE68913252T2 (en) Method and device for producing volume phase holograms.
US3957515A (en) Photographic process for producing colored polymerized images
US4372649A (en) Extended area diffractive subtractive color filters
JPH01234881A (en) Method of developing phase type hologram
US3601017A (en) Method of suppressing interference fringes in photosensitive material
US5213915A (en) Holographic recording material and method for holographic recording
JP2879785B2 (en) Method and apparatus for forming photosensitive film for hologram
Mizuno et al. Phase-hologram material by using four-center-type photopolymerization in the crystalline state
US3201237A (en) Photographic polymeric images and process for producing same
US5231440A (en) Method of and apparatus for forming volume type phase hologram
JP2896461B2 (en) Hologram manufacturing method
JP3091886B2 (en) Method of forming resist pattern
US3615446A (en) Photographic copy medium comprising a semiconductor layer with a photopolymerizable layer thereover
JPH01231082A (en) Manufacture of volume phase type hologram
JP2859885B2 (en) Hologram recording method
JPH04289890A (en) Manufacture of volumetric phase type hologram
JPH11337737A (en) Phase modulation type optical element and its production
JPH0990859A (en) Reproduction of hologram