JPH01234530A - Automatically controlled melting furnace - Google Patents

Automatically controlled melting furnace

Info

Publication number
JPH01234530A
JPH01234530A JP5850688A JP5850688A JPH01234530A JP H01234530 A JPH01234530 A JP H01234530A JP 5850688 A JP5850688 A JP 5850688A JP 5850688 A JP5850688 A JP 5850688A JP H01234530 A JPH01234530 A JP H01234530A
Authority
JP
Japan
Prior art keywords
combustion
melting furnace
signal
combustion pressure
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5850688A
Other languages
Japanese (ja)
Inventor
Haruo Tominaga
晴夫 冨永
Teruyuki Takayama
高山 輝之
Kazumoto Suzuki
鈴木 和素
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP5850688A priority Critical patent/JPH01234530A/en
Publication of JPH01234530A publication Critical patent/JPH01234530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To prevent the hanging in a melting furnace by monitoring the combustion state at all times, subjecting the brightness of the video to pattern recognition, converting the same to an electric signal and feeding the signal back to burner combustion pressure control. CONSTITUTION:One terminal of an image fiber 1 such as optical fiber is set in the peep window of respective burners of respective zones A-C and an automatic combustion state monitor device 3 is mounted to the other terminal so that the video signal is converted to the electric signal. The visual field of the peep window brightens when the hanging begins to arise and there is no fall of materials. The electric signals are classified to several stages by the area ratios of brightness and darkness and these signals are fed back to control valves for controlling the combustion pressure, etc. The results of the residual hydrogen quantity by the monitor in a combustion atmosphere measuring and adjusting device 5 are fed back to the orifice control mechanisms near the burners to adjust the combustion atmosphere. The quantity of the molten metal in a holding furnace is known from the signal of a tilting angle 6 and is sent to an automatic combustion pressure control device 4 by which the quantity is compared with a reference value and the combustion pressure is increased or decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は金属の連続溶解炉の改良に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in continuous metal melting furnaces.

更に詳しくは電気銅または属調の連続溶T!E設備とし
て知られている米国A’5ARCO社のシ↑7フト溶解
炉を自動R11l Ill シた自動制御溶解炉に関す
るものである。
For more details, electrolytic copper or continuous melting T! This relates to an automatically controlled melting furnace that is an automatic R11l Ill shift melting furnace manufactured by A'5ARCO in the United States, which is known as E equipment.

〔従来の技術〕[Conventional technology]

従来、この種の金属溶解炉は第3図、第4図、第5図の
ように構成されている。第4図において空気はブロワ等
により加圧され、エアヒータ(空気予熱器)により加熱
される。一方ブタンガス等の液化石油ガスあるいは天然
ガス等の可燃ガスは、この加熱空気と熱交換して昇温さ
れ、各バーナーに送られて前記加熱空気と混合されて燃
焼する。
Conventionally, this type of metal melting furnace has been constructed as shown in FIGS. 3, 4, and 5. In FIG. 4, air is pressurized by a blower or the like and heated by an air heater (air preheater). On the other hand, liquefied petroleum gas such as butane gas or combustible gas such as natural gas is heated by exchanging heat with the heated air, and is sent to each burner where it is mixed with the heated air and combusted.

各バーナーは第3図の断面立面図に示したにうに下方よ
りAゾーン、Bゾーン、Cゾーンと3つのバーナー群に
分かれ、各ゾーンにおいては、シャフトを取りまくドー
ナツ形状のマニホールドで均圧された空気が、第6図に
平面図様の形式で示したようにAゾーン7ケ所、B、C
ゾーン8ケ所より炉内に送入され、燃1′31ガスは第
3図に示したように横方向よりオリフィスを経て吸引送
入される。
Each burner is divided into three burner groups, A zone, B zone, and C zone from the bottom as shown in the cross-sectional elevation view of Figure 3. In each zone, the pressure is equalized by a donut-shaped manifold surrounding the shaft. As shown in Fig. 6 in the form of a plan view, the air flows into seven locations in zone A, B, and C.
The fuel 1'31 gas is fed into the furnace from eight zones, and the fuel 1'31 gas is sucked in from the side through orifices as shown in FIG.

この時の燃焼の制御は、各ゾーンごとのガスの流出ど空
気の流出をぞれぞれ圧力に変換した、所謂燃焼圧により
行われている。
Combustion control at this time is performed by so-called combustion pressure, which is obtained by converting the outflow of gas and outflow of air in each zone into pressure.

どころか、装入材オ°1の状態が一様でないため、シャ
フト炉全周にわたってほぼ等しい燃焼圧となるようにマ
ニホールドとなっていても、円周方向のある場所では溶
り易く、ある場所では溶()にくいという、いわゆる棚
吊り(オーバーハング)が生じて、運転続行が不可能と
なることがある。これを予防するため、棚吊りになりが
tフると、シ17フト炉の円周方向では各バーナーを独
立して制御できないので、マニュアルにJ:って各ゾー
ンの燃焼圧を全体として調整する作業を人手により行っ
ている。1この棚吊り現象はバーナ一端部の燃焼状態監
視窓より目視によって炉内を監視し検知して、マニュア
ルで調整していた。
On the contrary, since the condition of the charge material O 1 is not uniform, even if the manifold is designed to maintain almost equal combustion pressure all around the circumference of the shaft furnace, it tends to melt in certain places in the circumferential direction, and in some places it melts easily. This may cause so-called overhang, which is difficult to melt, and may make it impossible to continue operation. To prevent this, in order to prevent this, when the shelf hanging is completed, each burner cannot be controlled independently in the circumferential direction of the shift furnace, so the combustion pressure of each zone is adjusted as a whole using the manual. The work is done manually. 1. This shelf hanging phenomenon was detected by visually monitoring the inside of the furnace through a combustion status monitoring window at one end of the burner, and was manually adjusted.

安定した鋳造を行うためには溶解炉からの一定の湯量の
流出が望ましいが、この調整も、溶解炉から流出した湯
を一時貯留する、軸を傾斜させた保持炉の湯量を調べて
湯量が多いとき、少ないときに、それぞれに応じて燃焼
圧を低下さμたり、上部させたりするのをマニュアル操
作で行っている。
In order to perform stable casting, it is desirable for a constant amount of hot metal to flow out of the melting furnace, but this adjustment is also possible by checking the amount of hot metal in a holding furnace with an inclined shaft that temporarily stores the hot metal that flows out of the melting furnace. When the combustion pressure is high or low, the combustion pressure is manually lowered or raised depending on the situation.

またシャフト炉上部装入口より投入された電気銅等が、
殆んど酸化されずに溶解するように、バーナーを弱還元
性雰囲気で燃焼させることが必要である。各バーナーの
燃焼雰囲気は予熱空気流出とガス流量によって制御され
るが、大きな調整は予熱空気燃焼圧とガス燃焼圧との差
圧により行なわれ、微調整は人手によりバーナー近傍の
ガス配管のオリフィスの開度調整をねじ回しで行うこと
により行なっており、モニターでの燃焼排ガス中の残留
水素量により合否がチエツクされている。
In addition, electrolytic copper, etc. introduced from the upper charging port of the shaft furnace,
It is necessary to operate the burner in a slightly reducing atmosphere so that it dissolves with little oxidation. The combustion atmosphere of each burner is controlled by the preheated air outflow and gas flow rate, but major adjustments are made by the differential pressure between the preheated air combustion pressure and the gas combustion pressure, and fine adjustments are made manually by adjusting the orifice of the gas piping near the burner. The opening degree is adjusted using a screwdriver, and compliance is checked by monitoring the amount of residual hydrogen in the combustion exhaust gas.

〔発明が解決しにうとする課題〕[Problem that the invention attempts to solve]

装入材料の棚吊り現象をバーナ一端部の監視窓からの目
視により検知しているので、人手作業による判定のバラ
ツキや検知の遅れまたはシャフト炉の円周方向で各バー
ナーを独立して制御できイ1い等の原因により棚吊り現
象を回避することができず、溶解が不連続化する原因と
なっていた。
Since the phenomenon of shelving of charged material is detected visually through the monitoring window at one end of the burner, it is possible to prevent variations in manual judgment, delays in detection, and to control each burner independently in the circumferential direction of the shaft furnace. Due to reasons such as (1) and (1), it was not possible to avoid the shelf-hanging phenomenon, which caused discontinuous melting.

更に燃焼監視という眼を酷使する作業であるので、作業
者の安全衛生上から望ましくなく、またバーナー近傍の
熱作業であるので作業環境としても望ましくなかった。
Furthermore, since combustion monitoring is work that requires a lot of use of the eyes, it is undesirable from the safety and health standpoint of the workers, and since the work involves hot work near the burner, it is also undesirable as a working environment.

湯量の調整もマニュアルで行っていたので、人手作業に
よるバラツキが避けられないものであった。
The amount of hot water was also adjusted manually, so variations due to manual labor were unavoidable.

また燃焼雰囲気の微調整も人手により行っていたので、
燃焼雰囲気中の水素または一酸化炭素濃度の変動中が大
きくなり、溶鋼中の酸素量の変動中が大きくなり、鋳造
物の品質劣化をおこすという問題点を有していた。
Also, fine adjustments to the combustion atmosphere were done manually, so
The problem was that the fluctuations in the concentration of hydrogen or carbon monoxide in the combustion atmosphere became large, and the fluctuations in the amount of oxygen in the molten steel became large, causing quality deterioration of the casting.

本発明の目的は溶解炉における棚吊り現象を未然に防止
し、溶解量、従って保持炉湯量変動をなくすることによ
り、安定した鋳造を可能とし、更にガス流量の空気流量
との比の微量調整を自動化することにより、燃焼雰囲気
中の還元ガスの変動中を少なくし、溶鋼中の酸素量の変
動中を小さくして鋳造物の品質の安定化をはかり、更に
眼を酷使する作業や熱作業から作業者を解放することを
目的とする。
The purpose of the present invention is to prevent the shelf-hanging phenomenon in the melting furnace, eliminate fluctuations in the amount of melt and therefore the amount of hot water in the holding furnace, thereby enabling stable casting, and furthermore, making it possible to finely adjust the ratio of the gas flow rate to the air flow rate. By automating this process, we aim to stabilize the quality of castings by reducing the fluctuations in reducing gas in the combustion atmosphere and the fluctuations in the amount of oxygen in molten steel, and also reduce the amount of fluctuation in reducing gas in the combustion atmosphere and the fluctuation in the amount of oxygen in molten steel. The purpose is to free workers from

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは面記の課題を解決するため税意研究を行っ
た。その結果、バーナー近傍の燃焼状態監視窓に燃焼状
態監視装置を設置し、該装置より送られる映像信号を明
暗の面積比によりパターンを分類し、信号に変換して、
燃焼圧を制御することににり棚吊りを予防し、溶解炉外
の溶解物を貯留する保持炉の湯量および湯量の増減傾向
を該炉の傾転角により検知して燃焼圧を制御しく溶解量
を安定させ、更に燃焼雰囲気を自動分析して、燃料−空
気比を自動調整さゼることにより溶解炉中の還元ガスの
変動中を少なくし得ることをみいだし本発明を完成した
The present inventors conducted tax consideration research in order to solve the problem of face writing. As a result, a combustion status monitoring device was installed in the combustion status monitoring window near the burner, and the video signals sent from the device were classified into patterns based on the area ratio of brightness and darkness, and converted into signals.
By controlling the combustion pressure, shelf suspension is prevented, and the amount of hot water in the holding furnace that stores the melted material outside the melting furnace and the tendency of increase or decrease in the amount of hot water are detected by the tilt angle of the furnace, and the combustion pressure is controlled for melting. We have completed the present invention by discovering that it is possible to reduce fluctuations in the reducing gas in the melting furnace by stabilizing the amount, automatically analyzing the combustion atmosphere, and automatically adjusting the fuel-air ratio.

すなわら本発明は燃焼状態監視装置、該装置より発生さ
せた映像信号を伝達する手段、該信号を電気的にパター
ン認識して信号に変換する装置、該変換信号をバーナー
の燃焼圧制御装置にフィードバックして伝達する手段、
おJ:びバーナーの燃焼圧制御装置とを連設し、該連設
装置により炉の燃焼を自動制御するよう構成してなる自
動制御溶解炉である。
That is, the present invention provides a combustion state monitoring device, a means for transmitting a video signal generated by the device, a device for electrically pattern-recognizing the signal and converting it into a signal, and a burner combustion pressure control device for converting the converted signal into a signal. a means of providing feedback and communication to
This is an automatically controlled melting furnace configured to have a combustion pressure control device for a burner and a burner connected in series, and to automatically control combustion in the furnace by the connected device.

燃焼状態監視装置より発生させた映像信号を伝達する手
段としては光ファイバーが好ましい。
Optical fiber is preferable as a means for transmitting the video signal generated by the combustion state monitoring device.

また溶解炉外に傾転可能な溶解物保持炉を設置した溶解
炉において、該保持炉傾転角検出装置、該傾転角および
該傾転角の増減傾向信号をバーナーの燃焼圧制御装置に
フィードバックして伝達する手段、おJζびバーナーの
燃焼圧制御装置とを連設し、該連設装置により、該保持
炉の湯量および該湯量の増減傾向J−り溶解炉の燃焼を
自動制御するよう構成してなる前記の自動制御溶解炉で
ある。
In addition, in a melting furnace in which a tiltable melt holding furnace is installed outside the melting furnace, the holding furnace tilting angle detection device, the tilting angle, and an increase/decrease trend signal of the tilting angle are sent to the burner combustion pressure control device. A means for feedback and transmission, and a combustion pressure control device for the burner are connected, and the connected device automatically controls the amount of hot water in the holding furnace and the tendency of increase/decrease in the amount of hot water in the melting furnace. The above-mentioned automatically controlled melting furnace is configured as follows.

ま1(燃焼雰囲気をザンブリングする装置、該ガスを自
動分析覆る装置、該ガス中の還元ガス量の信号により燃
お1−空気比を自動調整する装置を連設し、該連設装置
ににり燃焼雰囲気の還元度を自動調整させるよう構成し
た前記の自動制御溶解炉である。前記3当の自動制御装
置を組み込めば更に好ましい。
1) A device for zumbling the combustion atmosphere, a device for automatically analyzing the gas, and a device for automatically adjusting the combustion-air ratio based on the signal of the amount of reducing gas in the gas are installed in series, and the device is connected to the device. The above-mentioned automatically controlled melting furnace is configured to automatically adjust the degree of reduction of the combustion atmosphere.It is more preferable if the three automatic control devices described above are incorporated.

燃焼状態監視装置により、炉内の映像を映像信号として
燃焼制御器に送り、ここで映像信号を明暗の面積比によ
ってパターンを分類し、電気または空気圧等による信号
に変換し、ガス流8におよび空気の流量を制御する。監
視装置よりの映像信号を伝達する手段は、監視装置に多
数のフォトセルを使用して電気信号で送ることもできる
が光ファイバーを用いて燃焼制御器に送り、ここで電気
的にパターン認識するのが、ノイズも少くもっと−5好
ましい。通常ガス流量、空気流量はそれぞれガス圧力で
表わしているので、以復これを燃焼圧という。
The combustion state monitoring device sends the images inside the furnace as video signals to the combustion controller, which classifies the video signals into patterns based on the area ratio of light and dark, converts them into electrical or pneumatic signals, and controls the gas flow 8. Control the air flow rate. The video signal from the monitoring device can be sent as an electrical signal by using a large number of photocells in the monitoring device, but it is also possible to send the video signal to the combustion controller using an optical fiber, where the pattern is recognized electrically. However, -5 is more preferable as there is less noise. Normally, gas flow rate and air flow rate are each expressed in terms of gas pressure, so this will be referred to as combustion pressure hereafter.

従来の各ゾーンのマニホールド毎の手動による燃焼圧制
御では棚吊りの早期解消にならないため、各バーナー毎
の燃焼圧制御とするのが最も好ましいが、設備費用もか
かるので、少なくとも円周3分割以上例えばAジー22
本+3本+2本、Bゾーン3本+2本+3本、Cゾーン
3本」−3本」−2本というようなゾーン毎に3分割以
上に分割して燃焼圧を制御することが好ましい。しかし
各ゾーンを2分割以下に分割したのでは棚吊の早期解消
は困難で好ましくない。
Conventional manual combustion pressure control for each manifold in each zone does not quickly eliminate shelf hanging, so it is most preferable to control combustion pressure for each burner, but it also increases equipment costs, so the circumference should be divided into at least three parts. For example, A.G.22
It is preferable to control the combustion pressure by dividing the combustion pressure into three or more zones for each zone, such as main + 3 + 2, B zone 3 + 2 + 3, and C zone 3 - 3 - 2. However, if each zone is divided into two or less, it will be difficult to quickly eliminate the hanging problem, which is not preferable.

第1図に本発明の自動制御装置の概要を図示する。FIG. 1 shows an outline of the automatic control device of the present invention.

1はグラスファイバーにりなるイメージファイバーであ
り、片端末は各ゾーンの各バーナーののぞき窓にレット
され、もう片方の端部に(よ映像信号を電気信号に変換
する3の燃焼状態自動監視装置が取伺IJられでいる。
1 is an image fiber made of glass fiber, one end of which is inserted into the viewing window of each burner in each zone, and the other end (3) is an automatic combustion status monitoring device that converts video signals into electrical signals. The IJ has been investigated.

のぞぎ窓の視野は棚吊りが起りかけ、材料の降下がない
と明るくなり、逆に未溶解物が塞がった状態では明度が
低小する、定常状態ではその中間の明度を示す。電気信
号は明暗の面積比により数段階に分類され、その信号は
燃焼圧を制御する制御弁等の機構にフィードバックされ
る。
The field of view through the viewing window becomes bright when shelf suspension is about to occur and there is no material falling; conversely, the brightness decreases when undissolved matter is blocked, and in a steady state it shows an intermediate brightness. The electrical signals are classified into several levels depending on the ratio of bright and dark areas, and the signals are fed back to mechanisms such as control valves that control combustion pressure.

5は燃焼雰囲気測定調整装置であって、燃焼雰IIII
I気制御はバーナー近傍のオリフィス制御機構を、モニ
ターによる残留水素量の結果をフィードバックして、調
整して自動制御される。
5 is a combustion atmosphere measuring and adjusting device, which is a combustion atmosphere III
I-air control is automatically controlled by adjusting the orifice control mechanism near the burner by feeding back the results of the residual hydrogen amount monitored.

更にシャフト炉出口に設けられた保持炉の湯量も全体の
燃焼圧を制御する一つの要因となっている。湯量は保持
炉の傾転角6を電気または空気圧などの信号に変換した
ものから知り、4の燃焼圧自動制御装置に送られ、基準
値との差が信号として7に送られる。標準湯量よりも少
ない時は自動的に全体の燃焼圧を上昇させ、多い時は全
体の燃焼圧を低下させる。
Furthermore, the amount of hot water in the holding furnace provided at the outlet of the shaft furnace is also a factor in controlling the overall combustion pressure. The amount of hot water is known from the holding furnace tilt angle 6 converted into an electric or pneumatic signal, which is sent to the combustion pressure automatic control device 4, and the difference from the reference value is sent to 7 as a signal. When the amount of hot water is less than the standard amount, the overall combustion pressure is automatically increased, and when it is more than the standard amount, the overall combustion pressure is decreased.

また同じ標準湯量より少ない時でも、減少傾向の時と増
加傾向の時を分別検知して、全体の燃焼圧を制御する。
In addition, even when the amount of hot water is less than the same standard amount, the overall combustion pressure is controlled by separately detecting when it is decreasing and when it is increasing.

9は液化ガスをガス化するガス発生装置、8はガスと加
熱空気との熱交換器である。
9 is a gas generator for gasifying liquefied gas, and 8 is a heat exchanger between the gas and heated air.

第2図に制御系統を示す。中間の自動制御スタートアッ
プの時点までは炉の燃焼開始よりの非定常状態を示し、
破線より下が本発明の自動制御系統を示す。そのなかで
も燃焼圧制御は空焚きあるいは溶は残りの非定常状態に
おいて燃焼状態監視情報が優先され、各バーナーが定常
状態になっている時には保持炉貯1ffl変化情報が働
くようにすることが好ましい。
Figure 2 shows the control system. Until the intermediate automatic control start-up point, the furnace exhibits an unsteady state from the start of combustion.
The part below the broken line shows the automatic control system of the present invention. Among these, for combustion pressure control, it is preferable that the combustion state monitoring information is given priority in the remaining unsteady state of dry firing or melting, and that the holding furnace storage 1ffl change information is activated when each burner is in a steady state. .

次の第1表に燃焼圧制御のアルゴリズムの1例を示す。Table 1 below shows an example of an algorithm for combustion pressure control.

〔実施例] 以下に本発明を実施例にJ二って、具体的に説明リーる
が、本発明は、実施例によって何等の限定をうけるもの
ではない。
[Examples] The present invention will be specifically explained below using Examples, but the present invention is not limited in any way by the Examples.

(実施例1) A、B、C3ゾーンに各々7本、8本、8本の各バーナ
ー燃焼容ff180万kcal/hrのものをとりつり
たシャツ1〜炉において、燃焼圧のランクを第2表のよ
うに分け、各バーナーの燃焼圧が独立して変化させ得る
制御機構とした。
(Example 1) In the shirt 1~furnace equipped with 7 burners, 8 burners, and 8 burners with a combustion capacity of 1.8 million kcal/hr in zones A, B, and C3, respectively, the combustion pressure rank was set to 2. The control mechanism is divided as shown in the table and allows the combustion pressure of each burner to be changed independently.

第2図の燃焼フ]]−ヂャー1−に示される順序で設定
を行い、途中3分間毎に入ってくるイメージファイバー
の画像と5分間毎に入ってくる保持炉貯湯量の電気信号
によって燃焼圧を自動制御し、さらに混合気燃焼排ガス
中の残留水素量の情報により、バーナーガス配管のオリ
フィス開度を自動制御し、最適燃焼状態とした。
The settings are made in the order shown in Figure 2, Combustion Plan]] - Jar 1 -, and combustion is performed according to the images of the image fiber that come in every 3 minutes and the electrical signal of the amount of hot water stored in the holding furnace that comes in every 5 minutes. The pressure was automatically controlled, and the orifice opening of the burner gas piping was automatically controlled based on information on the amount of residual hydrogen in the mixture combustion exhaust gas to achieve optimal combustion conditions.

燃焼圧制御は空焚きあるいは溶は残りの非定常状態にお
いて優先され、各バーナーが定常状態になっているとき
は保持炉貯湯量変化によって燃焼圧制御を行った。
Combustion pressure control was given priority to dry firing or melting in the remaining unsteady state, and when each burner was in a steady state, combustion pressure was controlled by changing the amount of hot water stored in the holding furnace.

このようにして毎時45t/hrの電気銅を溶解したと
ころ、初期設定と停止時のみ人が操作するだけで、完全
な自動制御運転が可能となった。
When electrolytic copper was melted at a rate of 45 t/hr in this manner, completely automatically controlled operation was possible with only human operations required during initial settings and shutdown.

(実施例2) 実施例1において、A、B、C3ゾーンを各々3分割し
、 Aゾーン 2本+3本+3本 Bゾーン 3本+2本+3本 Cゾーン 3本+3本+2本 の部分−括制御としたところ、棚吊り状態は回避でき、
実施例1と同様の効果が得られた。
(Example 2) In Example 1, A, B, and C3 zones are each divided into three parts, A zone 2 + 3 + 3 B zone 3 + 2 + 3 C zone 3 + 3 + 2 parts - bracket As a result of control, the hanging state can be avoided,
The same effects as in Example 1 were obtained.

〔発明の効果〕〔Effect of the invention〕

燃焼状態を光ファイバーで常時監視し、映像の明るさを
パターン認識させ、これを電気信号に変換し、バーナー
燃焼圧制御にフィードバックさせているので、人手によ
る調節をすることなく、棚品り現象がほとんどなくなっ
た。
The combustion status is constantly monitored using optical fiber, the brightness of the image is recognized as a pattern, this is converted into an electrical signal, and the signal is fed back to the burner combustion pressure control, so there is no need for manual adjustments and the phenomenon of stockpiling is eliminated. Almost gone.

またこの制御に保持炉の湯量を信りとしてとり込み、バ
ーナー燃焼圧制御にフィードバックして加味したので保
持炉湯量変動かほと/υどなくなり安定した鋳造が可能
となった。
In addition, since the holding furnace water flow rate is incorporated into this control and fed back into the burner combustion pressure control, stable casting is possible with almost no fluctuation in the holding furnace water flow.

溶解が安定することにより、温度および溶鋼中の酸素量
の変動中が小さくなり、鋳造物の品質が安定した。
By stabilizing the melting, fluctuations in temperature and the amount of oxygen in the molten steel were reduced, and the quality of the casting was stabilized.

更に燃焼ガス中の還元ガスの量により、ガス流量の微量
調整オリフィスの開度を自動制御しているので、燃焼雰
囲気中の1」2あるいはCO濃度の変動中が小さくなり
、鋳造物の品質が更に安定した。
Furthermore, since the opening degree of the orifice for fine adjustment of gas flow rate is automatically controlled according to the amount of reducing gas in the combustion gas, fluctuations in the combustion atmosphere or CO concentration are reduced, improving the quality of the castings. Even more stable.

作業面より児ても、燃焼監視という眼を酷使する作業か
ら作業者を解放することができた。またバーナー近傍で
の熱作業から作業者を解放することができたので作業安
全衛生上の効果も大きい。
It also freed workers from the visually demanding task of monitoring combustion. Furthermore, since the workers were freed from the heat work in the vicinity of the burner, the effect on work safety and health was also significant.

製品の品質、生産の安定、炉の生産性の向上、作業安全
性よりみても実用上の効果が極めて大ぎい発明である。
This invention has extremely great practical effects in terms of product quality, stable production, improved furnace productivity, and work safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の自動制御のダイヤグラムである。 第2図は本発明の制御系統の流れ図を示す。 第3図は本発明の自動制御装置をイ]加する溶解炉の断
面立面図である。 第4図は従来の溶解炉の制御のダイヤグラムである。 第5図は同じ〈従来の溶解炉の制御ダイヤグラムである
。 第6図は溶解炉のAゾーン、Bゾーン、Cゾーンのバー
ナー群の円周方向の配置の一例を示した図である。 第 6 図
FIG. 1 is a diagram of the automatic control of the present invention. FIG. 2 shows a flowchart of the control system of the present invention. FIG. 3 is a sectional elevational view of a melting furnace to which the automatic control device of the present invention is applied. FIG. 4 is a diagram of the control of a conventional melting furnace. FIG. 5 is a control diagram of the same conventional melting furnace. FIG. 6 is a diagram showing an example of the circumferential arrangement of burner groups in the A zone, B zone, and C zone of the melting furnace. Figure 6

Claims (1)

【特許請求の範囲】 1、燃焼状態監視装置、該装置より発生させた映像信号
を伝達する手段、該信号を電気的にパターン認識して信
号に変換する装置、該変換信号をバーナーの燃焼圧制御
装置にフィードバックして伝達する手段、およびバーナ
ーの燃焼圧制御装置とを連設し、該連設装置により炉の
燃焼を自動制御するよう構成してなる自動制御溶解炉。 2、請求項第1項において、燃焼状態監視装置より発生
させた映像信号を伝達する手段が光ファイバーである自
動制御溶解炉。 3、溶解炉外に傾転可能な溶解物保持炉を設置した溶解
炉において、該保持炉傾転角検出装置、該傾転角および
該傾転角の増減傾向信号をバーナーの燃焼圧制御装置に
フィードバックして伝達する手段、およびバーナーの燃
焼圧制御装置とを連設し、該連設装置により、該保持炉
の湯量および該湯量の増減傾向より溶解炉の燃焼を自動
制御するよう構成してなる請求項第1項記載の自動制御
溶解炉。 4、燃焼雰囲気をサンプリングする装置、該ガスを自動
分析する装置、該ガス中の還元ガス量の信号により燃料
−空気比を自動調整する装置を連設し、該連設装置によ
り燃焼雰囲気の還元度を自動調整させるよう構成した請
求項第1項または第3項記載の自動制御溶解炉。
[Scope of Claims] 1. A combustion state monitoring device, means for transmitting a video signal generated by the device, a device for electrically pattern-recognizing the signal and converting it into a signal, and converting the converted signal into a signal based on the combustion pressure of the burner. An automatically controlled melting furnace configured to have a means for transmitting feedback to a control device and a burner combustion pressure control device in series, and to automatically control combustion in the furnace by the device. 2. The automatically controlled melting furnace according to claim 1, wherein the means for transmitting the video signal generated by the combustion state monitoring device is an optical fiber. 3. In a melting furnace in which a tiltable melt holding furnace is installed outside the melting furnace, the holding furnace tilting angle detection device, the tilting angle and the increase/decrease trend signal of the tilting angle are detected by the burner combustion pressure control device. and a burner combustion pressure control device are connected in series, and the combustion in the melting furnace is automatically controlled by the connection device based on the amount of hot water in the holding furnace and the tendency of increase or decrease in the amount of hot water. The automatically controlled melting furnace according to claim 1, comprising: 4. A device for sampling the combustion atmosphere, a device for automatically analyzing the gas, and a device for automatically adjusting the fuel-air ratio based on the signal of the amount of reducing gas in the gas are installed in series, and the combustion atmosphere is reduced by the connected device. 4. The automatically controlled melting furnace according to claim 1, wherein the melting furnace is configured to automatically adjust the temperature.
JP5850688A 1988-03-14 1988-03-14 Automatically controlled melting furnace Pending JPH01234530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5850688A JPH01234530A (en) 1988-03-14 1988-03-14 Automatically controlled melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5850688A JPH01234530A (en) 1988-03-14 1988-03-14 Automatically controlled melting furnace

Publications (1)

Publication Number Publication Date
JPH01234530A true JPH01234530A (en) 1989-09-19

Family

ID=13086305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5850688A Pending JPH01234530A (en) 1988-03-14 1988-03-14 Automatically controlled melting furnace

Country Status (1)

Country Link
JP (1) JPH01234530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205979A (en) * 1992-01-30 1993-04-27 Sumitomo Electric Industries, Ltd. Automatic controlling device of burners of a shaft furnace utilizing fuzzy logic
JP2007131932A (en) * 2005-11-11 2007-05-31 Furukawa Electric Co Ltd:The Method for melting metal
JP2008106344A (en) * 2006-09-25 2008-05-08 Furukawa Battery Co Ltd:The Method for manufacturing substrate for lead storage battery and manufacturing apparatus therefor
JP2009007622A (en) * 2007-06-27 2009-01-15 Furukawa Battery Co Ltd:The Method for melting lead scrap, and method for manufacturing substrate for lead battery and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205979A (en) * 1992-01-30 1993-04-27 Sumitomo Electric Industries, Ltd. Automatic controlling device of burners of a shaft furnace utilizing fuzzy logic
JP2007131932A (en) * 2005-11-11 2007-05-31 Furukawa Electric Co Ltd:The Method for melting metal
JP2008106344A (en) * 2006-09-25 2008-05-08 Furukawa Battery Co Ltd:The Method for manufacturing substrate for lead storage battery and manufacturing apparatus therefor
JP2009007622A (en) * 2007-06-27 2009-01-15 Furukawa Battery Co Ltd:The Method for melting lead scrap, and method for manufacturing substrate for lead battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4777534B2 (en) Product heating system and method
US5660542A (en) Cupola burner
CN112342327B (en) Vanadium titano-magnetite blast furnace smelting method based on theoretical combustion temperature control
JPS63171818A (en) Tuyere for oxygen blast furnace
EP0643263A2 (en) Luminous combustion system
JPH01234530A (en) Automatically controlled melting furnace
US11261117B2 (en) System and method for synchronized oxy-fuel boosting of a regenerative glass melting furnace
US4004789A (en) Tunnelized burner for panel type furnace
JPH01268809A (en) Fine powdered coal burner
JP2000274958A (en) Metallic fusion furnace and metallic fusion method
US3690632A (en) Blast furnace control based on measurement of pressures at spaced points along the height of the furnace
JP2005213591A (en) Method for blowing solid fuel into blast furnace and blowing lance
KR20030090139A (en) Apparatus for Controlling Pressure of a Hot Stove in Blast Furnace using Cold wind control valve
KR20010057747A (en) Method for controlling coke oven temperature by double combustion of mixed gas burner and COG burner
JP7555927B2 (en) Gaseous fuel injection assembly and method
US20240102737A1 (en) Burner with imaging device, electric furnace provided with said burner, and method for manufacturing molten iron using said electric furnace
JPH06184615A (en) Method for controlling flow rate of blowing gas in refining furnace
US3249423A (en) Furnace combination and method
JP4802383B2 (en) Method for controlling generation of high temperature, low calorie fuel gas
US2317927A (en) Combustion control
JP2007031811A (en) Method for evaluating condition of tuyere and lower part of blast furnace
JP3796059B2 (en) Temperature control method in blast furnace raceway
SU870462A1 (en) System for pressure control in continuous furnace
JP4345506B2 (en) Method of injecting solid fuel into the blast furnace
KR100354212B1 (en) Steelmaking Process Operation Act