JPH01234441A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH01234441A
JPH01234441A JP63058248A JP5824888A JPH01234441A JP H01234441 A JPH01234441 A JP H01234441A JP 63058248 A JP63058248 A JP 63058248A JP 5824888 A JP5824888 A JP 5824888A JP H01234441 A JPH01234441 A JP H01234441A
Authority
JP
Japan
Prior art keywords
tread
tire
rubber
case
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63058248A
Other languages
Japanese (ja)
Inventor
Michitaka Takeshita
竹下 道孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP63058248A priority Critical patent/JPH01234441A/en
Publication of JPH01234441A publication Critical patent/JPH01234441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the subject tire having good durability to heat-generation and steerability on snow-covered or frozen road, by using a rubber layer having low glass transition temperature and compounded with a specific amount of microencapsulated oil having a specific particle diameter as a surface layer of a tread covering the crown part of a tire case. CONSTITUTION:The objective pneumatic tire 1 is provided with a tire case 2 and a tread 3 covering the crown part 2a of the case 2. In the above tire, the case 2 is composed of a carcass part 6 consisting of a pair of bead parts 5 and a rubberized cord radially disposed between the bead parts, a belt part disposed on the crown part in the circumferential direction of the tire, and a side wall 8 covering both sides in the direction of the tire axis. The tread 3 on the surface layer 3a accounts for >=10% of the total volume of the tread and the crown part 2a of the case 2 is covered with a rubber layer 4 obtained by compounding 100 pts.wt. of a rubber component composed of a polymer having a glass transition temperature of <=-60 deg.C with 5-40 pts.wt. of a microencapsulated oil having an average particle diameter of 5-150mum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は空気入りタイヤ、詳しくは、夏季の操縮性能お
よび発熱耐久性を損なうことなく、耐摩耗性が充分実用
に耐え、氷雪路面上における駆動性、制動性および操縦
性を著しく改良した空気入りタイヤに関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a pneumatic tire, specifically, a pneumatic tire that has sufficient wear resistance for practical use without impairing summer handling performance and heat generation durability, and that can be used on icy and snowy roads. This invention relates to a pneumatic tire that has significantly improved driving performance, braking performance, and maneuverability.

(従来の技術とその問題点) 従来より、氷雪路面上を走行する際の駆動性、制動性お
よび操縦性(以下、単に氷雪性能という)を確保するた
めに、スパイクビンをトレッド表部に打ち込んだスパイ
クタイヤが多用されている。
(Conventional technology and its problems) In the past, spike bins were driven into the tread surface in order to ensure driving performance, braking performance, and maneuverability (hereinafter simply referred to as ice and snow performance) when driving on icy and snowy roads. Spiked tires are often used.

しかし、今日、スパイクビンの摩耗や道路の摩耗による
これらの微粉末が飛散する粉塵公害やスパイクビンによ
る道路の損傷が大きな社会問題になっている。これらに
対処するため、スパイクビンの突き出し量、打ち込み数
の規制およびスパイクビンの材質等の検討がなされてい
るが、未だ前記社会問題の根本解決には至っていない。
However, today, dust pollution caused by the scattering of these fine powders due to wear of spike bins and road abrasion, and damage to roads caused by spike bins have become major social problems. In order to cope with these problems, studies have been made on regulating the protrusion amount of the spike bottle, the number of spikes, and the material of the spike bottle, but the fundamental solution to the above social problem has not yet been reached.

一方、スパイクビンを用いない、いわゆるスタッドレス
タイヤについてもタイヤトレッドの模様、トレッドゴム
質の検討がなされているが、かかるタイヤにおいてはス
パイクタイヤと同等の氷雪性能は発渾できないという問
題点がある。特に、トレッドゴム質については、低温時
のゴム弾性を確保するためにガラス転移点の低い重合体
を用い、かつ低温時の路面との摩擦係数を確保するため
に低融点の軟化剤を用いていることも検討されているが
、やはり氷雪性能が充分でないという問題点がある。
On the other hand, the tire tread pattern and tread rubber quality have also been studied for so-called studless tires that do not use spike bins, but such tires have the problem that they do not have the same ice and snow performance as spiked tires. In particular, for the tread rubber, a polymer with a low glass transition point is used to ensure rubber elasticity at low temperatures, and a softener with a low melting point is used to ensure a coefficient of friction with the road surface at low temperatures. However, there is still the problem that the ice and snow performance is not sufficient.

また、トレッドゴムに砂、金銅砂、カーボランダム、金
属粒など粒状体を混入することにより氷雪路面における
すべり性を改良することも試みられているが、粒状体を
多量に混入しないとすべり性が改良されず、一方多量に
混入すると摩耗性が著しく悪化してしまうという問題点
がある。
In addition, attempts have been made to improve the slipperiness on icy and snowy roads by mixing granular materials such as sand, gilt bronze sand, carborundum, and metal particles into the tread rubber, but the slipperiness is poor unless a large amount of granular materials are mixed in. However, if a large amount is mixed in, there is a problem that the abrasion properties will be significantly deteriorated.

更に、氷上の制動性能を向上するために、トレッドゴム
の硬度を下げることもなされている。すなわち、補強剤
の減量、ゴムの架橋密度の減少、オイル軟化剤の増量等
が行われているが、補強剤を減量すると湿潤路面におけ
る制動性能が低下し、ゴムの架橋密度の減少はゴムのへ
たり(永久変形)を発生させ、オイルおよび軟化剤の増
量は走行時、長期使用時のゴムの硬度変化を大きくする
等の問題点がある。
Furthermore, in order to improve braking performance on ice, efforts have been made to lower the hardness of tread rubber. In other words, efforts have been made to reduce the amount of reinforcing agent, reduce the crosslinking density of rubber, and increase the amount of oil softener. There are problems such as setting (permanent deformation) and increasing the amount of oil and softener increases changes in the hardness of the rubber during running and long-term use.

上述の如く、従来のスパイクタイヤやスタッドレスタイ
ヤには種々の問題点があり、これら問題点を全て解決し
得る゛技術は未だ見出されていないのが実状であった。
As mentioned above, conventional spiked tires and studless tires have various problems, and the reality is that no technology has yet been found that can solve all of these problems.

一方、本出願人は、先に、上記従来技術の問題点を解消
することを目的とし開発された、トレッドのゴム成分が
所定のガラス転移温度を有しかっこのトレッドが特定の
発泡ゴム層を有する空気入りタイヤにつき特許出願を行
った(特開昭62−283001号公報)。この空気入
りタイヤでは、耐摩耗性および発熱耐久性を損なうこと
なく、氷雪路面上における制動性能、駆動性および操縦
性等の氷雪性能を実用化が可能となるまでに高めること
ができた。
On the other hand, the present applicant has previously developed a tread with a rubber component having a predetermined glass transition temperature and a bracket tread having a specific foamed rubber layer, which was developed with the aim of solving the problems of the above-mentioned conventional technology. A patent application was filed for a pneumatic tire (Japanese Unexamined Patent Publication No. 62-283001). This pneumatic tire was able to improve its ice and snow performance, including braking performance, driveability, and maneuverability on ice and snow road surfaces, to the point where it can be put to practical use, without impairing wear resistance and heat generation durability.

尚、独立気泡を有するゴムをトレッドに用いたタイヤは
特公昭40−4641号公報、米国特許第4,249゜
588号および特公昭56−154304号公報に提案
されている。しかしながら、特公昭40−4641号公
報においては、トレッドにヒステリシスロスの大きい合
成ゴム、例えばハイスチレンゴムを用いているのでゴム
のガラス転移温度が上昇して、低温におけるゴムの硬度
が増加し、氷雪性能を確保する上で好ましくなかった。
Incidentally, tires using closed-cell rubber for the tread have been proposed in Japanese Patent Publication No. 40-4641, US Pat. However, in Japanese Patent Publication No. 40-4641, synthetic rubber with a large hysteresis loss, such as high styrene rubber, is used for the tread, so the glass transition temperature of the rubber increases, the hardness of the rubber at low temperatures increases, and ice and snow This was not desirable in terms of ensuring performance.

また、米国特許第4.249.588号明細書において
は、気泡を有するトレッドゴムを温度25℃1圧縮歪5
0%での圧縮特性(応力)が0.070〜56.2kg
/c+n” (1〜800p3i)と規定しているが、
自動車用空気入りタイヤのトレッドゴムとしては少なく
とも28.1 kg/am” (400psi)以上で
ないと操縦応答性の点で実用に供し得ながった。
Further, in U.S. Pat. No. 4,249,588, a tread rubber having bubbles is prepared at a temperature of 25° C. and a compressive strain of 5.
Compressive property (stress) at 0% is 0.070 to 56.2 kg
/c+n” (1 to 800p3i),
Tread rubber for pneumatic automobile tires must be at least 28.1 kg/am" (400 psi) or higher to be of practical use in terms of steering response.

また、特開昭56−154304号公報においては、発
泡ゴムを用いて無発泡ゴムと同じ硬さを得ることにより
軽量タイヤにしているが、これでは氷雪性能を向上させ
ることはできない。
Furthermore, in Japanese Patent Application Laid-Open No. 56-154304, a lightweight tire is made by using foamed rubber to obtain the same hardness as non-foamed rubber, but this does not improve ice and snow performance.

本発明の目的は、本出願人による上記特許出願に係る空
気入りタイヤの技術を基礎に、更にタイヤの氷雪性能、
耐摩耗性能、操縦性能および発熱耐久性能を両立させる
とともにタイヤの氷上摩擦係数、特に温度O″CC付近
潤状態にある氷上の摩擦係数を向上させ、発泡ゴム使用
空気入りタイヤよりも更に実用上の使用に充分耐え得る
空気入りタイヤを提供することにある。
The purpose of the present invention is to further improve the ice and snow performance of the tire based on the pneumatic tire technology related to the above patent application by the present applicant.
In addition to achieving both abrasion resistance, handling performance, and heat generation durability, the tire's coefficient of friction on ice, especially on wet ice near the temperature O''CC, has been improved, making it more practical than pneumatic tires using foam rubber. An object of the present invention is to provide a pneumatic tire that is durable enough for use.

(問題点を解決するための手段) 本発明者らは、先に開発された上記空気入りタイヤ(特
開昭62−283001号)よりも更に氷雪性能および
耐摩耗性能の向上した空気入りタイヤを開発すべく種々
検討した結果、トレッドのゴム層にガラス転移点の低い
重合体を用い、かっこのゴムの内部にマイクロカプセル
化油を含有させることによりゴム自体の架橋密度を減少
させることなく、トレッドゴム全体、すなわちゴムとマ
イクロカプセル化油との複合体全体の硬度を減少させ得
ることを見出した。また、この際、弾性率の高いゴムに
マイクロカプセル化油を配合することによりマイクロカ
プセル化油の軟化作用により適度のトレッドゴムの硬度
を得ることができることを見出した。更に、トレッドゴ
ムに、マイクロカプセル化油とともに少量の低温軟化剤
を併用すると、トレッドの動的弾性率および内部損失が
調節でき、かつ長期使用時のゴムの硬度の変化を少なく
でき、このため湿潤水面での摩擦係数が増大し、湿潤氷
面でのタイヤの制動性、駆動性、コーナリング性が改良
されることを見出した。これらの事実をもとに、更に構
造面からも検討を重ねた結果、本発明を完成するに至っ
た。
(Means for Solving the Problems) The present inventors have developed a pneumatic tire that has even better ice and snow performance and wear resistance than the previously developed pneumatic tire (Japanese Unexamined Patent Publication No. 62-283001). As a result of various studies to develop the tread, we found that by using a polymer with a low glass transition point in the rubber layer of the tread and containing microencapsulated oil inside the rubber brackets, we could develop a tread without reducing the crosslinking density of the rubber itself. It has been found that the hardness of the entire rubber, ie the entire composite of rubber and microencapsulated oil, can be reduced. In addition, it has been found that by blending microencapsulated oil with rubber having a high modulus of elasticity, appropriate hardness of the tread rubber can be obtained due to the softening effect of the microencapsulated oil. Furthermore, the use of a small amount of low-temperature softener in the tread rubber together with microencapsulated oil can adjust the dynamic modulus and internal loss of the tread, and reduce the change in hardness of the rubber during long-term use, thus reducing the It has been found that the coefficient of friction on water surfaces increases, and the braking performance, driving performance, and cornering performance of the tire on wet and icy surfaces are improved. Based on these facts, and as a result of further studies from the structural aspect, the present invention was completed.

すなわち本発明は、タイヤのケースと、ケースのクラウ
ン部を被覆するトレッドとを備えた空気入りタイヤにお
いて、トレッドがその表層部側に全体積合計で該トレッ
ド全体積の少なくとも10%以上の体積を有するマイク
ロカプセル化油配合ゴム層を備え、該マイクロカプセル
化油配合ゴム層においてゴム成分がガラス転移温度−6
0℃以下の重合体よりなり、かつ該ゴム成分100重量
部に対し5〜40重量部の範囲で平均粒径5〜150μ
mのマイクロカプセル化油が配合されていることを特徴
とする空気入りタイヤに関するものである。
That is, the present invention provides a pneumatic tire comprising a tire case and a tread covering the crown portion of the case, in which the tread has a total volume of at least 10% or more of the total volume of the tread on its surface layer side. a microencapsulated oil-blended rubber layer having a glass transition temperature of -6.
consisting of a polymer having a temperature of 0°C or less, and in an amount of 5 to 40 parts by weight based on 100 parts by weight of the rubber component, and an average particle size of 5 to 150 μm.
This invention relates to a pneumatic tire characterized by containing microencapsulated oil of m.

上記マイクロカプセル化油配合ゴム層におけるゴム成分
はガラス転移温度−60℃以下の重合体で、例えば天然
ゴム、ポリイソプロピレンゴム、ポリブタジェンゴム、
ブチルゴム、低スチレン含有のスチレン・ブタジェン共
重合体ゴムの単独、またはこれらの重合体の2種以上の
混合物である。本発明においてゴム成分のガラス転移温
度を上述の如く制限する理由は、トレッドが低温におい
ても充分にゴム弾性を有しているようにするためである
The rubber component in the microencapsulated oil-blended rubber layer is a polymer having a glass transition temperature of -60°C or lower, such as natural rubber, polyisopropylene rubber, polybutadiene rubber,
Butyl rubber, low styrene-containing styrene-butadiene copolymer rubber alone, or a mixture of two or more of these polymers. In the present invention, the reason why the glass transition temperature of the rubber component is limited as described above is to ensure that the tread has sufficient rubber elasticity even at low temperatures.

本発明において使用するマイクロカプセル化油は既知の
製造方法により製造することができ、具体的には「含有
ポリエステルセルの製法」 (近胚、“マイクロカプセ
ル”、日刊工業新聞社(1970) ;IBM社、B、
P、 950.443 (1964) ;  Fr、P
、1.278゜621 (1961))や「ポリフェニ
ルエステルマイクロカプセルの製法」 (ワイ・ワカマ
ッ、エム・コイシおよびティー・コンドウChem、 
PharmBull、、 22(6)1319 (19
74))により製造することができる。
The microencapsulated oil used in the present invention can be produced by a known production method, specifically, "Production method of containing polyester cells" (Kyokata, "Microcapsules", Nikkan Kogyo Shimbunsha (1970); IBM Company, B,
P, 950.443 (1964); Fr, P
, 1.278°621 (1961)) and “Production of polyphenyl ester microcapsules” (Y. Wakamak, M. Koishi and T. Kondo Chem.
PharmBull, 22(6) 1319 (19
74)).

尚、後者の「ポリフェニルエステルマイクロカプセルの
製法」において使用することのできる膜材としての酸ジ
クロライドとビスフェノールには下記の第1表に示すよ
うなものがある。
In addition, acid dichloride and bisphenol as membrane materials that can be used in the latter "method for producing polyphenyl ester microcapsules" include those shown in Table 1 below.

第  1  表 マイクロカプセルに封入される油は天然鉱物油、動物油
、植物油および合成油等特に制限されるものではないが
、好ましくは凝固点が一5℃以下、更に好ましくは一2
0℃以下のものを使用する。具体的には以下に掲げるも
のを使用することができる。
Table 1 Oils to be encapsulated in microcapsules are not particularly limited, such as natural mineral oils, animal oils, vegetable oils, and synthetic oils, but preferably have a freezing point of 15°C or less, more preferably 12°C or less.
Use one with a temperature below 0°C. Specifically, the following can be used.

(1)モノオレフィン類、ジオレフィン類およびアセチ
レン類 オクテン−1、シス−オクテン−2、トランス−オクテ
ン−3、シス−オクテン−4、トランス−オクテン−4
,2−メチルへブテン−1,2,3−ジメチルヘキサン
−2,2,3,3−トリメチルペンテン−L 2,4.
4−トリメチルペンテン−L 2,4.4−)IJ/チ
ルペンテン−2、ノネン−L 2,3−ジメチルへブテ
ン−2,2−メチルへキサジン−284,2,4〜ジメ
チルペンタジン−1,3、オクタジン−2,6,3−メ
チルへブタジン−1,5,2,5−ジメチルへキサジン
−1,5,2,6−ジメチルへブタジン−1,5,2−
メチル−3−エチルへキサジン−1,5,3,7−シメ
チルオクタジンー1.6、オクチン−1、オクチン−2
、オクチン−3、オクチン−4、ノニン−1、 (2)植物油 キリ油、トウモロコシ油、 (3)飽和脂肪酸 酪酸、カプロン酸、エナント酸、 (4)ニトリルアミド カプロニトリル、エナントニトリル、カブリロニトリル
、ベラルゴニトリル、カプリニトリル、(5)詣X>4
鉦Z ヘキシルアミン、ヘプチルアミン、ジヘキシルアミン、
トリオクチルアミン、N、N−ジメチル−ラウリルアミ
ン、 (6)エステル類 フタル酸ジプチル、フタル酸ジヘプチル、フタル酸ジオ
クチル、フタル酸ジイソノニル、マレイン酸ジプチル、
マレイン酸ジオクチル、フマル酸ジオクチル、リン酸ト
リメチル、リン酸トリエチル、リン酸トリブチル、リン
酸トリオクチル、アジピン酸ジイソデシル、アゼライン
酸ジオクチル、セバシン酸ジプチル、セバシン酸ジオク
チル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブ
チル、醋酸イソブチル、酪酸アミル、酪酸イソアミル、
酪酸ヘキシル、酪酸ヘプチル、酪酸ベンジル、酪酸オク
チル、酪酸デシル、カプロン酸メチル、カプロン酸エチ
ル、カプロン酸プロピル、カプロン酸イソプロピル、カ
プロン酸アリル、カプロン酸ブチル、カプロン酸アシル
、カプロン酸ヘキシル、カプロン酸ヘプチル、カプロン
酸オクチル、カプロン酸ノニル、カプロン酸デシル、カ
プロン酸ウンデシル、カプロン酸ドデシル、エナント酸
メチル、エナント酸エチル、エナント酸プロピル、エナ
ント酸ブチル、エナント酸アミル、エナント酸ヘキシル
、エナント酸ヘプチル、エナント酸オクチル、カプリル
酸メチル、カプリル酸エチル、カフ’ IJル酸ビニル
、カプリル酸プロピル、カフリル酸イソプロピル、カプ
リル酸ブチル、カプリル酸アミル、カプリル酸ヘキシル
、カプリル酸へブチル、カプリル酸オクチル、ペラルゴ
ン酸メチル、ペラルゴン酸エチル、ペラルゴン酸ビニル
、ペラルゴン酸プロピル、ペラルゴン酸ブチル、ペラル
ゴン酸アミル、ペラルゴン酸ヘプチル、カプリン酸メチ
ル、カプリン酸エチル、カプリン酸ブチル、カプリン酸
ヘキシル、カプリン酸ヘプチル、 (7)プロセス油 芳香族系プロセス油、ナフテン系プロセス油、パラフィ
ン系プロセス油。
(1) Monoolefins, diolefins and acetylenes octene-1, cis-octene-2, trans-octene-3, cis-octene-4, trans-octene-4
, 2-methylhebutene-1,2,3-dimethylhexane-2,2,3,3-trimethylpentene-L 2,4.
4-trimethylpentene-L 2,4.4-)IJ/Tylpentene-2, nonene-L 2,3-dimethylhebutene-2,2-methylhexazine-284,2,4-dimethylpentazine-1,3 , octadine-2,6,3-methylhebutazine-1,5,2,5-dimethylhexazine-1,5,2,6-dimethylhebutazine-1,5,2-
Methyl-3-ethylhexazine-1,5,3,7-dimethyloctadine-1.6, octyne-1, octyne-2
, octyne-3, octyne-4, nonine-1, (2) vegetable oil tung oil, corn oil, (3) saturated fatty acid butyric acid, caproic acid, enanthic acid, (4) nitrile amide capronitrile, enantonitrile, cabrilonitrile , Belargonitrile, Caprinitrile, (5) Pilgrimage X > 4
鉦Z Hexylamine, heptylamine, dihexylamine,
Trioctylamine, N,N-dimethyl-laurylamine, (6) Ester diptyl phthalate, diheptyl phthalate, dioctyl phthalate, diisononyl phthalate, diptyl maleate,
Dioctyl maleate, dioctyl fumarate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, diisodecyl adipate, dioctyl azelaate, diptyl sebacate, dioctyl sebacate, methyl butyrate, ethyl butyrate, propyl butyrate, butyric acid Butyl, isobutyl acetate, amyl butyrate, isoamyl butyrate,
Hexyl butyrate, heptyl butyrate, benzyl butyrate, octyl butyrate, decyl butyrate, methyl caproate, ethyl caproate, propyl caproate, isopropyl caproate, allyl caproate, butyl caproate, acyl caproate, hexyl caproate, heptyl caproate , octyl caproate, nonyl caproate, decyl caproate, undecyl caproate, dodecyl caproate, methyl enanthate, ethyl enanthate, propyl enanthate, butyl enanthate, amyl enanthate, hexyl enanthate, heptyl enanthate, enanthate Octyl caprylate, methyl caprylate, ethyl caprylate, vinyl vinyl caprylate, propyl caprylate, isopropyl caffrylate, butyl caprylate, amyl caprylate, hexyl caprylate, hebutyl caprylate, octyl caprylate, methyl pelargonate , ethyl pelargonate, vinyl pelargonate, propyl pelargonate, butyl pelargonate, amyl pelargonate, heptyl pelargonate, methyl caprate, ethyl caprate, butyl caprate, hexyl caprate, heptyl caprate, (7) Process oil Aromatic process oil, naphthenic process oil, paraffin process oil.

本発明においては、マイクロカプセル化油配合ゴム層は
トレッドの全体積の少なくとも10%以上の体積を有す
ることを要するが、好ましくは10〜70%、さらに好
ましくは40〜60%とする。マイクロカプセル化油配
合ゴム層をトレッド全体積の少なくとも10%以上要求
することとしたのは、10%未満では氷雪性能の改良効
果が少ないためである。
In the present invention, the microencapsulated oil-blended rubber layer is required to have a volume of at least 10% or more of the total volume of the tread, preferably 10 to 70%, and more preferably 40 to 60%. The reason why the microencapsulated oil-blended rubber layer is required to account for at least 10% of the total tread volume is that if it is less than 10%, the effect of improving ice and snow performance is small.

尚、トレッド全体がマイクロカプセル化油配合ゴム層か
らなっていてもよい。
Note that the entire tread may be made of a microencapsulated oil-blended rubber layer.

かかるマイクロカプセル化油配合ゴム層におけるマイク
ロカプセル化油配合割合(ゴム成分100重量部に対す
る重量部)は5〜40重量部の範囲内であることを要す
るが、これは、5重量部未満では低温時のトレッドゴム
の柔軟性が得られず、また40重量部を超えると耐摩耗
性能が低下して氷雪路面、湿潤路面以外の乾燥路面での
耐摩耗性が実用的に不充分となるからである。好ましく
はかかる配合割合を5〜20重量部の範囲内とする。
The proportion of microencapsulated oil in the microencapsulated oil-containing rubber layer (parts by weight relative to 100 parts by weight of the rubber component) is required to be within the range of 5 to 40 parts by weight; however, if it is less than 5 parts by weight, the temperature If the amount exceeds 40 parts by weight, the abrasion resistance will decrease and the abrasion resistance will be insufficient for practical use on dry roads other than icy and snowy roads and wet roads. be. Preferably, the blending ratio is within the range of 5 to 20 parts by weight.

また、配合ゴム中のマイクロカプセル化油平均粒径は5
〜150 pmであることを要するが、これは、5μm
未満では氷雪性能の改良効果が少なく、また150μm
を超えると耐摩耗性能が大幅に低下し、さらに配合ゴム
の歪み復元力が低下し、いわゆる耐へタリ性の低下を来
たし、走行時にタイヤブロックの変形、サイプの目づま
りなどを起こし、雪上性能を低下させ、また耐カット性
も低下しブロック欠けが多くなり、さらに製造時に安定
した形状を得ることが困難となるからである。好ましく
は、かかる平均粒径を10〜100μmの範囲内とする
In addition, the average particle size of the microencapsulated oil in the compounded rubber is 5
~150 pm, which is 5 μm
If it is less than 150 μm, the effect of improving ice and snow performance is small;
Exceeding this will significantly reduce the wear resistance, and furthermore, the distortion recovery power of the compounded rubber will decrease, resulting in a decline in so-called fatigue resistance, which may cause deformation of the tire block and clogging of the sipes during driving, resulting in poor performance on snow. This is because the cut resistance also decreases, leading to increased block chipping, and furthermore, it becomes difficult to obtain a stable shape during manufacturing. Preferably, the average particle size is within the range of 10 to 100 μm.

尚、ゴム成分中にマイクロカプセル化油を配合する方法
としては通常のバンバリー混入法やラテックス混入法を
採用することができる。また、ゴム成分には硫黄、加硫
促進剤、軟化剤、老化防止剤等、ゴム工業で通常使用さ
れる配合剤を適宜配合することができる。
Incidentally, as a method for blending the microencapsulated oil into the rubber component, the usual Banbury mixing method or latex mixing method can be adopted. Furthermore, compounding agents commonly used in the rubber industry, such as sulfur, vulcanization accelerators, softeners, and anti-aging agents, can be appropriately blended into the rubber component.

(実施例) 次に本発明を実施例により説明する。(Example) Next, the present invention will be explained by examples.

先ず、以下の実施例および比較例において使用したマイ
クロカプセル化油の調製方法について説明する。
First, a method for preparing microencapsulated oil used in the following Examples and Comparative Examples will be explained.

ジブチルフタレート100gとテレフタロイルクロライ
ド200 gとを5%の重炭酸ソーダ20!中に乳化分
散させ、次いでこれに25%のエチレングリコール20
1を添加し、中央理化(株)類ホモミキサ(AM−HM
−1型)を使用して撹拌強度900rpmにて撹拌した
。撹拌と共にやがてジブチルフタレートの微小滴の周囲
にポリエステル皮膜が形成された。
100 g of dibutyl phthalate and 200 g of terephthaloyl chloride in 5% bicarbonate of soda 20! and then add 25% ethylene glycol 20
1 was added, and a homomixer manufactured by Chuo Rika Co., Ltd. (AM-HM) was added.
-1 type) at a stirring intensity of 900 rpm. As the mixture was stirred, a polyester film was formed around the microdroplets of dibutyl phthalate.

皮膜形成後、これを遠心分離して捕集し、マイクロカプ
セル種Aとした。
After the film was formed, it was collected by centrifugation and used as microcapsule type A.

撹拌強度を600Orpmと変化させることにより粒径
を変化させた以外は上述のようにしてマイクロカプセル
種Bを得た。
Microcapsule type B was obtained as described above, except that the particle size was changed by changing the stirring intensity to 600 rpm.

また、ジブチルフタレートの代わりにジブチルフタレー
トを使用し、かつ撹拌強度を夫々6000rl1m 、
2000rpmおよび8000rpmとした以外は上述
のようにしてマイクロカプセル種C,DおよびEを得た
In addition, dibutyl phthalate was used instead of dibutyl phthalate, and the stirring intensity was 6000 rl 1 m, respectively.
Microcapsule types C, D and E were obtained as described above except that the speeds were 2000 rpm and 8000 rpm.

これらマイクロカプセルのカプセル径等の特徴を下記の
第2表に示す。
The characteristics of these microcapsules, such as capsule diameter, are shown in Table 2 below.

実施例1〜5、比較例1〜3 下記の第3表に示す配合割合(重量部)にて各種マイク
ロカプセル化油配合ゴム(比較例1はコントロールとし
てマイクロカプセル化油未配合)を調製した。これらゴ
ムにつき氷上摩擦係数、特に0℃付近の湿潤状態におけ
る氷上の摩擦係数を測定した。測定は、表面温度が−0
,5℃の氷上にて表面粗さを測定した試料表面(試料寸
法、長さ10mm、幅10nun、厚さ5mm)と氷と
を接触させ、協和界面科学(株)製の動・静摩擦係数計
を用いて行った。測定条件として荷重2kg/Cl11
2、滑り速度10mm/sec、雰囲気温度−2℃1表
面状態は鏡面に近似、を選定した。
Examples 1 to 5, Comparative Examples 1 to 3 Various rubbers containing microencapsulated oil were prepared at the blending ratios (parts by weight) shown in Table 3 below (in Comparative Example 1, no microencapsulated oil was blended as a control). . For these rubbers, the coefficient of friction on ice, especially the coefficient of friction on ice in a wet state around 0°C, was measured. The measurement is performed when the surface temperature is -0
, the surface roughness of the sample was measured on ice at 5°C (sample dimensions: length 10 mm, width 10 mm, thickness 5 mm) was brought into contact with the ice, and a dynamic/static friction coefficient meter manufactured by Kyowa Interface Science Co., Ltd. was used. This was done using Load 2kg/Cl11 as measurement conditions
2. A sliding speed of 10 mm/sec, an ambient temperature of -2° C., and a surface condition similar to a mirror surface were selected.

得られた結果を第3表に併記する。The obtained results are also listed in Table 3.

次に、上記マイクロカプセル化油配合ゴムを用いて、第
1図に示すタイヤサイズ165 SR13の空気入りタ
イヤを製造した。
Next, a pneumatic tire having a tire size of 165 SR13 as shown in FIG. 1 was manufactured using the microencapsulated oil-blended rubber.

このタイヤlはタイヤケース2と、ケース2のクラウン
部2aを被覆するトレッド3とを有している。ケース2
は、一対のビード部5と、ビード部5間にほぼ放射方向
に配置したゴム引きコードからなるカーカス部6と、カ
ーカス部6のクラウン部にほぼタイヤ円周方向に配置し
たベルト部7およびカーカス部のタイヤ軸方向両側部を
被覆するサイドウオールゴム8とから構成されている。
This tire l has a tire case 2 and a tread 3 covering a crown portion 2a of the case 2. Case 2
consists of a pair of bead portions 5, a carcass portion 6 consisting of a rubberized cord disposed approximately radially between the bead portions 5, a belt portion 7 disposed approximately in the circumferential direction of the tire at the crown portion of the carcass portion 6, and a carcass portion 6. sidewall rubber 8 covering both sides of the tire in the axial direction.

トレッド3はトレッド3の表部3a側で両ショルダ部間
にマイクロカプセル化油配合ゴム層4(図には黒点にて
示している)を有し、このゴム層はトレッド3の全体積
Vの少なくとも10%以上の体積を有し、この実施例で
はトレッドの全体積■と同じ100%の体積である。ゴ
ム層4のゴム成分は下記の第3表に示すようにトレッド
のゴム組成物、すなわちガラス転移温度−60″C以下
の重合体(天然ゴム(ガラス転移温度−72℃)および
ポリブタジェンゴム(ガラス転移温度−100℃))か
らなるゴム成分を含有し7、かつこれに通常の配合剤お
よびマイクロカプセル化油を加えたものであり、通常の
タイヤ製造方法にしたがって成型した。
The tread 3 has a micro-encapsulated oil compounded rubber layer 4 (indicated by black dots in the figure) between both shoulder parts on the surface part 3a side of the tread 3, and this rubber layer has a total volume V of the tread 3. It has a volume of at least 10% or more, and in this embodiment, it has a volume of 100%, which is the same as the total volume of the tread. The rubber components of the rubber layer 4 are as shown in Table 3 below. (Glass Transition Temperature -100°C)) 7, to which were added conventional compounding agents and microencapsulated oil, and molded according to a conventional tire manufacturing method.

得られた各種試験空気入りタイヤにつきトレッド表面発
熱温度、耐摩耗性能および氷上制動性能を次のようにし
て評価した。
The tread surface heat generation temperature, wear resistance performance, and braking performance on ice of the various test pneumatic tires obtained were evaluated as follows.

(イ)トレッド表面発熱温度 試験タイヤに正規内圧を充填した後、ドラム外径1.7
mの通常の室内ドラム試験機に速度100 kg/時、
正規荷重で押しつけて3時間走行させ、トレッドの中央
部の表面温度を測定した。
(a) Tread surface heat generation temperature test After filling the tire with the normal internal pressure, the drum outer diameter was 1.7
m normal indoor drum testing machine with a speed of 100 kg/hour,
The tread was pressed under a regular load and run for 3 hours, and the surface temperature at the center of the tread was measured.

(ロ)耐摩耗性能 各試験タイヤ2本を排気m 1500 ccの乗用車の
ドライブ軸に取り付け、テストコースのコンクリート路
面上を所定の速度で走行させた。溝深さの変化量を測定
し、比較例1のタイヤを100として指数表示した。数
値は大きい程耐摩耗性能が良好であることを示す。
(b) Wear resistance performance Two tires for each test were attached to the drive shaft of a passenger car with a displacement of 1500 cc, and the tires were run on the concrete road surface of a test course at a predetermined speed. The amount of change in groove depth was measured and expressed as an index with the tire of Comparative Example 1 set as 100. The larger the value, the better the wear resistance performance.

(ハ)氷上制動性能 各試験タイヤ4本を排気量1500ccの乗用車に装着
し、外気温−5℃の氷上で制動距離を測定した。比較例
1のタイヤを100として指数表示した。数値は大きい
程制動が良好であることを示す。
(c) Braking performance on ice Four test tires of each type were mounted on a passenger car with a displacement of 1500 cc, and the braking distance was measured on ice at an outside temperature of -5°C. The tire of Comparative Example 1 was set as 100 and expressed as an index. The larger the value, the better the braking.

得られた評価結果を第3表に併記する。The obtained evaluation results are also listed in Table 3.

第3表より次のことが確認された。The following was confirmed from Table 3.

比較例2では、マイクロカプセル化油を15重量部含む
ものの、マイクロカプセルの直径が2μmと小さいため
トレッドゴムの氷上摩擦係数およびタイヤの氷上制動能
力が充分ではなかった。また、比較例3では、マイクロ
カプセル化油の配合量が少な過ぎるために氷上摩擦係数
および氷上制動能力が充分ではなかった。
Comparative Example 2 contained 15 parts by weight of microencapsulated oil, but the diameter of the microcapsules was as small as 2 μm, so the tread rubber's coefficient of friction on ice and the tire's braking ability on ice were insufficient. Furthermore, in Comparative Example 3, the amount of microencapsulated oil blended was too small, so the friction coefficient on ice and the braking ability on ice were not sufficient.

タイヤの氷上摩擦係数は、特に温度0℃付近の湿潤状態
において重要であるが、実施例1〜5の配合ゴムを用い
たトレッドゴムおよびタイヤでは比較例1,2.3に比
較し、氷上摩擦係数および氷上制動性能が明らかに向上
している。
The coefficient of friction on ice of a tire is particularly important in a wet state at a temperature around 0°C, but the tread rubber and tires using the compounded rubbers of Examples 1 to 5 have a lower coefficient of friction on ice than Comparative Examples 1 and 2.3. The coefficient and ice braking performance are clearly improved.

施例6,7、比較例4,5 下記の第4表に示す配合割合(重量部)にて、前記と同
様にしてトレッドゴムを調製し、これらゴムにつき硬度
(0℃)、ゴム硬度変化および耐摩耗性を評価した。
Examples 6 and 7, Comparative Examples 4 and 5 Tread rubbers were prepared in the same manner as above using the compounding ratios (parts by weight) shown in Table 4 below, and the hardness (0°C) and change in rubber hardness of these rubbers were measured. and wear resistance was evaluated.

ゴムの硬度はJIS K 6301に準拠して測定した
The hardness of the rubber was measured in accordance with JIS K 6301.

また耐摩耗性は通常のランボーン摩耗試験a(スリップ
25%)にて試験し、比較例4の試験結果を100とし
て指数で表示した。
The abrasion resistance was tested using the usual Lambourn abrasion test a (slip 25%) and expressed as an index, with the test result of Comparative Example 4 set as 100.

得られた結果を第4表に併記する。The obtained results are also listed in Table 4.

次に上記トレッドゴムを用いて前記と同様にして各種試
験タイヤを製造した。これら試験タイヤにつき前記氷上
制動試験と同様にしてO″CC付近び一20℃付近の氷
上制動性能を評価した。この評価は、比較例4のタイヤ
をコントロールとして指数表示で行った。数値が大なる
程性能は良好である。
Next, various test tires were manufactured in the same manner as above using the above tread rubber. The on-ice braking performance of these test tires was evaluated in the same manner as in the above-mentioned on-ice braking test.The on-ice braking performance near O''CC and around -20°C was evaluated.This evaluation was performed using an index display using the tire of Comparative Example 4 as a control. I see that the performance is good.

得られた結果を第4表に併記する。The obtained results are also listed in Table 4.

征麿is 第4表より明らかなように、比較例4.5はマイクロカ
プセル化油を配合することなく低温軟化剤の配合部数の
みを変えた配合系であるのに対し、実施例6.7は少量
の低温軟化剤と共にマイクロカプセル化油を配合した配
合系である。比較例6.7に較べ少量の低温軟化剤にマ
イクロカプセル化油を配合した実施例6,7は長期使用
時の硬度変化が僅かであり、しかも耐摩耗性を実用上充
分に維持したまま氷上制動性能が大幅に向上した。
As is clear from Table 4, Comparative Example 4.5 is a blending system in which only the blended number of low-temperature softener was changed without blending microencapsulated oil, whereas Example 6.7 is a blended system containing microencapsulated oil along with a small amount of low-temperature softener. Compared to Comparative Examples 6 and 7, Examples 6 and 7, in which microencapsulated oil was blended with a small amount of low-temperature softener, had little change in hardness during long-term use, and could be used on ice while maintaining sufficient wear resistance for practical use. Braking performance has been significantly improved.

実施例8〜10、比較例6〜8 下記の第5表に示す配合割合(重量部)にて比較例6〜
8では発泡トレッドゴムを、また実施例8〜10 (前
記実施例3〜5と同じもの)ではカプセル化油配合トレ
ッドゴムを夫々調製した。
Examples 8-10, Comparative Examples 6-8 Comparative Examples 6-8 at the blending ratios (parts by weight) shown in Table 5 below
In Examples 8 to 10 (same as Examples 3 to 5), tread rubbers containing encapsulated oil were prepared.

これらトレッドゴムにつき、前記と同様にして氷上摩擦
係数を測定した。得られた結果を第5表に併記する。
The coefficient of friction on ice was measured for these tread rubbers in the same manner as described above. The obtained results are also listed in Table 5.

次に、上記トレッドゴムを用いて前記と同様にして各種
試験タイヤを製造し、これらタイヤにつき、前記と同様
にして耐摩耗性能および氷上制動性能を評価した。これ
らの評価は、比較例6のタイヤをコントロールとして指
数表示で行った。数値が大きくなる程性能は良好である
Next, various test tires were manufactured in the same manner as above using the above tread rubber, and the wear resistance performance and on-ice braking performance of these tires were evaluated in the same manner as above. These evaluations were performed using index display using the tire of Comparative Example 6 as a control. The larger the number, the better the performance.

得られた結果を第5表に併記すると共に、発泡剤使用の
タイヤおよびマイクロカプセル化油使用のタイヤにおけ
る耐摩耗性と氷上制動性能との関係を第2図に比較して
示す。
The obtained results are listed in Table 5, and the relationship between the wear resistance and the braking performance on ice in tires using a foaming agent and tires using microencapsulated oil is shown in comparison in FIG.

匪」Ll 第5表および第2図より明らかな如く、マイクロカプセ
ル化油使用タイヤは発泡剤使用タイヤに比し相対的に耐
摩耗性および氷上制動性能に優れていた。これは、発泡
剤の気泡に比しマイクロカプセル化油の方が径が均質で
ある結果、より優れたエツジ効果が発揮されたことによ
るものと考えられる。
As is clear from Table 5 and FIG. 2, the tires using microencapsulated oil were relatively superior in wear resistance and braking performance on ice compared to the tires using foaming agents. This is considered to be because the microencapsulated oil has a more uniform diameter than the foaming agent bubbles, and as a result, a better edge effect was exhibited.

(発明の効果) 以上説明してきたように本発明の空気入りタイヤでは、
操縦性能および発熱耐久性を損なうことなく耐摩耗性が
充分実用に耐え、発泡ゴム使用タイヤよりも更に氷雪路
面上における駆動性、制動性および操縦性が改良されて
いる。この結果、スパイクタイヤに代わるタイヤとして
充分に期待に応え得るタイヤといえる。
(Effects of the invention) As explained above, in the pneumatic tire of the present invention,
It has sufficient abrasion resistance for practical use without compromising handling performance and heat generation durability, and has improved driving performance, braking performance, and maneuverability on icy and snowy roads compared to tires using foam rubber. As a result, it can be said that the tire fully meets expectations as an alternative to spiked tires.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一例空気入りタイヤの部分断面図、 第2図は発泡剤使用タイヤおよびマイクロカプセル化油
使用タイヤにおける耐摩耗性と氷上制動性能との関係を
示すグラフである。 1・・・空気入りタイヤ  2・・・ケース2a・・・
ケースクラウン部 3−hレッド3a・・・トレッドの
表部 4・・・マイクロカプセル化油配合ゴム層5・・・ビー
ド部     6・・・カーカス部7・・・ベルト部 8・・・サイドウオールゴム 特許出願人 株式会社ブリデストン 代理人弁理士 杉  村  暁  秀
FIG. 1 is a partial sectional view of a pneumatic tire as an example of the present invention, and FIG. 2 is a graph showing the relationship between wear resistance and braking performance on ice in tires using a foaming agent and tires using microencapsulated oil. 1... Pneumatic tire 2... Case 2a...
Case crown part 3-h Red 3a... Tread surface part 4... Microencapsulated oil blended rubber layer 5... Bead part 6... Carcass part 7... Belt part 8... Side wall Rubber patent applicant Akihide Sugimura, patent attorney representing Brideston Co., Ltd.

Claims (1)

【特許請求の範囲】 1、タイヤのケースと、ケースのクラウン部を被覆する
トレッドとを備えた空気入りタイヤにおいて、 トレッドがその表層部側に全体積合計で該 トレッド全体積の少なくとも10%以上の体積を有する
マイクロカプセル化油配合ゴム層を備え、該マイクロカ
プセル化油配合ゴム層においてゴム成分がガラス転移温
度−60℃以下の重合体よりなり、かつ該ゴム成分10
0重量部に対し5〜40重量部の範囲で平均粒径5〜1
50μmのマイクロカプセル化油が配合されていること
を特徴とする空気入りタイヤ。
[Scope of Claims] 1. A pneumatic tire comprising a tire case and a tread covering the crown of the case, wherein the tread has at least 10% or more of the total volume of the tread on its surface layer side. a microencapsulated oil-blended rubber layer having a volume of
The average particle size is 5 to 1 in the range of 5 to 40 parts by weight to 0 parts by weight.
A pneumatic tire characterized by containing 50 μm micro-encapsulated oil.
JP63058248A 1988-03-14 1988-03-14 Pneumatic tire Pending JPH01234441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058248A JPH01234441A (en) 1988-03-14 1988-03-14 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058248A JPH01234441A (en) 1988-03-14 1988-03-14 Pneumatic tire

Publications (1)

Publication Number Publication Date
JPH01234441A true JPH01234441A (en) 1989-09-19

Family

ID=13078822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058248A Pending JPH01234441A (en) 1988-03-14 1988-03-14 Pneumatic tire

Country Status (1)

Country Link
JP (1) JPH01234441A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155172A (en) * 2000-09-07 2002-05-28 Nok Corp Rubber composition
JP2009138181A (en) * 2007-10-17 2009-06-25 Yokohama Rubber Co Ltd:The Rubber composition for tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155172A (en) * 2000-09-07 2002-05-28 Nok Corp Rubber composition
JP2009138181A (en) * 2007-10-17 2009-06-25 Yokohama Rubber Co Ltd:The Rubber composition for tire

Similar Documents

Publication Publication Date Title
US5176765A (en) Pneumatic tire having outer tread layer of foam rubber
EP1026010B1 (en) Pneumatic tire
JP2002211203A (en) Studless tire
JP3401283B2 (en) Pneumatic tire
JP3352627B2 (en) Rubber composition for tire tread with increased frictional force on ice and pneumatic tire
JPS6389547A (en) Expanded rubber composition
JPH09255813A (en) Pneumatic tire
JPS6392659A (en) Pneumatic tire
JPH01234441A (en) Pneumatic tire
JP2568520B2 (en) Pneumatic tire
JPH0776202A (en) Pneumatic tire
JP2510533B2 (en) Pneumatic tire
JPH06328908A (en) Pneumatic tire
JPH04221206A (en) Pneumatic tire
JP2564760B2 (en) Pneumatic tire
JP2003292674A (en) Rubber composition for studless tire and studless tire
JPH01297302A (en) Pneumatic tyre
JP2662294B2 (en) Pneumatic tire
JPH01293205A (en) Pneumatic tire
JPH05147406A (en) Pneumatic tire
JP2518870B2 (en) Pneumatic tire
JP3096091B2 (en) Pneumatic tire
JP3054238B2 (en) Pneumatic tire
JP2901257B2 (en) Heavy duty pneumatic tires
JPH06328906A (en) Pneumatic tire