JPH01233365A - Magnetization system for magnetic particle flaw detection of running steel material - Google Patents

Magnetization system for magnetic particle flaw detection of running steel material

Info

Publication number
JPH01233365A
JPH01233365A JP5923088A JP5923088A JPH01233365A JP H01233365 A JPH01233365 A JP H01233365A JP 5923088 A JP5923088 A JP 5923088A JP 5923088 A JP5923088 A JP 5923088A JP H01233365 A JPH01233365 A JP H01233365A
Authority
JP
Japan
Prior art keywords
steel material
distance
billet
magnetic field
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5923088A
Other languages
Japanese (ja)
Inventor
Takayoshi Tada
隆良 多田
Takeshi Hanamoto
花本 剛士
Masakazu Itashiki
板敷 政和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5923088A priority Critical patent/JPH01233365A/en
Publication of JPH01233365A publication Critical patent/JPH01233365A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a higher flaw detection performance against a bending of a steel material, by a method wherein an exciting power command value of a magnetizer is computed from an output signal of a distance measuring means and an exciting power of the magnetizer is controlled from the exciting power command value to keep a surface magnetic field of the steel material almost constant. CONSTITUTION:A distance to a steel material, namely, a billet 1 is measured with a distance sensor 3 disposed near a magnetizing coil 2 and a distance measurement signal is sent to a numerical conversion circuit 4, which computes an exciting power according to a table prepared from a distance signal to attain the intensity of a billet surface magnetic field set with a magnetic field intensity setter 6. The circuit 4 controls a power adjuster 7 by a computed value to adjust a supply power to the magnetizer 2. Thus, the intensity of a magnetic field at the billet 1 part becomes almost constant regardless of a bending thereof, thereby achieving a higher flaw detection performance against the bending of the billet 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鋼材(たとえばビレット)の表面傷を走間状
態で検出する磁粉探傷の磁化システムに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnetization system for magnetic particle flaw detection that detects surface flaws in steel materials (for example, billets) in a running state.

[従来の技術] 磁粉探傷を行うために鋼材を磁化する方法としては、極
間法5貫通コイル法、軸通法がある。第2図(a)は極
間法、同図(b)は貫通コイル法、同図(Q)は軸通法
の概念を図示したものである。
[Prior Art] Methods for magnetizing steel materials for magnetic particle testing include the pole spacing method, the five-through coil method, and the axial method. FIG. 2(a) illustrates the concept of the spacing method, FIG. 2(b) illustrates the through-coil method, and FIG. 2(Q) illustrates the concept of the axial passing method.

走間での探傷用としては極間法、貫通コイル法が用いら
れる。
For flaw detection during running, the interpole method and through-coil method are used.

上記の磁化方法は対象とする表面疵により使い分けられ
る。鋼材の長手方向の傷を対象とする場合は極間法が、
@方向の傷を対象とする場合は貫通コイル法が用いられ
る。また、全方向の傷を対象とする場合は両者が組合せ
られる。
The above magnetization methods are used depending on the target surface flaw. When targeting scratches in the longitudinal direction of steel materials, the interpolation method is used.
When targeting scratches in the @ direction, the through-coil method is used. Moreover, when scratches in all directions are to be targeted, both are combined.

探傷性能上ビレットと磁極あるいはコイルとの距離を一
定に保つことは重要である。特に極間式の磁化装置は、
ビレットとのギャップが変化するとビレクト表面上の磁
場強さが大きく変化する。
For flaw detection performance, it is important to maintain a constant distance between the billet and the magnetic pole or coil. In particular, the pole-to-pole type magnetizing device is
When the gap with the billet changes, the magnetic field strength on the billet surface changes significantly.

極間式の磁化装置について、磁化装置を鋼材の位置変動
に機械的に追随させる装置が提案されている。第3図は
特開昭54−151088号公報で開示された[磁化装
置の追従装置」であって。
Regarding the interpolar type magnetization device, a device has been proposed in which the magnetization device mechanically follows the positional fluctuation of the steel material. FIG. 3 shows a "tracking device for a magnetizing device" disclosed in Japanese Patent Application Laid-Open No. 54-151088.

1はビレット、2は極間式の磁化装置、11a。1 is a billet, 2 is an interpolar type magnetizing device, and 11a.

11bは磁化装置2およびガイドローラ12a。11b is a magnetization device 2 and a guide roller 12a.

12bを支持し押上げるシリンダ、12a、12bはビ
レット1と磁化装置2との間に所定の間隔をとるように
設けられたガイドローラである。
The cylinders 12a and 12b that support and push up the billet 12b are guide rollers provided to maintain a predetermined distance between the billet 1 and the magnetization device 2.

この追従装置においては、シリンダ11a。In this follow-up device, the cylinder 11a.

11bに所定圧の作動流体を供給すると、ガイドローラ
12a、12bが鋼材1に押し付けられて、鋼材1と磁
化装置2との距離を一定とするものである。
When a working fluid of a predetermined pressure is supplied to 11b, the guide rollers 12a and 12b are pressed against the steel material 1, and the distance between the steel material 1 and the magnetization device 2 is kept constant.

[解決しようとする問題点] しかしながら、上述の追従装置には、次のような問題点
がある。
[Problems to be Solved] However, the above-described tracking device has the following problems.

(1)磁化装置重量が大きいため、追従装置が大きく複
雑なものとなる。
(1) Since the weight of the magnetization device is large, the tracking device becomes large and complicated.

(2)簡単な構造の追従装置にすると追従性が悪く、探
傷性能を低下させる。
(2) If the tracking device has a simple structure, the tracking performance will be poor and the flaw detection performance will be degraded.

本発明は、上記の問題点を解決しようとするもので、機
械的な可動部分なしに鋼材的がりへの追従性が良好な、
鋼材の走間磁粉探傷用磁化システムを得ることを目的と
する。
The present invention aims to solve the above-mentioned problems.The present invention aims to solve the above-mentioned problems.
The purpose of this study is to obtain a magnetization system for magnetic particle testing of steel materials.

[問題点を解決するための手段] 本発明の鋼材の走間磁粉探傷用磁化システムは、鋼材と
磁化装置との距離を計測して信号出力する距離計測手段
と、同距離計測手段の出力信号から磁化装置の励磁電力
指令量を演算する数値変換回路と、同励磁電力指令量に
基づいて磁化装置の励磁電力を制御する電力調整器とが
設けられたことを特徴としている。
[Means for Solving the Problems] The magnetization system for magnetic particle testing of steel materials according to the present invention includes a distance measuring means that measures the distance between the steel material and the magnetization device and outputs a signal, and an output signal of the distance measuring means. The present invention is characterized in that it is provided with a numerical conversion circuit that calculates the excitation power command amount of the magnetization device based on the excitation power command amount, and a power regulator that controls the excitation power of the magnetization device based on the excitation power command amount.

[作用コ 磁粉探傷される鋼材の曲がりは端部が殆どであって、全
長のうちの大部分は真直である。
[Working Coordination] Most of the bends in the steel material subjected to magnetic particle testing are at the ends, and the majority of the entire length is straight.

一方、磁化装置は有鉄心であっても磁気回路中に空間が
含まれるので鉄心の設計はクリティカルではなく、もっ
ばら励磁コイルの熱耐量で定格が決定される。よって、
磁気飽和の畏れなしに短時間過負荷を適用することがで
きる。
On the other hand, even if a magnetizing device has an iron core, a space is included in the magnetic circuit, so the design of the iron core is not critical, and the rating is determined primarily by the heat resistance of the excitation coil. Therefore,
Short-term overloads can be applied without fear of magnetic saturation.

本発明は、上記の観点からなされたもので、鋼材と磁化
装置との距離を計測する手段とその計測手段による距離
信号から励磁電力の増倍程度を予め与えられているテー
ブルによって演算する数値変換回路によって、例えば鋼
材磁化装置間の距離が大きくなったときには励磁電力を
大きくして、鋼材表面の磁場強度を一定とするものであ
る。
The present invention has been made from the above point of view, and includes a means for measuring the distance between the steel material and the magnetizing device, and a numerical conversion that calculates the degree of multiplication of excitation power from the distance signal from the measuring means using a table given in advance. Depending on the circuit, for example, when the distance between the steel material magnetization devices increases, the excitation power is increased to keep the magnetic field strength on the surface of the steel material constant.

[実施例] 以下、本発明の一実施例を図面により詳細に説明する。[Example] Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

なお、既述の符号は同一の部分を示しており説明は省略
する。
Note that the reference numerals already mentioned indicate the same parts, and a description thereof will be omitted.

第1図は、一実施例としての鋼材の走間磁粉探傷用磁化
システムのブロック図であって、3は鋼材との距離を非
接触で計測し計測値を信号出力する距離計測手段として
の距離センサ、4は距離信号値と必要励磁電力との関係
を予め与えられており前記距離信号値を励磁電力指令と
して出力する数値変換回路であり、励磁電力が一定のと
き磁化装置2とビレット1との距離の変化によりビレッ
ト1の表面磁場強さがどう変化するかを実測して得た距
離磁場強さ変換テーブル5と、ビレット1の表面磁場強
さの目標値を設定する磁場強度設定器6と、前記間者の
差分を計算する減算回路とより構成されている。
FIG. 1 is a block diagram of a magnetization system for magnetic particle testing of steel materials as an example, and 3 is a distance measuring means for measuring the distance to the steel material without contact and outputting the measured value as a signal. The sensor 4 is a numerical conversion circuit which is given the relationship between the distance signal value and the required excitation power in advance and outputs the distance signal value as an excitation power command, and when the excitation power is constant, the magnetization device 2 and the billet 1 A distance magnetic field strength conversion table 5 obtained by actually measuring how the surface magnetic field strength of the billet 1 changes due to a change in the distance between and a subtraction circuit that calculates the difference between the two.

7は数値変換回路4の指令により磁化装置2への交流電
力入力値を調整する電力調整器、8は交流電源である。
7 is a power regulator that adjusts the AC power input value to the magnetization device 2 according to a command from the numerical conversion circuit 4, and 8 is an AC power source.

本実施例の磁化システムはこのように構成されており、
次のように動作する。
The magnetization system of this example is configured as follows,
It works like this:

磁化コイル2の近くに配置された距離センサ3により、
ビレット1までの距離が計測され距離計測信号が数値変
換回路4に送られる。ここで、距離センサ3としては渦
流式、あるいは光学式の公知のものが好適に使用できる
。数値変換回路4では、磁場強度設定器6で設定したビ
レット表面磁場強さになるように、距離信号から予め用
意したテーブルによって励磁電力が演算され、その演算
値によって電力調整器7を制御し、磁化装置2への供給
電力が調整されて、ビレット1の曲がりがあってもビレ
ット1表面の磁場強度がほぼ一定となるように制御する
With the distance sensor 3 placed near the magnetizing coil 2,
The distance to the billet 1 is measured and a distance measurement signal is sent to the numerical conversion circuit 4. Here, as the distance sensor 3, a known eddy current type or optical type can be suitably used. In the numerical conversion circuit 4, the excitation power is calculated from the distance signal using a table prepared in advance so that the billet surface magnetic field strength is set by the magnetic field strength setting device 6, and the power regulator 7 is controlled based on the calculated value. The power supplied to the magnetization device 2 is adjusted so that the magnetic field strength on the surface of the billet 1 remains approximately constant even if the billet 1 is bent.

このようにして、本実施例の鋼材の走間磁粉探傷用磁化
システムにより、曲がりがあってもビレット部分の磁場
強さをほぼ一定として、良好な磁粉探傷条件を維持する
ことができる。
In this manner, the magnetization system for magnetic particle testing of steel materials according to the present embodiment makes it possible to maintain good magnetic particle testing conditions by keeping the magnetic field strength of the billet portion substantially constant even if there is bending.

なお、本実施例では、ビレット1の上下方向への曲がり
について説明したが、左右への曲がりがあるときは、第
4図に示すように左方、右方独立に第1図の実施例と同
様の装置を設けることにより、良好な探傷結果を得るこ
とができる。第4図中の符号で添字aは左側装置を、添
字すは右側装置を、数字部は第1図の数字符号と同一の
機能を示している。
In this embodiment, the bending of the billet 1 in the vertical direction has been explained, but when there is a bending in the left and right directions, as shown in FIG. By providing a similar device, good flaw detection results can be obtained. In the symbols in FIG. 4, the subscript "a" indicates the left side device, the subscript "a" indicates the right side device, and the numerical part indicates the same function as the numerical symbol in FIG.

[発明の効果] 本発明の鋼材の走間磁粉探傷用磁化システムは、鋼材と
磁化装置との距離を計測して信号出力する距離計測手段
と、同距離計測手段の出力信号から磁化装置の励磁電力
指令量を演算する数値変換回路と、同励磁電力指令量に
基づいて磁化装置の励磁電力を制御する電力調整器とが
設けられ、機械的な可動部分なしに鋼材の曲がりがあっ
ても鋼材表面磁場をほぼ一定とするので、 (1)鋼材の曲がりに対する探傷性能が向上する。
[Effects of the Invention] The magnetization system for magnetic particle testing of steel materials according to the present invention includes a distance measuring means for measuring the distance between the steel material and the magnetizing device and outputting a signal, and excitation of the magnetizing device from the output signal of the distance measuring means. A numerical conversion circuit that calculates the power command amount and a power regulator that controls the excitation power of the magnetization device based on the excitation power command amount are provided, and the steel material can be easily adjusted even if the steel material is bent without any mechanically moving parts. Since the surface magnetic field is kept almost constant, (1) the flaw detection performance for bending steel material is improved;

(2)機械的な追従装置が不要となり設備がシンプルと
なる。
(2) No mechanical follow-up device is required, simplifying the equipment.

(3)目視観察者の近くで動く装置が少なくなり安全で
ある 等投資額の削減、運用の改善により大きな経済効果を得
ることができる。
(3) Significant economic effects can be obtained due to reduced investment costs and improved operation, such as safety due to fewer moving devices near the visual observer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例としての鋼材の走間磁粉探傷用磁化シ
ステムのブロック図、第2図(a)〜(c)は磁化方法
の概念を示した斜視図、第3図は従来の磁化装置の追従
装置の模式的な断面図、第4図は他の実施例としての鋼
材の走間磁粉探傷用磁化システムのブロック図である。 1・・・・・・ビレット、2・・・・・・磁化装置、3
・・・・・・距離計測手段としての距離センサ、4・・
・・・・数値変換回路、5・・・・・・距離磁場強さ変
換テーブル、6・・・・・・磁場強度設定器、7・・・
・・・電力調整器、8・・・・・・交流電源。 特許出願人 株式会社 神戸製鋼所 代理人  弁理士  小 林  傅 第1図 第2図 第3図 第4図
Figure 1 is a block diagram of a magnetization system for magnetic particle testing of steel materials as an example, Figures 2 (a) to (c) are perspective views showing the concept of the magnetization method, and Figure 3 is a conventional magnetization system. FIG. 4 is a schematic cross-sectional view of the tracking device of the apparatus, and is a block diagram of a magnetization system for magnetic particle testing of steel materials as another embodiment. 1... Billet, 2... Magnetizer, 3
・・・・・・Distance sensor as distance measuring means, 4...
... Numerical conversion circuit, 5 ... Distance magnetic field strength conversion table, 6 ... Magnetic field strength setting device, 7 ...
... Power regulator, 8... AC power supply. Patent applicant: Kobe Steel, Ltd. Representative Patent attorney: Fu Kobayashi Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)磁粉探傷を行うために鋼材を走行状態で磁化する
鋼材の走間磁粉探傷用磁化システムにおいて、鋼材と磁
化装置との距離を計測して信号出力する距離計測手段と
、同距離計測手段の出力信号から磁化装置の励磁電力指
令量を演算する数値変換回路と、同励磁電力指令量に基
づいて磁化装置の励磁電力を制御する電力調整器とが設
けられたことを特徴とする鋼材の走間磁粉探傷用磁化シ
ステム。
(1) In a magnetization system for magnetic particle testing of steel materials in which the steel material is magnetized while running for magnetic particle testing, there is a distance measuring means for measuring the distance between the steel material and the magnetization device and outputting a signal, and a distance measuring means for measuring the distance between the steel material and the magnetization device and outputting a signal. A steel material characterized by being provided with a numerical conversion circuit that calculates the excitation power command amount of the magnetization device from the output signal of the steel material, and a power regulator that controls the excitation power of the magnetization device based on the excitation power command amount. Magnetization system for magnetic particle flaw detection while traveling.
JP5923088A 1988-03-15 1988-03-15 Magnetization system for magnetic particle flaw detection of running steel material Pending JPH01233365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5923088A JPH01233365A (en) 1988-03-15 1988-03-15 Magnetization system for magnetic particle flaw detection of running steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5923088A JPH01233365A (en) 1988-03-15 1988-03-15 Magnetization system for magnetic particle flaw detection of running steel material

Publications (1)

Publication Number Publication Date
JPH01233365A true JPH01233365A (en) 1989-09-19

Family

ID=13107369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5923088A Pending JPH01233365A (en) 1988-03-15 1988-03-15 Magnetization system for magnetic particle flaw detection of running steel material

Country Status (1)

Country Link
JP (1) JPH01233365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167838A (en) * 1993-08-18 1995-07-04 Micro Epsilon Messtechnik Gmbh & Co Kg Arrangement of sensor for examining physical property of surface layer of metal object and method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167838A (en) * 1993-08-18 1995-07-04 Micro Epsilon Messtechnik Gmbh & Co Kg Arrangement of sensor for examining physical property of surface layer of metal object and method therefor

Similar Documents

Publication Publication Date Title
KR101120284B1 (en) Wire rope flaw detector
FI73078C (en) SAETTING OVER ANORDINATION FOR ADJUSTMENT.
US4567435A (en) Method and apparatus for continuously measuring distance utilizing eddy current and having temperature difference influence elimination
JP2009047664A (en) Method and apparatus for nondestructive measurement
CN109997038B (en) Method and apparatus for evaluating damage of magnetic linear body
JPH01233365A (en) Magnetization system for magnetic particle flaw detection of running steel material
EP1308721B1 (en) Device and method for detecting magnetic properties of a metal object
JPS6352345B2 (en)
JPS58102148A (en) On-line hardness measuring method for steel sheet
AU2008362112B2 (en) Method and device for draining liquid coating metal at the output of a tempering metal coating tank
JP2009074813A (en) Method and device for detecting magnetic characteristic fluctuation portion of magnetic material
SE9702965D0 (en) Electric machine controller
JPH0341795B2 (en)
JPH04254753A (en) Magnetic flaw detector of wire rope
JP2008057990A (en) Flow rate estimation method and flow rate control method for molten steel
JPH11337304A (en) Device for measuring thickness of object to be measured, and method therefor
JPS62174651A (en) Method and device for deciding hardness of magnetic body
SU942825A1 (en) Rolling rolloperation method
JPS5713349A (en) Inspection device for electromagnetic induction
JPS6312555A (en) Steering system for conveying metal plate
JPH0836038A (en) Method for measuring magnetic permeability
SU867550A1 (en) Apparatus for determining article butt position
Hall et al. Novel magnetic method for the detection of residual curvature in electrical steel
RU2139153C1 (en) Rolling method
JPH08304008A (en) Method and apparatus for measurement of solidification thickness of cast piece