JPH01231283A - Manufacture of ceramic heater - Google Patents

Manufacture of ceramic heater

Info

Publication number
JPH01231283A
JPH01231283A JP5688888A JP5688888A JPH01231283A JP H01231283 A JPH01231283 A JP H01231283A JP 5688888 A JP5688888 A JP 5688888A JP 5688888 A JP5688888 A JP 5688888A JP H01231283 A JPH01231283 A JP H01231283A
Authority
JP
Japan
Prior art keywords
ceramic heater
paste
layer
heating element
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5688888A
Other languages
Japanese (ja)
Inventor
Tatsuto Fukushima
立人 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP5688888A priority Critical patent/JPH01231283A/en
Publication of JPH01231283A publication Critical patent/JPH01231283A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE:To enable arrangement of a heat emitting body in a ceramic heater with a simple work by applying the surface of a Si3N4 compact with a Si and Nb paste, or by printing the same thereon so as to form the heat emitting body. CONSTITUTION:A heat emitting body forming layer 8 structured by holding Nb paste by means of Si paste is applied on the surface of a Si3N4 compact 3. Next, a Si3N4 compact 4 individually made is overlapped on the surface of the body 3 so as to cover the layer 8. Then, a combined ceramic compact 9 is heated under vacuum, and Si and Nb in the layer 8 are reacted to form NbSi2. Further, the compact 9 is sintered to form a ceramic heater 1 where a heating body 2 made of NbSi2 is buried. It is thus possible to facilitate arrangement of the body 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックヒータの製造方法に関するものであ
り、特に、自動車エンジンの吸気ヒータ、グロープラグ
、発熱渦流室を形成するセラミックヒータの製造に好適
な方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a ceramic heater, and is particularly suitable for manufacturing a ceramic heater that forms an intake heater, a glow plug, or a heat-generating vortex chamber for an automobile engine. It concerns a method.

(従来の技術およびその問題点) 近年においては、Si3N4 系等のセラミック中にタ
ングステンコイルを発熱体として埋設したものが、自動
車エンジンの吸気ヒータ、グロープラグとして利用され
ている。このような焼結体は一般にはセラミックヒータ
、セラミックグロープラグと呼ばれている。
(Prior Art and its Problems) In recent years, tungsten coils embedded as heating elements in ceramics such as Si3N4 have been used as intake heaters and glow plugs for automobile engines. Such a sintered body is generally called a ceramic heater or a ceramic glow plug.

上記の発熱体としては、タングステン、モリブデン、N
bSi□等の各種の材料が知られている。これらの材料
からなる発熱体は次ぎのようにしてセラミック成形体内
に埋設される。すなわち、予め、タングステン線、モリ
ブデン線を用意しておき、あるいはNb5iz からな
る一定の形状の成形体を形成しておき、これをセラミッ
ク粉末内に埋設した状態でセラミック粉末を焼結させ、
これによってセラミック成形体内に埋設された発熱体を
得ている。このような方法は、例えば特公昭62−19
034号公報に開示されている。
The above heating elements include tungsten, molybdenum, N
Various materials such as bSi□ are known. A heating element made of these materials is embedded in a ceramic molded body in the following manner. That is, a tungsten wire or a molybdenum wire is prepared in advance, or a molded body of a certain shape made of Nb5iz is formed, and the ceramic powder is sintered while this is embedded in the ceramic powder.
This provides a heating element embedded within the ceramic molded body. Such a method is described, for example, in
It is disclosed in the No. 034 publication.

しかしながら、従来の方法では予め定まった形状の発熱
体をセラミック粉末内に埋設するようになっている。こ
のため、セラミック成形体の形成時に発熱体の位置が変
化するという問題がある。
However, conventional methods involve embedding a heating element of a predetermined shape within ceramic powder. Therefore, there is a problem that the position of the heating element changes during the formation of the ceramic molded body.

また、上記の公報に記載されているような、タングステ
ン線等の発熱抗体を埋設したセラミック粉末をホットプ
レス法によって成形する方法では、ffl>luな形状
のセラミックヒータを製造することが困難であり、比較
的大きな寸法の部品の製造には適していないという問題
点がある。
Furthermore, with the method described in the above-mentioned publication, in which ceramic powder in which a heating element such as a tungsten wire is embedded is molded by hot pressing, it is difficult to manufacture a ceramic heater with a shape where ffl>lu. However, there is a problem in that it is not suitable for manufacturing parts with relatively large dimensions.

本発明の目的は、発熱体の配置を簡単にでき、また複雑
な形状あるいは比較的大きな寸法のセラミックヒータを
容易に製造することのできる方法を提案することにある
SUMMARY OF THE INVENTION An object of the present invention is to propose a method that can simplify the arrangement of heating elements and easily manufacture ceramic heaters with complicated shapes or relatively large dimensions.

(課題を解決するための手段) 上記の目的を達成するために、本発明の方法においては
第1図に示す工程を経てセラミックヒータを製造してい
る。まず、Si、N4成形体の表面に、81ペーストで
Nbペーストを挟んだ層構造の発熱体形成層を塗布ある
いは印刷する。次に、この発熱体形成層が塗布等された
上記のSi3N、成形体の表面に別個に製作したSi3
N4成形体を重ね合わせて、発熱体形成層を覆った状態
とする。この後に、重ね合わせたセラミック成形体を真
空中で加熱して、発熱体形成層中のSiとNbとを反応
させて、Nb5lzを形成する。これに続いて、N2ガ
ス中で、重ね合わせたSi3N4成形体を焼結する。こ
のようにして内部にNb5lz からなる発熱体が埋設
されたセラミックヒータを製造している。
(Means for Solving the Problems) In order to achieve the above object, in the method of the present invention, a ceramic heater is manufactured through the steps shown in FIG. First, a heating element forming layer having a layered structure in which Nb paste is sandwiched between 81 paste is applied or printed on the surface of a Si, N4 molded body. Next, the above-mentioned Si3N on which this heating element forming layer was applied, etc., and the separately produced Si3N on the surface of the molded body.
The N4 molded bodies are overlapped to cover the heating element forming layer. Thereafter, the stacked ceramic molded bodies are heated in a vacuum to cause Si and Nb in the heating element forming layer to react to form Nb5lz. Following this, the stacked Si3N4 compacts are sintered in N2 gas. In this way, a ceramic heater in which a heating element made of Nb5lz is embedded is manufactured.

上記のSi、N4 成形体は、SI3N4 粉末に焼結
助剤を混入したものを、金型ブレスによって一定の形状
に焼結成形することによって製造す・ることができる。
The above-mentioned Si, N4 compact can be manufactured by sintering SI3N4 powder mixed with a sintering aid into a predetermined shape using a mold press.

焼結助剤には例えば^1201、Y2O3等がある。Examples of sintering aids include ^1201 and Y2O3.

上記の発熱体形成層は、Si3N4成形体の表面に、S
iペーストを塗布してSiペーストの層を形成し、この
31ペーストの層の上にsbペーストを塗布してNl)
ペーストの層を形成し、さらにこのNbペーストの層の
上に再びSiペーストを塗布してSiペーストの層を形
成することによって簡単に得られる。
The heating element forming layer described above is made of S on the surface of the Si3N4 molded body.
Apply i paste to form a layer of Si paste, and apply sb paste on top of this 31 paste layer to form Nl)
This can be easily obtained by forming a layer of paste and then applying Si paste again on this layer of Nb paste to form a layer of Si paste.

NbSi2 を形成するための好ましい条件は、重ね合
わせたSi3N4成形体を、真空中(約10−’Tor
r)において約600 ℃/時間の割合で1800℃ま
で昇温し、略1800℃の状態を約2時間維持すること
である。
The preferred conditions for forming NbSi2 are to place the stacked Si3N4 molded bodies in vacuum (approximately 10-' Torr).
r), the temperature is raised to 1800°C at a rate of about 600°C/hour, and the state of about 1800°C is maintained for about 2 hours.

このような条件の下でNI]S12 を反応形成させた
後は、次の条件下においてSi3N4 成形体を焼結さ
せることができる。すなわち、上述の真空雰囲気を徐々
にN2ガスとし、このN2ガス中において同じ< 18
00℃の状態を約2時間維持する。この後にN2ガス中
において室温まで冷却する。
After reacting and forming NI]S12 under these conditions, the Si3N4 compact can be sintered under the following conditions. That is, the vacuum atmosphere described above is gradually changed to N2 gas, and in this N2 gas, the same < 18
Maintain the temperature at 00°C for about 2 hours. After this, it is cooled to room temperature in N2 gas.

(発明の効果) 本発明の方法においては、セラミックヒータ内の発熱体
は、SiおよびNbのペーストをSI3N4 成ffe
体の表面に塗布、あるいは印刷することによって形成で
きる。従って、簡単な作業で発熱体を配置できる。また
、ホットプレス法を利用するばいいに比べて、より複雑
で大寸法のセラミックヒータを製造することが可能とな
る。
(Effects of the Invention) In the method of the present invention, the heating element in the ceramic heater is made of SI3N4 paste made of Si and Nb.
It can be formed by coating or printing on the surface of the body. Therefore, the heating element can be arranged with a simple operation. Furthermore, it is possible to manufacture ceramic heaters that are more complex and larger in size than if the hot pressing method were used.

(実施例) 次に、図面を参照して本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第2図には本発明の方法にしたがって!!造したセラミ
ックヒータを示しである。このセラミンクヒータlは厚
さ3 mmの円環形状をしており、その断面中央部分に
は円周方向に発熱層2を埋設しである。この発熱体2の
両端2a、2bはヒータ本体の外周面に向けて湾曲させ
である。この構成のセラミックヒータ1は次のようにし
て製造した。
FIG. 2 shows the method according to the invention! ! This figure shows the constructed ceramic heater. This ceramic heater 1 has an annular shape with a thickness of 3 mm, and a heat generating layer 2 is embedded in the circumferential direction in the center of the cross section. Both ends 2a and 2b of this heating element 2 are curved toward the outer peripheral surface of the heater main body. The ceramic heater 1 having this configuration was manufactured as follows.

まず、sl3N4に焼結助剤であるAl2O3、Y2O
3を混入して、Si3N4を約9′5重量%含有する混
合粉体を調製し、これを金型ブレスによって成形して、
第3図に示すように円環形状のSi3N4成形体3を作
製した。同様にして、第4図に示すような同一寸法のS
i3N4 成形体4を製作した。この成形体4には、そ
の一方の表面41に、発熱体埋設用の円環状の溝42を
付けた。
First, sintering aids Al2O3 and Y2O are added to sl3N4.
3 to prepare a mixed powder containing about 9'5% by weight of Si3N4, which was molded with a mold press,
As shown in FIG. 3, a ring-shaped Si3N4 molded body 3 was produced. Similarly, S of the same size as shown in FIG.
i3N4 molded body 4 was manufactured. This molded body 4 was provided with an annular groove 42 on one surface 41 thereof for embedding a heating element.

この後に、5L3N4 成形体3の一方の表面上におい
て、他方の成形体に形成した溝42に対応する位置に、
SIのペースト、NbのペーストおよびSiのペースト
をこの順序でそれぞれ40μmの厚さとなるように塗布
した。このようにして、第5図に示すようなNllペー
スト層5が81ペ一スト層6.7で挟まれた層構造の発
熱体形成層8を形成した。
After this, on one surface of the 5L3N4 molded body 3, at a position corresponding to the groove 42 formed in the other molded body,
SI paste, Nb paste, and Si paste were applied in this order to a thickness of 40 μm. In this way, a heating element forming layer 8 having a layered structure in which the Nll paste layer 5 was sandwiched between 81 paste layers 6 and 7 as shown in FIG. 5 was formed.

この後に、第6図に示すように、Si3N、成形体3と
もう一方のSi3N4成形体4とが、発熱体形成層8が
溝42内に丁度入るように重ね合わせた。
Thereafter, as shown in FIG. 6, the Si3N molded body 3 and the other Si3N4 molded body 4 were superimposed so that the heating element forming layer 8 was just placed within the groove 42.

このような積層体9を第7図に示す条件の下で処理した
。まず、約10−’Torrの真空雰囲気中で積層体8
を約600 ℃/時間の割合で1800℃まで高めた。
Such a laminate 9 was processed under the conditions shown in FIG. First, in a vacuum atmosphere of approximately 10-'Torr, the laminate 8 is
The temperature was increased to 1800°C at a rate of approximately 600°C/hour.

さらに、この温度状態を2時間維持した。この後に、温
度はそのままに保持したままで、真空雲囲気を徐々にN
2ガス雰囲気にし、N2ガス雰囲気中に2時間置き、し
かる後に室温になるまで徐冷した。このようにして、第
2図に示す円環形状のセラミックヒータIを製作した。
Furthermore, this temperature state was maintained for 2 hours. After this, while keeping the temperature the same, the vacuum cloud surroundings were gradually changed to N.
The sample was placed in a N2 gas atmosphere for 2 hours, and then slowly cooled to room temperature. In this way, an annular ceramic heater I shown in FIG. 2 was manufactured.

このヒータの発熱体形成層の部分には、厚さ約100μ
のNb5lz層からなる発熱層2が形成されていた。
The heating element forming layer of this heater has a thickness of approximately 100 μm.
A heat generating layer 2 consisting of a Nb5lz layer was formed.

製造したセラミックヒータの外周面を切り欠いて、発熱
層20両端部を露出させて、この発熱層2が発熱体とし
て適しているか否かの判定を行った。まず、この層2の
室温での抵抗値を測定して比抵抗値を算出したところ、
約30μΩ・cfflであった。次に、12Vのバッテ
リを形成された発熱層2に接続して、セラミックヒータ
1の昇温特性を調べた。測定点は、発熱層の円周方向の
中央部に相当するヒータの表面位置A(第1図参照)と
した。この結果を第8図に示す。この結果から分かるよ
うに最大約1000℃の昇温か測定されており、セラミ
ックヒータとして優れていることが分かる。
The outer peripheral surface of the manufactured ceramic heater was cut out to expose both ends of the heat generating layer 20, and it was determined whether the heat generating layer 2 was suitable as a heat generating element. First, we measured the resistance value of this layer 2 at room temperature and calculated the specific resistance value.
It was about 30 μΩ·cffl. Next, a 12V battery was connected to the formed heat generating layer 2, and the temperature increase characteristics of the ceramic heater 1 were investigated. The measurement point was a surface position A of the heater (see FIG. 1) corresponding to the circumferential center of the heat generating layer. The results are shown in FIG. As can be seen from the results, a maximum temperature increase of about 1000° C. was measured, and it can be seen that this is an excellent ceramic heater.

次に、第9図ないし第11図には、本発明の方法によっ
て製造した、エンジンの発熱渦流室の下部チャンバを形
成するセラミックヒータを示す。
Next, FIGS. 9 to 11 show a ceramic heater for forming the lower chamber of a heat generating swirl chamber of an engine, manufactured by the method of the present invention.

第9図および第10図に示すように、このセラミックヒ
ータ11内には上下に二層の発熱層12.13を埋設し
てあり、上端部には渦流室14の下部チャンバ用の窪み
15を形成しである。この形状のセラミックヒータ11
は、上下に多数に分割された円環状のセラミック成形体
を焼結することによって成形したものである。このセラ
ミックヒータ11は、第11図に示すように、焼きばめ
金、K IJソング6によって上部チャンバ部分17に
連結され、これによって発熱渦流室18が構成されてい
る。
As shown in FIGS. 9 and 10, two heating layers 12 and 13 are buried in the ceramic heater 11, upper and lower, and a recess 15 for the lower chamber of the swirl chamber 14 is provided at the upper end. It is formed. Ceramic heater 11 of this shape
is formed by sintering an annular ceramic molded body divided into a large number of upper and lower parts. As shown in FIG. 11, this ceramic heater 11 is connected to an upper chamber portion 17 by a shrink fit, a KIJ song 6, thereby forming a heat generating swirl chamber 18.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一例を示す工程図、第2図は本
発明の方法によって製造したセラミックヒータの例を示
す斜視図、第3図は第1図のセラミックヒータの製造に
使用するNbSi2 成形体を示す斜視図、第4図は第
1図のセラミックヒータの製造に使用するNbS i□
成形体を示す斜視図、第5図は第3図のNb5lz成形
体の表面に形成した発熱体形成層を示す断面図、第6図
は第3図および第4図に示すNbSi2成形体を積層し
た状態を示す断面図、第7図は焼結条件を示すグラフ、
第8図は第2図のセラミックヒータの昇温特性を示すグ
ラフ、第9図は本発明によるセラミックヒータの他の例
を示す平面図、第10図は第9図のセラミックヒータの
断面図、第11図は第9図のセラミックヒータを備えた
発熱渦流室を示す断面図である。 ■ セラミックヒータ 2 発熱層 3.4−NbSi2成形体 42溝 5 Nbペースト層 6.731ペ一スト層 8 発熱体形成層 第2図 Δ 元 第3図     第4図
Fig. 1 is a process diagram showing an example of the method of the present invention, Fig. 2 is a perspective view showing an example of a ceramic heater manufactured by the method of the present invention, and Fig. 3 is a diagram showing a ceramic heater used in manufacturing the ceramic heater of Fig. 1. A perspective view showing the NbSi2 molded body, FIG. 4 is a perspective view showing the NbSi2 molded body, and FIG.
FIG. 5 is a cross-sectional view showing a heating element forming layer formed on the surface of the Nb5lz molded product shown in FIG. 3, and FIG. 6 is a stacked NbSi2 molded product shown in FIGS. 3 and 4. Figure 7 is a graph showing the sintering conditions.
FIG. 8 is a graph showing the temperature rise characteristics of the ceramic heater of FIG. 2, FIG. 9 is a plan view showing another example of the ceramic heater according to the present invention, and FIG. 10 is a cross-sectional view of the ceramic heater of FIG. 9. FIG. 11 is a sectional view showing the heat generating swirl chamber equipped with the ceramic heater of FIG. 9. ■ Ceramic heater 2 Heat generating layer 3.4 - NbSi2 molded body 42 groove 5 Nb paste layer 6.731 paste layer 8 Heating element forming layer Fig. 2 Δ Original Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] Si_3N_4を主成分とするセラミック成形体を作製
し、Nbを主成分とするペーストの層をSiを主成分と
するペーストの層で挟んだ層構造の発熱体形成層を、前
記セラミック成形体の表面の一部分に形成し、別個に製
作したSi_3N_4を主成分とするセラミック成形体
で、前記発熱体形成層が形成された前記セラミック成形
体の表面を覆い、このように重ね合わせた積層体を、真
空雰囲気中で加熱して前記発熱体形成層中のSiとNb
とを反応させてNbSi_2を生成し、この後に重ね合
わせた状態の前記セラミック成形体をN_2ガス雰囲気
中で焼結させる工程からなるセラミックヒータの製造方
法。
A ceramic molded body containing Si_3N_4 as a main component is produced, and a heating element forming layer having a layered structure in which a layer of paste containing Nb as a main component is sandwiched between layers of paste containing Si as a main component is applied to the surface of the ceramic molded body. The surface of the ceramic molded body on which the heating element forming layer is formed is covered with a ceramic molded body mainly composed of Si_3N_4, which is formed on a portion and produced separately, and the laminated body thus stacked is heated in a vacuum. Si and Nb in the heating element forming layer are heated in an atmosphere.
A method for manufacturing a ceramic heater comprising the steps of reacting with NbSi_2 to produce NbSi_2, and then sintering the stacked ceramic molded bodies in an N_2 gas atmosphere.
JP5688888A 1988-03-10 1988-03-10 Manufacture of ceramic heater Pending JPH01231283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5688888A JPH01231283A (en) 1988-03-10 1988-03-10 Manufacture of ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5688888A JPH01231283A (en) 1988-03-10 1988-03-10 Manufacture of ceramic heater

Publications (1)

Publication Number Publication Date
JPH01231283A true JPH01231283A (en) 1989-09-14

Family

ID=13039967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5688888A Pending JPH01231283A (en) 1988-03-10 1988-03-10 Manufacture of ceramic heater

Country Status (1)

Country Link
JP (1) JPH01231283A (en)

Similar Documents

Publication Publication Date Title
KR100420456B1 (en) Wafer holder for semiconductor manufacturing apparatus, method of manufacturing wafer holder, and semiconductor manufacturing apparatus
JPH0251235B2 (en)
CN109219175A (en) A kind of low-temperature bake electronic cigarette heater and preparation method thereof
JPH0735723A (en) Rod ceramic heater for oxygen sensor and manufacture thereof
EP1271726A3 (en) Method for producing spark plug
JPH07190362A (en) Ceramic glowing plug
JPS61179084A (en) Ceramic heater and making thereof
JPH03196484A (en) High-temperature heating element and manufacture thereof
JPH01231283A (en) Manufacture of ceramic heater
JPH06151044A (en) Ceramics heater and manufacture thereof
JPS60176282A (en) Laminating type piezoelectric porcelain and manufacture thereof
JP4803651B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
CN112259490A (en) Electrostatic chuck with heating function and preparation method thereof
JP2530209B2 (en) Ceramic heater manufacturing method
KR101881960B1 (en) Ceramic heater for glow-plug and glow-plug having the same
JPS623798B2 (en)
JPH09245940A (en) Ceramic heat generation body, and manufacture thereof
JP2998999B2 (en) Ceramic heater
JPH0286086A (en) Manufacture of ceramic heater
JP2000299180A (en) Manufacture of ceramic heater
JP4522963B2 (en) Heating device
JPH0342344Y2 (en)
JP3913640B2 (en) Planar ceramic heater and manufacturing method thereof
JP2001102156A (en) Method for fabricating a ceramic heater
JPH046163A (en) Production of carrier consisting of aluminium nitride