JPH01231219A - Manufacture of oxide superconducting material - Google Patents

Manufacture of oxide superconducting material

Info

Publication number
JPH01231219A
JPH01231219A JP63057897A JP5789788A JPH01231219A JP H01231219 A JPH01231219 A JP H01231219A JP 63057897 A JP63057897 A JP 63057897A JP 5789788 A JP5789788 A JP 5789788A JP H01231219 A JPH01231219 A JP H01231219A
Authority
JP
Japan
Prior art keywords
powder
oxide
pressure
die
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63057897A
Other languages
Japanese (ja)
Inventor
Akito Kurosaka
昭人 黒坂
Teruyuki Takayama
高山 輝之
Haruo Tominaga
晴夫 冨永
Yoshio Ogura
小椋 善夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63057897A priority Critical patent/JPH01231219A/en
Publication of JPH01231219A publication Critical patent/JPH01231219A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable obtaining a superconducting oxide of high critical current density by pressurizing the raw material powder of an oxide superconducting material packed in a forming mold or a package in the specific decompressed atmosphere. CONSTITUTION:The powder of a YBCO oxide available from the crushing of T, Ba and Cu oxides or the sintered body of a carbonate powder is subject ed to pressed powder treatment so that the voids thereof will be 50 to 60%. A lower punch 8 is inserted in the lower part of a die 1 and a powder 14 after a pressing process is loaded on the lower punch 6 within a vessel 5. Then, an upper punch 7 is inserted in the upper part of the die 1. Thereafter, the vessel 5 is exhausted via an exhaust outlet 6 and pressure inside the vessel 5 is kept equal to or below 10Torr. The compact of YBCO so obtained is filled in a silver pipe and subjected to a drawing process and the like, together with the silver pipe. According to the aforesaid construction, it is possible to obtain a superconducting oxide wire material having high critical current density and superior characteristics.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はイツトリウム−バリウム−銅−酸]ヒ’+lr
+(以下、YI13COという)系超電導材等の酸(ヒ
糊超電導材の製造方法に関し、特にその密度を高めて臨
界電流密度を向上させた酸化物超電導材の製造方法に関
する。
[Detailed description of the invention] [Industrial application field] The present invention is directed to yttrium-barium-copper-acid]
The present invention relates to a method for producing an acid (arsenic paste) superconducting material such as a (hereinafter referred to as YI13CO) superconducting material, and in particular to a method for producing an oxide superconducting material whose density is increased to improve its critical current density.

[従来の技術] Y B CO系超電導材料を線材に加工するプロセスに
おいては、通常、先ずY、Ba、Cuの酸化物又は炭酸
塩を出発原料とし、これを所定の配合量で混合した後、
この混合粉末を約900 ’Cの温度で仮jJlきし、
YBCO系粉粒子の焼結体を作製する。次いで、この焼
結体を所定の粒度の粉末に粉砕し、得られたYBCO系
粉末全粉末の大きさ及び形状の成形体に加圧成形する。
[Prior Art] In the process of processing YBCO-based superconducting material into a wire rod, oxides or carbonates of Y, Ba, and Cu are usually used as starting materials, and after mixing these in a predetermined amount,
Temporarily heat this mixed powder at a temperature of about 900'C,
A sintered body of YBCO powder particles is produced. Next, this sintered body is pulverized into powder with a predetermined particle size, and the YBCO-based powder obtained is press-molded into a compact having the size and shape of the entire powder.

その後、上記加圧成形工程で作製した成形体を金属パイ
プ等に充填した後、パイプと共に、スウェージング加工
し又は伸線加工して、所望の線径まで伸線する。
Thereafter, after filling a metal pipe or the like with the molded body produced in the pressure forming step, the pipe is swaged or wire-drawn to a desired wire diameter.

次いで、上記伸線工程で作製した線材を、所望の特性(
臨界温度Tc又は臨界電流密度Jc)が得られるように
、酸化雰囲気中で約900 ’Cに加熱して焼成処理す
る。
Next, the wire produced in the above wire drawing process is given desired characteristics (
The sintering process is performed by heating to about 900'C in an oxidizing atmosphere so as to obtain a critical temperature Tc or critical current density Jc).

この線材加工プロセスにおいては、加圧成形工程は、従
来、金型成形法又はラバープレス法により行われている
In this wire processing process, the pressure forming step has conventionally been carried out by a die forming method or a rubber press method.

第2図は金型成形法による従来の加圧成形工程を示す断
面図である。円筒状のダイス1には、その上端及び下端
側からパンチ2,3が挿入される。
FIG. 2 is a cross-sectional view showing a conventional pressure molding process using a die molding method. Punches 2 and 3 are inserted into the cylindrical die 1 from its upper and lower ends.

そして、先ず、下側パンチ3をダイス1内に挿入し、Y
BCO系超電系材電導材粉末ダイス1内のパンチ3上に
装入した陵、上側パンチ2をダイス1内に挿入し、両パ
ンチ2.3を図中矢印にて示すように、相互に接近する
方向に押圧することにより粉末4を加圧して成形する。
First, insert the lower punch 3 into the die 1, and
Insert the upper punch 2 into the die 1, which is loaded onto the punch 3 in the BCO superconducting material powder die 1, and press both punches 2.3 against each other as shown by the arrows in the figure. By pressing in the approaching direction, the powder 4 is compressed and molded.

[発明が解決しようとする課題] しかしながら、この加圧成形工程においては、粉末4を
ダイス1内に装入し、上側パンチ2をタイスl内に挿入
した時点で、ガス(空気)もダイス1内に密閉されてし
まう。このため、パンチ2゜3により粉末4が加圧され
て凝集体となる際に、密閉されたガスが粉末粒子間に侵
入し、粉末中にガスが残存した状態で粉末が成形される
。また、加圧力が増大すると、この閉じ込められたガス
の圧力も増大する。
[Problems to be Solved by the Invention] However, in this pressure forming process, when the powder 4 is charged into the die 1 and the upper punch 2 is inserted into the die 1, gas (air) also flows into the die 1. It will be sealed inside. Therefore, when the powder 4 is pressurized by the punch 2.degree. 3 to form an aggregate, the sealed gas enters between the powder particles, and the powder is molded with the gas remaining in the powder. Furthermore, as the applied pressure increases, the pressure of this trapped gas also increases.

そうすると、この粉末粒子間に閉じ込められたガスに起
因して、加圧成形体の密度が低下し、臨界電流密度が高
い超電導酸化物を得ることができない。
In this case, the density of the press-molded body decreases due to the gas trapped between the powder particles, making it impossible to obtain a superconducting oxide with a high critical current density.

また、加圧成形体中のガス圧力が高いので、加圧力を除
去した後に、成形体において、スプリングバック(若干
1膨張する現象)及びクラックが発生しやすい。
Furthermore, since the gas pressure in the press-molded body is high, springback (a phenomenon of slight expansion) and cracks are likely to occur in the press-molded body after the pressurizing force is removed.

このため、従来の製造方法においては、加圧成形工程に
おける空気の取り込みのために、所望の臨界電流密度を
有するYBCO系超電系材電導材を安定して製造するこ
とができないという問題点がある。
For this reason, in the conventional manufacturing method, there is a problem that it is not possible to stably manufacture a YBCO-based superconducting material having a desired critical current density due to the intake of air during the pressure molding process. be.

このような事情は、ラバープレス法により加圧成形する
場合も同様であり、ゴム袋内の残存ガスが、加圧により
凝集されつつある粉末粒子間に取り込まれ、内部ガスの
圧力が高くなる。
This situation is the same when pressure molding is performed using a rubber press method, and the residual gas in the rubber bag is trapped between powder particles that are being aggregated by pressure, increasing the internal gas pressure.

本発明はかかる問題点に鑑みてなされたものであって、
成形体の密度が高く、高臨界電流密度の超電導材が得ら
れると共に、成形体におけるクラック等の発生を回避す
ることができる酸化物超電導材の製造方法を提供するこ
とを目的とする。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a method for manufacturing an oxide superconducting material, which can obtain a superconducting material having a high density and a high critical current density, and can avoid the occurrence of cracks in the compact.

[課題を解決するための手段] 本発明に係る酸化物超電導材の製造方法は、酸化物超電
導材の原料粉末を空隙率が60%以下になるように圧粉
処理した漫、この粉末を成形用型又は包装内に装入し、
この型又は包装内の粉末を10 Torr、以下の減圧
雰囲気下で加圧して所定形状に成形することを特徴とす
る。
[Means for Solving the Problems] The method for producing an oxide superconducting material according to the present invention includes the steps of: compressing raw material powder of an oxide superconducting material so that the porosity becomes 60% or less; and molding this powder. Charge it into a mold or package,
It is characterized in that the powder in this mold or package is pressurized in a reduced pressure atmosphere of 10 Torr or less and molded into a predetermined shape.

また、前記原料粉末の圧粉処理は、空隙率が50%以上
になるようにすることが好ましい。
Further, it is preferable that the raw material powder is subjected to powder compaction treatment so that the porosity becomes 50% or more.

し作用コ 本発明においては、成形用型又は包装内に装入された酸
化物系超電導材の原料粉末をl QTorr。
In the present invention, the raw material powder of the oxide superconducting material charged into a mold or package is heated to 1 QTorr.

以下の減圧雰囲気にして加圧する。このため、成形用型
内等の粉末からは、成形加圧前又は成形加圧中にその表
面部は勿論のこと内部からも空気が抜けて脱気される。
Pressure is applied to the following reduced pressure atmosphere. Therefore, air is removed from the powder in the mold, etc., not only from the surface but also from the inside before or during the molding pressurization.

従って、粉末中に残存する空気は極めて少なくなり、高
密度の加圧成形体か得られるので、高臨界電流密度の超
電導酸化物を製造することができる。また、残存ガスが
著しく軽減されるので、加圧力解除後に成形体にクラッ
クが発生ずることもない。
Therefore, the amount of air remaining in the powder is extremely reduced, and a high-density pressed compact can be obtained, making it possible to produce a superconducting oxide with a high critical current density. Furthermore, since residual gas is significantly reduced, cracks do not occur in the molded product after the pressure is released.

[実施例] 以下、本発明の実施例について添付の図面を参照して説
明する。第1図は本発明の実施例方法を示す断面図であ
る。
[Examples] Examples of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a sectional view showing an example method of the present invention.

容器5はその側壁上部に排気口6が設けられており、こ
の排気口6は適宜の排気手段(図示せず)に連結されて
いて、排気口6を介して容器5の内部が排気されるよう
になっている。
The container 5 is provided with an exhaust port 6 in the upper part of its side wall, and this exhaust port 6 is connected to a suitable exhaust means (not shown), so that the inside of the container 5 is exhausted through the exhaust port 6. It looks like this.

また、容35内には円筒状のダイス1がその軸方向を垂
直にして固定的に設置されている。
Further, a cylindrical die 1 is fixedly installed in the container 35 with its axial direction perpendicular.

更に、パンチ7.8はその基部を容器5の上壁及び下壁
に設けられた孔に気密的に挿通させて容器5内に配設さ
れており、この基部を介して適宜の駆動手段によりパン
チ7,8は上昇及び下降駆動される。而して、パンチ7
.8は容器5内に配設されたダイス1内にその上端及び
下端開口から挿入されるようになっている。パンチ7.
8には、夫々その先端に開口する排気通路9が内設され
ており、この排気道i?8つはダイス1から露出してい
る部分のパンチ7.8の側部に開口して排気1]10を
形成している。この排気通路9の径は粉末14内の残留
ガスを排気することかできるのに十分な大きさにする必
要があるが、粉末の吸引を防止するためには可及的に小
さいほうが好ましい。
Further, the punch 7.8 is disposed inside the container 5 with its base inserted airtightly into holes provided in the upper and lower walls of the container 5, and is driven by an appropriate driving means through this base. The punches 7 and 8 are driven upward and downward. Then, punch 7
.. 8 is adapted to be inserted into the die 1 disposed in the container 5 from its upper and lower end openings. Punch 7.
8 is provided with an exhaust passage 9 that opens at its tip, and this exhaust passage i? 8 is opened at the side of the punch 7.8 in the portion exposed from the die 1 to form an exhaust gas 1]10. Although the diameter of the exhaust passage 9 needs to be large enough to exhaust the residual gas in the powder 14, it is preferably as small as possible in order to prevent suction of the powder.

本実施例方法においては、先ず、従来方法と同様にして
Y、Ba、Cu酸化物又は炭酸塩粉末を配合した後、仮
焼きし、YBCO系酸化物の焼結体を作製する。そして
、この焼結体を粉砕してYBCO系酸1ヒ物の粉末を得
る。
In the method of this embodiment, first, Y, Ba, Cu oxide or carbonate powders are blended in the same manner as in the conventional method, and then calcined to produce a sintered body of YBCO-based oxide. Then, this sintered body is crushed to obtain a powder of YBCO-based acid monomer.

次いで、この粉末を空隙率が50乃至60%になるよう
に圧粉処理する。これは、後工程の加圧成形工程におい
て減圧する前に、YBCO系¥A電導材粉末に適度の凝
集力をもたせるためである。
Next, this powder is compacted so that the porosity becomes 50 to 60%. This is to provide the YBCO-based ¥A conductive material powder with an appropriate cohesive force before the pressure is reduced in the subsequent pressure molding process.

つまり、YBCO系超電導酸化物粉末の凝集力か弱過ぎ
ると、減圧の際に、その微粉末が排気通路9を介して外
部に排出されてしまったり、排気通路9を詰まらせたり
する。このため、前記粉末を空隙率か60%以下になる
ように圧粉処理しておく。また、逆に、凝集力が強過ぎ
ると、後工程の減圧雰囲気下での加圧成形工程において
、粉末中の残存カスを除去し難くくなる。このため、圧
粉処理後の粉末の空隙率は50%以上を確保するほうが
好ましい。
That is, if the cohesive force of the YBCO-based superconducting oxide powder is too weak, the fine powder may be discharged to the outside through the exhaust passage 9 or clog the exhaust passage 9 when the pressure is reduced. For this reason, the powder is subjected to a powder compaction treatment so that the porosity becomes 60% or less. On the other hand, if the cohesive force is too strong, it will be difficult to remove residual debris from the powder in the subsequent pressure molding step under a reduced pressure atmosphere. For this reason, it is preferable to ensure that the porosity of the powder after compaction is 50% or more.

その後、下側パンチ8をダイス1の下部内に挿入し、前
述の圧粉処理した粉末14を容器5内の下側パンチ8上
に装入し、次いで、上側パンチ7をダイス1の上部内に
挿入する。そして、排気口6を介して容器5内を排気し
、容器5内を圧力10Tor+・ 以下の圧力に保持す
る。そうすると、粉末14中のガスが排気通路9を介し
て容器5内に排出され、更に排気口6を介して外部に排
出される。
Thereafter, the lower punch 8 is inserted into the lower part of the die 1, the above-mentioned compacted powder 14 is charged onto the lower punch 8 in the container 5, and then the upper punch 7 is inserted into the upper part of the die 1. Insert into. Then, the inside of the container 5 is evacuated through the exhaust port 6, and the inside of the container 5 is maintained at a pressure of 10 Tor+· or less. Then, the gas in the powder 14 is discharged into the container 5 through the exhaust passage 9 and further to the outside through the exhaust port 6.

次いで、パンチ7.8を図中矢印にて示すように、相互
に接近する方向に移動させてダイス1との間で粉末14
を加圧成形する。この加圧処理中も粉末14内部のガス
は排気通路9を介して粉末内から排出される。このよう
にして、粉末内部のガスが殆ど消失し、得られた加圧成
形体は残留カスの圧力が極めて低い。このため、成形体
の密度は極めて高い。また、残留ガス圧が低いので、パ
ンチ7.8の加圧力を除去した後に、成形体にスフ゛リ
ングバック又はクラックが発生することはない。
Next, the punches 7.8 are moved in the direction of approaching each other as shown by the arrows in the figure, and the powder 14 is moved between them and the die 1.
Pressure mold. Even during this pressurization process, the gas inside the powder 14 is exhausted from the powder via the exhaust passage 9. In this way, most of the gas inside the powder disappears, and the resulting press-molded product has extremely low residual scum pressure. Therefore, the density of the compact is extremely high. Furthermore, since the residual gas pressure is low, no springback or cracks will occur in the molded product after the pressing force of the punches 7.8 is removed.

この粉末14の加圧成形時に、雰囲気圧力を10Tor
r、以下にするのは、雰囲気圧力か10Torr、より
高いと、粉末中のガスを十分に抜くことができず、成形
体の密度を十分高くすることかできないため、臨界電流
密度の向上効果が不十分となるからである。
At the time of pressure molding of this powder 14, the atmospheric pressure was set to 10 Torr.
The reason why the atmospheric pressure is set below 10 Torr is because if it is higher, the gas in the powder cannot be sufficiently removed and the density of the compact cannot be made sufficiently high, so the effect of improving the critical current density is lowered. This is because it will be insufficient.

次いで、このようにして得られたYBCOの成形体を銀
パイプ中に充填し、銀パイプと共に伸線加工等を施して
所定線径の線材を得る。その後、酸処理して銀パイプの
みを除去し、次いで、所定の焼成処理をしてYBCO系
酸化物超電導材を得る。
Next, the YBCO molded body thus obtained is filled into a silver pipe and subjected to wire drawing processing etc. together with the silver pipe to obtain a wire rod of a predetermined wire diameter. Thereafter, only the silver pipe is removed by acid treatment, and then a predetermined firing treatment is performed to obtain a YBCO-based oxide superconducting material.

この超電導材は密度が高いので、高い臨界電流;何度を
有し、極めて優れた特性の超電導酸化物線材が得られる
Since this superconducting material has a high density, it has a high critical current; a superconducting oxide wire with extremely excellent characteristics can be obtained.

次に、本発明の実施例方法により、実際に超電導酸化物
線材を製造した結果について説明する−先ず、平均粒子
径が約5μmの粒度であって、Y B a2 Cu 3
07− Jの組成を有する粉末を作製し、下記第1表に
示す条件で加圧成形体を作製した。
Next, we will explain the results of actually manufacturing superconducting oxide wires using the example method of the present invention.
A powder having a composition of 07-J was prepared, and a press-molded body was prepared under the conditions shown in Table 1 below.

第1表 実施例1乃至4及び比較例1.2並びに従来例は、いず
れら前述の第1図に示す成形装置を使用して加圧成形し
た。この加圧成形体のサイズはいずれも直径が7開、長
さが100+IInであり、成形圧力は2,5トンであ
る。得られた成形体について、水銀ポロシメータを使用
して空隙率を測定し、見かけ密度を算出した。その結果
を前記第1表に併せて示す。
Examples 1 to 4 in Table 1, Comparative Examples 1.2 and Conventional Example were all pressure molded using the molding apparatus shown in FIG. 1 described above. The size of each of these pressure-molded bodies is 7 mm in diameter, 100 + IIn in length, and the molding pressure is 2.5 tons. The porosity of the obtained molded body was measured using a mercury porosimeter, and the apparent density was calculated. The results are also shown in Table 1 above.

次いで、上記方法で作製した各成形体を肉厚がIIII
Wlの銀パイプに充填封入した後、スウエージング加工
によって直径が2.0開になるまで縮径加工して線材化
した。その後、表層の銀シールを硝酸メタノールで溶解
した後、900℃の酸化雰囲気中で、10時間加熱処理
した。得られた超電導酸化物線材を液体チッ素中に浸漬
し、その臨界電流密度を測定した。この結果も前記第1
表に併せて示す。なお、臨界電流密度は、従来方法によ
り製造された超電導体の臨界電流密度を1とし、この従
来例に対する比で指数表示したものである。
Next, each of the molded bodies produced by the above method had a wall thickness of III.
After filling and sealing in a Wl silver pipe, it was reduced in diameter by swaging until the diameter became 2.0 mm and turned into a wire rod. Thereafter, the silver seal on the surface layer was dissolved in methanol nitric acid, and then heat-treated in an oxidizing atmosphere at 900° C. for 10 hours. The obtained superconducting oxide wire was immersed in liquid nitrogen, and its critical current density was measured. This result also applies to the first
It is also shown in the table. Note that the critical current density is expressed as an index as a ratio to the conventional example, with the critical current density of a superconductor manufactured by a conventional method being 1.

この第°1表から明らかなように、実施例1乃至4の発
明方法で製造したYBa2 CL1307− a超電導
体は、従来方法で製造した場合のものに比較して、見掛
は密度と臨界電流密度の双方において顕著な向上効果が
認められる。
As is clear from Table 1, the YBa2 CL1307-a superconductors manufactured by the invention method of Examples 1 to 4 have a higher apparent density and critical current than those manufactured by the conventional method. A remarkable improvement effect is observed in both density.

これに対し、比較例1は加圧成形時の減圧処理が不十分
で雰囲気圧力(50Tθrr、 )か高いため、臨界電
流密度の向上効果か少ない。
On the other hand, in Comparative Example 1, the pressure reduction treatment during pressure molding was insufficient and the atmospheric pressure (50Tθrr, ) was high, so the effect of improving the critical current density was small.

また、比較例2は減圧処理前の空隙率が65%と高いの
で、微粉の粉末が外部に排出されてしまった。
Further, in Comparative Example 2, the porosity before the vacuum treatment was as high as 65%, so fine powder was discharged to the outside.

なお、実施例1乃至3は、減圧処理前の空ii!率か5
0%以上であるから、実施例4の場合(空隙率llO%
)に比して十分に脱気されて、見かり密度及び臨界電流
密度が高い。
In addition, Examples 1 to 3 are the empty ii! before depressurization treatment. Rate 5
Since it is 0% or more, in the case of Example 4 (porosity llO%
), it is sufficiently degassed and its apparent density and critical current density are high.

し発明の効果] 以上説明したように、本発明によれば、YBCO系等の
酸化物超電導材の粉末を加圧成形する際に、空隙率が6
0?6以下となるように圧粉処理した後、10Torr
、以下の減圧雰囲気下て加圧成形するから、高書度の成
形体が得られると共に、成形後のクラック等の発生等が
回避され、臨界電流密度が高い酸化物超電導材を製造す
ることができる。
[Effects of the Invention] As explained above, according to the present invention, when the powder of oxide superconducting material such as YBCO-based material is pressure-molded, the porosity is 6.
10 Torr after powder compaction so that it is 0-6 or less
Since the molding is carried out under pressure under the following reduced pressure atmosphere, a molded body with high clarity can be obtained, the occurrence of cracks etc. after molding can be avoided, and it is possible to produce an oxide superconducting material with a high critical current density. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例方法を示す断面図、第2t2は
従来方法を示す断面図である。 1;ダイス、5:容器、6,10;排気口、7゜8;バ
ンチ、9;排気通路、14;超電導酸化物原料粉末
FIG. 1 is a cross-sectional view showing the embodiment method of the present invention, and FIG. 2t2 is a cross-sectional view showing the conventional method. 1; Dice, 5: Container, 6, 10; Exhaust port, 7° 8; Bunch, 9; Exhaust passage, 14; Superconducting oxide raw material powder

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超電導材の原料粉末を空隙率が60%以下
になるように圧粉処理した後、この粉末を成形用型又は
包装内に装入し、この型又は包装内の粉末を10Tor
r以下の減圧雰囲気下で加圧して所定形状に成形するこ
とを特徴とする酸化物超電導材の製造方法。
(1) After compacting the raw material powder of the oxide superconducting material so that the porosity becomes 60% or less, this powder is charged into a mold or package, and the powder in this mold or package is heated to 10 Torr.
1. A method for producing an oxide superconducting material, which comprises forming the material into a predetermined shape by applying pressure in a reduced pressure atmosphere below r.
(2)前記圧粉処理後の粉末は、空隙率が50%以上で
あることを特徴とする請求項1に記載の酸化物超電導材
の製造方法。
(2) The method for producing an oxide superconducting material according to claim 1, wherein the powder after the compaction treatment has a porosity of 50% or more.
JP63057897A 1988-03-10 1988-03-10 Manufacture of oxide superconducting material Pending JPH01231219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63057897A JPH01231219A (en) 1988-03-10 1988-03-10 Manufacture of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63057897A JPH01231219A (en) 1988-03-10 1988-03-10 Manufacture of oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH01231219A true JPH01231219A (en) 1989-09-14

Family

ID=13068777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63057897A Pending JPH01231219A (en) 1988-03-10 1988-03-10 Manufacture of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH01231219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022119833A (en) * 2018-12-04 2022-08-17 メディカル インベンティ エス.エー. Machine for molding composite material and method of producing ceramics-based composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022119833A (en) * 2018-12-04 2022-08-17 メディカル インベンティ エス.エー. Machine for molding composite material and method of producing ceramics-based composite material

Similar Documents

Publication Publication Date Title
EP0137565B1 (en) Multilayer ceramic capacitor
JPH03501665A (en) Method for producing wire or band made of high-temperature superconductor and capsules used therein
JPH0130898B2 (en)
JPH01231219A (en) Manufacture of oxide superconducting material
US3342562A (en) High density urania fuel elements
JPH01261264A (en) Production of oxide superconductor
US4447389A (en) Method for manufacturing tubes by sintering
JP3121400B2 (en) Manufacturing method of tungsten sintered body
US5026519A (en) Method of making tungsten powder compacts
JP2592872B2 (en) Manufacturing method of oxide superconducting wire
JP3147387B2 (en) Method for manufacturing anode body for solid electrolytic capacitor
JP2507937B2 (en) Manufacturing method of superconducting ceramic wire
JP2712894B2 (en) Method of forming fine pieces
JPH0348253B2 (en)
JP2003277154A (en) Method for manufacturing ceramics
JPS6053454B2 (en) Manufacturing method of sintered capacitor element
JPS6146433B2 (en)
JPH06309967A (en) Manufacture of oxide type superconducting wire
JP3006263B2 (en) Method for producing metal powder sintered body
JPH01320711A (en) Manufacture of superconductive compact in oxide line
JPH05250938A (en) Manufacture of oxide superconductive wire
JPH01138167A (en) Production of oxide superconductor
JPH01226703A (en) Production of oxide superconductor
JPS63247322A (en) Formation of ti-al intermetallic compound member
SU1101913A2 (en) Process for manufacturing bulk-porous anodes