JPH01230909A - Nox control method by over-air port - Google Patents

Nox control method by over-air port

Info

Publication number
JPH01230909A
JPH01230909A JP5394788A JP5394788A JPH01230909A JP H01230909 A JPH01230909 A JP H01230909A JP 5394788 A JP5394788 A JP 5394788A JP 5394788 A JP5394788 A JP 5394788A JP H01230909 A JPH01230909 A JP H01230909A
Authority
JP
Japan
Prior art keywords
signal
nox
boiler
opening
basic opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5394788A
Other languages
Japanese (ja)
Inventor
Ichiro Tashiro
田代 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP5394788A priority Critical patent/JPH01230909A/en
Publication of JPH01230909A publication Critical patent/JPH01230909A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the fluctuation of regular or transient NOX which can not sufficiently be controlled by only a basic opening signal and easily design a denitration device by regulating the basic opening signal on the basis of the difference between an approximate NOX signal and an approximate boiler outlet NOX signal according to a boiler input signal. CONSTITUTION:At the normal time a drive device 5 is actuated and the opening of an OAP damper 4 is limited by a basic opening signal from a function generator 2 on the basis of a boiler input signal 1. At this time an approximate outlet NOX signal 7 corresponding to the load from a function generator 6, other signals from a NOX meter 9 and an O2 meter 10 are introduced in a multiplier 11 to obtain an approximate boiler outlet NOX signal 12, signals 7, 12 are compared with each other by a subtracter 8, if there is a difference between the signals 7, 12, an opening regulating signal 14 is output by a function generator 13 according to the difference and added to the basic opening signal 3 by an adder 16 through a rate-of-change limiter 15. Therefore, the basic opening signal 3 is automatically regulated by the opening regulating signal 14 even if regular and transient NOX changes are produced.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明はボイラにおけるオーバーエアポートによるNO
x制御方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides an NO
This relates to an x control method.

[従来の技術] 通常、ボイラ等の下流側には、排ガスの脱硝を行う脱硝
装置が設けられており、又、ボイラには出力指令(ボイ
ラ入力信号)により設定された基本開度プログラムに応
じてオーバーエアポートダンパ(OAPダンパ)からの
二段燃焼空気が導入されて、ボイラ出口NOxが制御さ
れている。
[Prior Art] Normally, a denitrification device for denitrifying exhaust gas is installed downstream of a boiler, etc., and the boiler is equipped with a denitrification device that denitrates exhaust gas. Two-stage combustion air is introduced from an over air port damper (OAP damper) to control boiler outlet NOx.

[発明が解決しようとする課題〕 しかし、石炭、ガス、油等、燃料の如何を問わず、燃料
中のN分の変化、及び負荷変化、更には石炭焚ボイラに
おける微粉炭ミルの起動、停止等の状態変化時には、ボ
イラ出口NOxが変動する。
[Problem to be solved by the invention] However, regardless of the fuel, such as coal, gas, oil, etc., changes in N content in the fuel, changes in load, and starting and stopping of a pulverized coal mill in a coal-fired boiler can occur. When conditions such as the above change, the boiler outlet NOx fluctuates.

従って、前記脱硝装置においても、過渡的なNOx制御
は厳しく、よって脱硝装置に余裕を持たせた設計が必要
となる。
Therefore, even in the denitrification device, transient NOx control is strict, and therefore the denitration device needs to be designed with a margin.

本発明は、定常的なNOxの上昇と過渡的なNOxの抑
制を良好に行わせることを目的としている。
An object of the present invention is to satisfactorily suppress a steady increase in NOx and a transient increase in NOx.

[課題を解決するだめの手段] 本発明は、上記技術的課題を解決しようとしたもので、
ボイラ入力信号に基づく基本開度信号によりオーバーエ
アポートダンパの開度を制御し、同時に前記ボイラ入力
信号に基づく換算NOx信号とボイラ出口において検出
したNOx値と02値から求めたボイラ出口換算NOx
信号との差に基づく開度調整信号により前記基本開度信
号を調整することを特徴とするオーバーエアポートによ
るNOx制御方法、に係るものである。
[Means for solving the problem] The present invention is an attempt to solve the above technical problem.
The opening degree of the over-airport damper is controlled by a basic opening signal based on the boiler input signal, and at the same time, the boiler outlet converted NOx is calculated from the converted NOx signal based on the boiler input signal, the NOx value detected at the boiler outlet, and the 02 value.
This invention relates to a NOx control method using an over-air port, characterized in that the basic opening degree signal is adjusted by an opening degree adjustment signal based on a difference between the basic opening degree signal and the basic opening degree signal.

[作   用] 従って、本発明では、ボイラ入力信号に基づく換算NO
x信号とボイラ出口換算NOx信号との差に基づいて、
基本開度信号を調整し、基本開度信号では制御しきれな
い定常的なNOx変動及び過渡的なNOx変動を抑制す
る。
[Function] Therefore, in the present invention, the converted NO. based on the boiler input signal
Based on the difference between the x signal and the boiler outlet converted NOx signal,
The basic opening signal is adjusted to suppress steady NOx fluctuations and transient NOx fluctuations that cannot be controlled by the basic opening signal.

[実 施 例コ 以下本発明の実施例を図面を参照しつつ説明する。[Implementation example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を実施する装置の一例を示すもの
で、出力指令(ボイラ人力信号)1を関数発生器2に導
いて基本開度プログラムにより得た基本開度信号3によ
り、負荷に応じてOAPダンパ4の開度が変更されるよ
う駆動装置5を作動させる。
Fig. 1 shows an example of a device for carrying out the method of the present invention, in which an output command (boiler human power signal) 1 is guided to a function generator 2, and a basic opening signal 3 obtained by a basic opening program is used to generate a load. The drive device 5 is operated so that the opening degree of the OAP damper 4 is changed in accordance with the change in the opening degree of the OAP damper 4.

更に、前記ボイラ人力信号1を関数発生器6に入力して
規準NOxプログラムにより負荷に応じた換算NOx信
号7を得て引算器8に出力させ、又ボイラ出口に設けら
れるNOx計9からの生NOxと02計10からの02
信号を掛算器11に導いて得たボイラ出口換算NOx信
号12を前記引算器8に出力させることにより引算を行
い、その差の信号を関数発生器13に入力してOAPダ
ンパ開度バイアスプログラムにより開度調整信号14を
出力させ、該信号14を変化率制限器15を介して加算
器16により前記基本開度信号3に加算する。
Furthermore, the boiler human power signal 1 is input to a function generator 6 to obtain a converted NOx signal 7 according to the load using a standard NOx program and output to a subtracter 8. Raw NOx and 02 from total 10
Subtraction is performed by outputting the boiler outlet converted NOx signal 12 obtained by guiding the signal to the multiplier 11 to the subtracter 8, and the difference signal is input to the function generator 13 to generate the OAP damper opening bias. A program outputs an opening adjustment signal 14, which is added to the basic opening signal 3 by an adder 16 via a change rate limiter 15.

更に、前記ボイラ入力信号1を関数発生器17に入力し
て負荷補正プログラムにより補正信号18を得、該信号
18を掛算器19により前記関数発生器13からの開度
調整信号14に掛算する。前記関数発生器17は、負荷
帯によってNOx低減の状況が若干変わるので、開度調
整信号14を負荷帯に応じて補正し、又低負荷領域(例
えば定常時の1/4以下)では調整をきかせないように
するために掛算器19に零の信号を出力するようにして
いる。又、前記変化率制限器15はすみやかに信号を入
れて抜きはゆっくり(なだらかに)行うようにしている
Further, the boiler input signal 1 is input to the function generator 17 to obtain a correction signal 18 by a load correction program, and the signal 18 is multiplied by the opening adjustment signal 14 from the function generator 13 by a multiplier 19. The function generator 17 corrects the opening adjustment signal 14 according to the load band, since the NOx reduction situation changes slightly depending on the load band, and also makes adjustment in the low load area (for example, 1/4 or less of the steady state). In order to prevent this from happening, a zero signal is output to the multiplier 19. Further, the rate of change limiter 15 inputs a signal quickly and outputs the signal slowly (gently).

通常時は、ボイラ人力信号1に基づく関数発生器2から
の基本開度信号3により駆動装置5が作動されてOAP
ダンパ4の開度が制限される。
Normally, the drive device 5 is operated by the basic opening signal 3 from the function generator 2 based on the boiler human power signal 1, and the OAP is activated.
The opening degree of the damper 4 is limited.

このとき、関数発生器6からの負荷に応じた換算NOx
信号7と、NOx計9及び02計10からの信号を掛算
器11に導いて求めたボイラ出口換算NOx信号12と
を引算器8により比較し、信号7,12間に差があると
、それに応じて関数発生器13により開度調整信号14
が出力され、変化率制限器15を介して加算器16によ
り基本開度信号3に加算される。従って、定常的なNO
x変化及び過渡的なNOx変化が生じても9、前記開度
調整信号14によって自動的に基本開度信号3が調整さ
れる。
At this time, the converted NOx according to the load from the function generator 6
The subtracter 8 compares the signal 7 with the boiler outlet converted NOx signal 12 obtained by guiding the signals from the NOx meter 9 and the 02 total 10 to the multiplier 11, and if there is a difference between the signals 7 and 12, Accordingly, the opening adjustment signal 14 is generated by the function generator 13.
is outputted and added to the basic opening signal 3 by an adder 16 via a change rate limiter 15. Therefore, steady NO
Even if an x change or a transient NOx change occurs 9, the basic opening signal 3 is automatically adjusted by the opening adjustment signal 14.

又、負荷帯によってNOx低減の状況か変わるので、関
数発生器17からの補正信号18により前記調整信号1
4を負荷帯に応じて補正する。又低負荷時、(例えば定
常時の1/4以下)では、補正信号18を零にして調整
をきかせないようにし、基本開度信号3のみにてOAP
ダンパ4の開度を制御する。
Also, since the NOx reduction situation changes depending on the load band, the adjustment signal 1 is adjusted by the correction signal 18 from the function generator 17.
4 is corrected according to the load range. Also, when the load is low (for example, 1/4 or less of the steady state), the correction signal 18 is set to zero to prevent adjustment, and OAP is performed using only the basic opening signal 3.
Controls the opening degree of the damper 4.

尚、本発明は上記実施例にのみ限定されるものではな(
、本発明の要旨を逸脱しない範囲内で種々変更を加え得
る。
It should be noted that the present invention is not limited only to the above embodiments (
Various changes may be made without departing from the spirit of the invention.

[発明の効果] 上記したように、本発明のオーバーエアポートによるN
Ox制御方法によれば、ボイラ入力信号に基づく換算N
Ox信号とボイラ出口換算NOx信号との差に基づいて
、基本開度信号を調整するようにしているので、基本開
度信号のみでは制御し切れない定常的或いは過渡的なN
Oxの変動を抑制し、脱硝装置の設計を容易にする等の
優れた効果を奏し得る。
[Effect of the invention] As described above, the over-air port of the present invention
According to the Ox control method, the conversion N based on the boiler input signal
Since the basic opening signal is adjusted based on the difference between the Ox signal and the boiler outlet conversion NOx signal, steady or transient N that cannot be controlled by the basic opening signal alone can be adjusted.
Excellent effects such as suppressing the fluctuation of Ox and facilitating the design of the denitrification device can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の一例を示す説明
図である。 ■はボイラ人力信号、2は関数発生器、3は基本開度信
号、4はOAPダンパ、6は関数発生器、7は換算NO
x信号、9はNOx計、10は02計、12はボイラ出
口換算NOx信号、13は関数発生器、14は開度調整
信号、15は変化率制限器、16は加算器、17は関数
発生器、18は補正信号を示す。
FIG. 1 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention. ■ is the boiler human power signal, 2 is the function generator, 3 is the basic opening signal, 4 is the OAP damper, 6 is the function generator, 7 is the conversion NO.
x signal, 9 is NOx meter, 10 is 02 total, 12 is boiler outlet converted NOx signal, 13 is function generator, 14 is opening adjustment signal, 15 is rate of change limiter, 16 is adder, 17 is function generator 18 indicates a correction signal.

Claims (1)

【特許請求の範囲】[Claims] 1)ボイラ入力信号に基づく基本開度信号によりオーバ
ーエアポートダンパの開度を制御し、同時に前記ボイラ
入力信号に基づく換算NOx信号とボイラ出口において
検出したNOx値とO_2値から求めたボイラ出口換算
NOx信号との差に基づく開度調整信号により前記基本
開度信号を調整することを特徴とするオーバーエアポー
トによるNOx制御方法。
1) The opening degree of the over-airport damper is controlled by the basic opening signal based on the boiler input signal, and at the same time, the boiler outlet converted NOx is calculated from the converted NOx signal based on the boiler input signal and the NOx value and O_2 value detected at the boiler outlet. A NOx control method using an over-air port, characterized in that the basic opening degree signal is adjusted by an opening degree adjustment signal based on a difference from the basic opening degree signal.
JP5394788A 1988-03-08 1988-03-08 Nox control method by over-air port Pending JPH01230909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5394788A JPH01230909A (en) 1988-03-08 1988-03-08 Nox control method by over-air port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5394788A JPH01230909A (en) 1988-03-08 1988-03-08 Nox control method by over-air port

Publications (1)

Publication Number Publication Date
JPH01230909A true JPH01230909A (en) 1989-09-14

Family

ID=12956915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5394788A Pending JPH01230909A (en) 1988-03-08 1988-03-08 Nox control method by over-air port

Country Status (1)

Country Link
JP (1) JPH01230909A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575129A (en) * 1978-12-04 1980-06-06 Kobe Steel Ltd Combustion control method
JPS62276322A (en) * 1986-05-22 1987-12-01 Babcock Hitachi Kk Nitrogen oxide reducing device
JPS62284108A (en) * 1986-06-02 1987-12-10 Ishikawajima Harima Heavy Ind Co Ltd Airflow rate controller for boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575129A (en) * 1978-12-04 1980-06-06 Kobe Steel Ltd Combustion control method
JPS62276322A (en) * 1986-05-22 1987-12-01 Babcock Hitachi Kk Nitrogen oxide reducing device
JPS62284108A (en) * 1986-06-02 1987-12-10 Ishikawajima Harima Heavy Ind Co Ltd Airflow rate controller for boiler

Similar Documents

Publication Publication Date Title
JPS6033987B2 (en) Feedback air-fuel ratio control device
EP0774573A3 (en) Method of minimising nitrous oxide emissions in a combustor
JPH01230909A (en) Nox control method by over-air port
KR200216739Y1 (en) Secondary static pressure control device
JPS63273724A (en) Cross limit circuit for low o2 combustion
JPS62276322A (en) Nitrogen oxide reducing device
JPH08121201A (en) Knocking control method and device for gas engine
JPS58206845A (en) Electronically controlled fuel supply device
JPH02174914A (en) Flow control method for exhaust gas treating device
JPS5898631A (en) Fuel controlling device of engine
JPS61184307A (en) Nitrogen oxides reducing device
JPS58123024A (en) Controller for pressure of boiler
JPS6069215A (en) Apparatus for controlling steam pressure at inlet side of turbine
JPS63315807A (en) Nox control method for coal fired boiler
JPS5952515A (en) Method for controlling flow rate of ammonia in waste gas denitration apparatus
JPS62284108A (en) Airflow rate controller for boiler
JPS6357802A (en) Control device for expansion turbine
JPS6149929A (en) Method of furnace pressure control
JPH07116461A (en) Apparatus for controlling injection amount of ammonia into denitration reactor
JPS62155437A (en) Control device for amount of fuel consumption in coal fired boiler
JPH01110813A (en) Turbine controller
JPS63271001A (en) Method of controlling pressure of boiler drum
JPS6124903A (en) Automatic controller for boiler
JPH0469018A (en) Generating amount controller
JPH0493514A (en) Flow rate controller of air to boiler