JPH01230733A - Manufacture of high purity thallium - Google Patents

Manufacture of high purity thallium

Info

Publication number
JPH01230733A
JPH01230733A JP63053692A JP5369288A JPH01230733A JP H01230733 A JPH01230733 A JP H01230733A JP 63053692 A JP63053692 A JP 63053692A JP 5369288 A JP5369288 A JP 5369288A JP H01230733 A JPH01230733 A JP H01230733A
Authority
JP
Japan
Prior art keywords
thallium
filtrate
leaching
oxidizing
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63053692A
Other languages
Japanese (ja)
Inventor
Etsuji Kimura
木村 悦治
Yutaka Nishiyama
豊 西山
Koichi Omori
幸一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP63053692A priority Critical patent/JPH01230733A/en
Publication of JPH01230733A publication Critical patent/JPH01230733A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To effectively recover high purity Tl by subjecting Tl to leaching and oxidizing from Tl-contg. material in the use of an acid and an oxidizing agent, adding a reducing agent to the filtrate in which residue is filtered out to reduce Tl, furthermore adding Cl thereto, precipitating TlCl and reducing it. CONSTITUTION:Tl-contg. material such as smoke ash in lead refining is subjected to leaching and oxidizing in the use of an acid such as sulfuric acid and an oxidizing agent to filter out the residue. The reducing agent such as hydrazine hydrochloride and the source of chlorine are added to the filtrate and tervalent Tl is reduced into monovalent one to convert it to TlCl and it is selectively precipitated to separate. The molten solution is filtered to recover Tl from the filtrate by reduction depositing. The recovered Tl is dehydrated, is thereafter melted into coarse Tl and is furthermore subjected to melt refining. By this method, high purity Tl can effectively be manufactured by a simple process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、タリウム含有物質から、高純度の金属タリウ
ムを製造する方法に関する。特に非鉄製錬において産出
する各種全タリウム物質を出発原料とし99.999%
の高純度タリウムの回収が可能な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing highly pure metallic thallium from a thallium-containing substance. In particular, 99.999% of all thallium materials produced in non-ferrous smelting are used as starting materials.
The present invention relates to a method capable of recovering high-purity thallium.

鉛製fll煙灰、鉛電解液、カドミウム製線工程から発
生する清浄滓、亜鉛製錬煙灰、その他非鉄製錬工程にお
ける各種の処理から生ずる副産物中にはタリウムが数%
〜20%程度含ま程度−る。この様なタリウム含有物質
からタリウム回収除去せずに放置すると、製錬系内にタ
リウムが累積し、許容限を越えると各処理工程において
種々の悪影響を及ぼす。またタリウムは光ファイバー、
複写器レンズ等の特殊光学分野での用途を有し、また光
電管、トランジスター等の封着用に使われており、高純
度のタリウムの需要が近年槽している。
Thallium is present in a few percent in lead flue ash, lead electrolyte, clean slag generated from the cadmium wire manufacturing process, zinc smelting smoke ash, and other by-products generated from various treatments in the non-ferrous smelting process.
Contains about 20%. If thallium is left unrecovered and removed from such thallium-containing materials, thallium will accumulate in the smelting system, and if the allowable limit is exceeded, various adverse effects will occur in each processing step. In addition, thallium is an optical fiber,
Demand for high-purity thallium has increased in recent years, as it is used in special optical fields such as copier lenses and for sealing phototubes and transistors.

〔従来技術と問題点〕[Conventional technology and problems]

タリウム含有物から高純度のタリウムを回収する方法に
ついては従来法のような方法が堤案されている。特開昭
56−136941号では、タリウム含有物を亜硫酸ソ
ーダ等の還元剤を加えた硫酸中に浸漬してタリウムを水
酸化タリウムとして溶解し、そのa液をアルカリ溶液に
変えて混在物を沈澱除去し、再び硫酸酸性溶液として亜
鉛末を加えて還元し金属タリウムを析出させる。また特
公昭61−34494号では、タリウム含有物をSO□
浸出し、これをアルカリ溶液に変えて混在物を沈澱除去
した後、再び硫酸酸性溶液とし、過酸化水素の存在下で
亜鉛板に金属タリウムを還元析出させる。更に特公昭6
1−34495号では、上記SO2浸出スラリーに塩化
ナトリウムを添加する工程を加え、タリウム析出工程に
おいて過酸化水素を省略する方法が提呂されている。
Conventional methods have been proposed for recovering high-purity thallium from thallium-containing materials. In JP-A No. 56-136941, thallium-containing material is immersed in sulfuric acid to which a reducing agent such as sodium sulfite has been added to dissolve thallium as thallium hydroxide, and the a solution is changed to an alkaline solution to precipitate the inclusions. After removal, zinc powder is added again as an acidic solution of sulfuric acid to reduce it and precipitate metal thallium. In addition, in Japanese Patent Publication No. 61-34494, thallium-containing substances were
After leaching and converting this into an alkaline solution to precipitate and remove contaminants, the solution is again converted into an acidic sulfuric acid solution, and metal thallium is reduced and precipitated on a zinc plate in the presence of hydrogen peroxide. In addition, special public relations show 6
No. 1-34495 proposes a method in which a step of adding sodium chloride to the SO2 leaching slurry is added, and hydrogen peroxide is omitted in the thallium precipitation step.

しかし、上記の方法には夫々に問題がある。すなわち特
開昭56−136941号の方法においては、タリウム
を還元析出させる工程において亜鉛末を使用するため、
製品中に亜鉛末が巻込まれる恐れがあり、またタリウム
の析出時にタリウムが硫化物として多量に沈澱し、金属
タリウムの精製に不都合を生ずる。
However, each of the above methods has problems. That is, in the method of JP-A-56-136941, since zinc powder is used in the step of reducing and precipitating thallium,
There is a risk that zinc dust will be mixed into the product, and a large amount of thallium will precipitate as sulfide during thallium precipitation, causing problems in refining metallic thallium.

次に特公昭61−34494号および同61−3449
5号の方法はいずれも原料をSO2で還元しながらタリ
ウムを浸出するため塩素を含む原料の場合は難溶性の塩
化タリウムが生成し浸出され難い。またこれらの方法で
は浸出滓をアルカリ溶留して混在物を沈澱除去するが、
ヒ素は殆んど除去されず、タリウムの沈澱も起り得るの
でアルカリ浄液工程でタリウムの歩留りが80%を割る
可能性があり、収率上にも問題がある。また上記両方法
は何れもタリウムを浸出した後、アルカリ溶液とし、こ
れを更に酸性溶液に変えて亜鉛板置換を行っており、処
理液の調整が煩わしい。
Next, Special Publication No. 61-34494 and No. 61-3449
In all methods No. 5, thallium is leached out while reducing the raw material with SO2, so in the case of raw materials containing chlorine, hardly soluble thallium chloride is produced and is difficult to be leached out. In addition, in these methods, the leach slag is subjected to alkali dissolution to remove contaminants by precipitation.
Since almost no arsenic is removed and thallium may precipitate, the yield of thallium may be less than 80% in the alkaline purification process, which also poses a problem in terms of yield. Furthermore, in both of the above methods, after leaching thallium, it is made into an alkaline solution, and then this is further changed to an acidic solution to replace the zinc plate, making the adjustment of the treatment solution cumbersome.

〔問題解決に係る知見〕[Knowledge related to problem solving]

本発明者は、タリウム浸出時に、酸化剤を添加してタリ
ウムを3価に酸化することにより、塩素を含んだ原料に
ついても極めて高い浸出率を確保できること、及び浸出
液をアルカリ性に変えず、酸性のままで、還元剤及び塩
素を添加することにより、亜鉛、カドミウムのみならず
ヒ素も分離できることを見出した。
The present inventor discovered that by adding an oxidizing agent to oxidize thallium to trivalent thallium during leaching of thallium, it is possible to secure an extremely high leaching rate even for raw materials containing chlorine, and that the leaching solution is not made alkaline but acidic. It was discovered that not only zinc and cadmium but also arsenic can be separated by adding a reducing agent and chlorine.

〔発明の構成〕[Structure of the invention]

本発明は、酸と酸化剤を用いてタリウム含有物質からタ
リウムを浸出酸化し、残渣を濾別する工程と、濾液に還
元剤を添加してタリウムを還元し、塩素源を加えて塩化
タリウムを沈澱分離する工程と、上記塩化タリウムを還
元し、金属タリウムとして回収する工程とからなる高純
度タリウムの製造方法を提供する。
The present invention involves the steps of leaching and oxidizing thallium from a thallium-containing material using an acid and an oxidizing agent, filtering off the residue, adding a reducing agent to the filtrate to reduce thallium, and adding a chlorine source to convert thallium chloride. A method for producing high-purity thallium is provided, which comprises a step of precipitating and separating, and a step of reducing the thallium chloride and recovering it as metal thallium.

本発明に係る方法の一例をフローシートに示す。An example of the method according to the invention is shown in a flow sheet.

本発明の出発原料となるタリウム含有物質は、鉛製煉煙
灰、釦電解液、カドミウム製錬工程から発生する清浄滓
、亜鉛製錬煙灰、その他非鉄製錬工程における各種の工
程で産出される副産物乃至残渣物である。
The thallium-containing substances that are the starting materials of the present invention include lead briquette ash, button electrolyte, clean slag generated from the cadmium smelting process, zinc smelting ash, and other by-products produced in various steps in the non-ferrous smelting process. It is a residue.

本発明は、酸、主に硫酸と酸化剤を用いてタリウム含有
物質からタリウムを浸出酸化する。酸化剤としては過酸
化水素、オゾン等を用いることができる。タリウムは3
価(TI2”)に酸化され、浸出液中に溶解する。−価
TQ+化合物は溶解し難い。
The present invention leaches and oxidizes thallium from thallium-containing materials using an acid, primarily sulfuric acid, and an oxidizing agent. As the oxidizing agent, hydrogen peroxide, ozone, etc. can be used. Thallium is 3
oxidized to valence (TI2'') and dissolves in the leachate. -valence TQ+ compounds are difficult to dissolve.

タリウム含有物質には通常、鈴、亜鉛、カドミウム、ヒ
素等が不純物として混在する。硫酸と酸化剤により、鉛
は硫酸鉛として沈殿するが、その他の元素は大部分浸出
される。浸出温度はタリウムの溶解度を高くする観点か
ら約60°C以上が良い。
Thallium-containing substances usually contain impurities such as tin, zinc, cadmium, and arsenic. Sulfuric acid and oxidizing agents precipitate lead as lead sulfate, but most of the other elements are leached out. The leaching temperature is preferably about 60°C or higher from the viewpoint of increasing the solubility of thallium.

硫酸鉛を主成分とする沈殿を濾過分離した後、濾液に還
元剤と塩素源を加え、3価のタリウムを1価に還元し、
塩化第1タリウム(TQCQ)として選択的に沈殿分離
する。なお、塩化第2タリウム(TQCQ、)は沈殿し
ないので、還元剤と共に塩素源を添加する必要がある。
After separating the precipitate mainly consisting of lead sulfate by filtration, a reducing agent and a chlorine source are added to the filtrate to reduce trivalent thallium to monovalent thallium.
It is selectively precipitated and separated as thallous chloride (TQCQ). Note that since thallium chloride (TQCQ) does not precipitate, it is necessary to add a chlorine source together with a reducing agent.

塩素源としてはHCQ、CQ2、NaCQ等、液中ソC
Qイオンとなるものであれば良い。
Chlorine sources include HCQ, CQ2, NaCQ, etc.
Any material that forms Q ions may be used.

還元剤としてはFeSO4,FeCQ2、Cu CQ 
2、塩酸ヒドラジン(N2H6CI22 )等が使用で
きる。特にFeCQ、、CuCl2.塩酸ヒドラジン等
は還元剤及び塩素源として共用できる。液中の亜鉛、ヒ
素は濾液中に残り、塩化タリウム沈殿と分離される5こ
のため、後のセメンチージョンの工程でヒ素が存在せず
危険なアルシン(AsH,)ガスの発生を防止すること
ができる。カドミウムは数%が塩化第1タリウム(TQ
、Cl2)の沈殿に混入するが大部分は濾液に溶存し濾
別除去できる。タリウムは90%以上が塩化第1タリウ
ム(TQCQ)となる。濾別された塩化第1タリウム(
TffCQ)を引き続き硫酸に溶解する。溶解温度は8
0°C程度が好ましい。
Reducing agents include FeSO4, FeCQ2, Cu CQ
2. Hydrazine hydrochloride (N2H6CI22) and the like can be used. Especially FeCQ, CuCl2. Hydrazine hydrochloride and the like can be used both as a reducing agent and as a chlorine source. Zinc and arsenic in the liquid remain in the filtrate and are separated from the thallium chloride precipitate5. Therefore, in the subsequent cementation process, arsenic is not present and the generation of dangerous arsine (AsH,) gas is prevented. Can be done. Several percent of cadmium is thallous chloride (TQ).
, Cl2), but most of it is dissolved in the filtrate and can be removed by filtration. More than 90% of thallium becomes thallium chloride (TQCQ). Filtered thallium chloride (
TffCQ) is subsequently dissolved in sulfuric acid. Melting temperature is 8
A temperature of about 0°C is preferable.

上記塩化第1タリウム(Tff(I2)の溶解時に過酸
化水素を添加する必要はない。従って上記塩化タリウム
と共沈したカドミウムは大部分沈殿として残る。該溶解
液を濾過し、該濾液からタリウムを還元析出させ回収す
る。該還元回収工程は既知の方法によることができる。
There is no need to add hydrogen peroxide when dissolving the thallous chloride (Tff(I2)). Therefore, most of the cadmium co-precipitated with the thallium chloride remains as a precipitate. is reduced and precipitated and recovered. The reduction and recovery step can be performed by a known method.

例えば、濾液をpH2〜3とした後、亜鉛板を装ノ\し
、タリウムをスポンジタリウムとして還元析出させ回収
する。回収したスポンジタリウムを還元性又は不活性雰
囲気で80〜100°Cで脱水後、同一容器内で350
〜400℃で溶融し、粗タリウムを得る。
For example, after adjusting the pH of the filtrate to 2 to 3, it is loaded onto a zinc plate, and thallium is reduced and precipitated as sponge thallium and recovered. After dehydrating the recovered sponge thallium at 80-100°C in a reducing or inert atmosphere, it was heated at 350 °C in the same container.
Melt at ~400°C to obtain crude thallium.

粗タリウムはNaOHフラックスにより溶融精製して9
9.999%の金属タリウムを得る。NaOH浴は35
0〜400℃である。
Crude thallium is melted and purified using NaOH flux9
9.999% metallic thallium is obtained. NaOH bath is 35
The temperature is 0 to 400°C.

尚、以上述へた亜鉛によるセメンチージョンに代えて、
電解精製を行ってもよい。
In addition, instead of cementation using zinc as mentioned above,
Electrolytic refining may also be performed.

〔実施例および比較例〕[Examples and comparative examples]

実施例1 鉛製錬の煙灰100g (TU 12.2%、Pb 5
,1.3%、As0.4%、Cd4.2%、 Zn O
,5%、85.0%、Cl215.4%)を1000m
I2のビーカーに入れ、硫酸10mQ、水400mQ、
 +(,0220m12を加えて、60°Cで2時間浸
出した。
Example 1 100g of smoke ash from lead smelting (TU 12.2%, Pb 5
,1.3%, As0.4%, Cd4.2%, ZnO
, 5%, 85.0%, Cl215.4%) for 1000 m
Place in a beaker of I2, add 10 mQ of sulfuric acid, 400 mQ of water,
+(,0220ml was added and leached for 2 hours at 60°C.

沈渠を濾別し、濾液を分析したところ浸出率はそれぞれ
TQ 94%(11,5g/Q)、Pb O,7%、A
s 70%、Cd 95%、Zn 92%であった。
When the sediment was filtered and the filtrate was analyzed, the leaching rates were TQ 94% (11.5 g/Q), Pb O, 7%, and A.
s 70%, Cd 95%, and Zn 92%.

次いで浸出液に塩酸ヒドラジンLogを加えてTρをT
QCflとして沈殿させた。TI2の沈殿率は93.0
%であった。As、 Znは沈殿せずCdは5.0%が
沈殿した。
Next, hydrazine hydrochloride Log was added to the leachate to reduce Tρ to T.
Precipitated as QCfl. The precipitation rate of TI2 is 93.0
%Met. As and Zn did not precipitate, but 5.0% of Cd precipitated.

該沈殿を濾過洗浄した後、80℃のH2SO,IonΩ
を含む溶液112に溶解した。溶解残渣はCdが主成分
であった。残渣を濾別した後、水で希釈し、pl=2に
調整してTQの析出を防止した。該溶液の液量は3Q、
タリウム濃度は3.5g/uであった。
After filtering and washing the precipitate, 80°C H2SO, IonΩ
was dissolved in a solution 112 containing The main component of the dissolved residue was Cd. After the residue was filtered off, it was diluted with water and adjusted to pl=2 to prevent TQ precipitation. The volume of the solution is 3Q,
The thallium concentration was 3.5 g/u.

この溶液に5mm X 55IIIm X 90mmの
亜鉛板を入れタリウムを析出させた。析出したスポンジ
状のタリウムを亜鉛板より掻取り、炉に装入し、該炉中
でAr2雰囲気90℃、12時間乾燥後、炉温を400
℃にし、タリウムを溶融して粗タリウムを得た。引き続
き粗タリウムにNaOHフラックスを加えて攪拌し、そ
の後冷却し、精製タリウムメタルlo、5gを得た。
A zinc plate measuring 5 mm x 55 mm x 90 mm was placed in this solution to precipitate thallium. The spongy thallium deposited was scraped off from the zinc plate and charged into a furnace. After drying in the furnace at 90°C in an Ar2 atmosphere for 12 hours, the furnace temperature was raised to 400°C.
℃ and melted thallium to obtain crude thallium. Subsequently, NaOH flux was added to the crude thallium, stirred, and then cooled to obtain 5 g of purified thallium metal lo.

精製タリウムメタルの品位は99.999%であった。The quality of purified thallium metal was 99.999%.

実施例2 銅製練の煙灰100g (TQ3.5%、Pb 20.
4%、As4.8%、Cd O,8%、Zn 2.2%
、89.9%、CI20.02%)を10100Oのビ
ーカーに入れ、硫filOm(1、水400m1、オゾ
ン濃度10g/rn”の空気を6n/minで供給し、
2時間、80℃で浸出した。沈殿を濾別し、濾液を分析
したところ、浸出率はそれぞれ、TQ 94%、(3,
3g/U、As 75%、Cd 65%、Zn 91%
であった。
Example 2 100g of smoke ash from copper smelting (TQ 3.5%, Pb 20.
4%, As4.8%, CdO, 8%, Zn 2.2%
, 89.9%, CI 20.02%) was placed in a 10100O beaker, and sulfur filOm (1, 400ml of water, air with an ozone concentration of 10g/rn'' was supplied at 6n/min,
Leaching was carried out for 2 hours at 80°C. When the precipitate was filtered and the filtrate was analyzed, the leaching rates were TQ 94%, (3,
3g/U, As 75%, Cd 65%, Zn 91%
Met.

次いで浸出液にFeSO410g、HCfl 3.0m
I2を加えて、TI2をTQCQとして沈殿させた。T
Qの沈殿率は94%。
Next, 10 g of FeSO4 and 3.0 m of HCfl were added to the leachate.
I2 was added to precipitate TI2 as TQCQ. T
The precipitation rate of Q is 94%.

As、 Znは沈殿せず、Cdは3%が沈殿した。沈殿
を濾過洗浄した後、80℃の8230410m+2を含
む溶液IQに溶解した。Cd を主成分とする残渣を濾
別した後溶液のPHを2に調整して、  5mm X 
55mm X 90mmの亜鉛板を装入し、タリウムを
析出させた。得られたスポンジ状のタリウムを亜鉛板よ
り掻取り。
As and Zn did not precipitate, and 3% of Cd precipitated. After filtering and washing the precipitate, it was dissolved in solution IQ containing 8230410m+2 at 80°C. After filtering off the residue containing Cd as the main component, the pH of the solution was adjusted to 2, and 5 mm
A 55 mm x 90 mm zinc plate was charged, and thallium was deposited. The resulting spongy thallium was scraped off from the zinc plate.

炉に装入し、該炉中でAr雰囲気90℃で12時間乾燥
後、炉温を400℃とし、タリウムを溶融して粗タリウ
ムを得た。粗タリウムをNaOHフラックスで約400
℃に溶融精製し、精製タリウム3.1gを得た。
It was charged into a furnace, and after drying in the furnace in an Ar atmosphere at 90° C. for 12 hours, the furnace temperature was raised to 400° C., and thallium was melted to obtain crude thallium. Approximately 400% crude thallium with NaOH flux
It was melted and purified at ℃ to obtain 3.1 g of purified thallium.

精製タリウムの品位は99.999%であった。The quality of purified thallium was 99.999%.

比較例1 実施例1のサンプル100gを10mQの硫酸と水40
0mQC−浸出したところCd、 Znは浸出されたが
TQは浸出されずTrlを回収することができなかった
Comparative Example 1 100g of the sample of Example 1 was mixed with 10mQ of sulfuric acid and 40ml of water.
When 0mQC was leached, Cd and Zn were leached out, but TQ was not leached out and Trl could not be recovered.

比較例2 実施例1で得られた浸出液100mQにNa0)15.
5gを添加して、溶液のp)lを12に調整した。亜鉛
、カドミウムは水酸化物となり除去できたがヒ素は70
%しか除去できず以後の回収工程でセメンチージョンを
行うのが危険であった。また、TQの回収率は80%で
あり、極めて低かった。
Comparative Example 2 Na0)15.
The p)l of the solution was adjusted to 12 by adding 5 g. Zinc and cadmium were converted to hydroxide and removed, but arsenic was removed at 70%.
It was dangerous to perform cementation in the subsequent recovery process because only 1.5% could be removed. Furthermore, the recovery rate of TQ was 80%, which was extremely low.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、タリウム含有物質より高純度タ
リウムを効率良く、安価なコストで製造できる。
According to the method of the present invention, thallium with higher purity than thallium-containing substances can be produced efficiently and at low cost.

本発明の方法では浸出時に酸化剤を用いるために、従来
の方法に比べて、浸出率が良い。又アルカリニ程を経な
いために、工程が簡単であり、実収率も高く、コスト的
にも有利である。又塩化タリウム(TQCρ)の溶解工
程では、過酸化水素を必要としないのでカドミウムとの
分離効果がよい。
Since the method of the present invention uses an oxidizing agent during leaching, the leaching rate is better than that of conventional methods. In addition, since the alkalinization step is not performed, the process is simple, the actual yield is high, and it is advantageous in terms of cost. Further, in the process of dissolving thallium chloride (TQCρ), hydrogen peroxide is not required, so the separation effect from cadmium is good.

更に塩化タリウムの沈殿工程においてヒ素の除去効果が
良く、タリウムのセメンチージョン時に有毒なアルシン
ガスの発生する虞れが無く、処理操作が安全である。
Furthermore, the arsenic removal effect is good in the thallium chloride precipitation process, and there is no risk of toxic arsine gas being generated during thallium cementation, making the treatment operation safe.

スポンジタリウムを回収した以降の工程では、還元性又
は不活性雰囲気の同一炉で乾燥、溶融を行うことができ
粗タリウムとするので、タリウムの歩留りが良い。
In the steps after recovering sponge thallium, drying and melting can be performed in the same furnace in a reducing or inert atmosphere, resulting in crude thallium, resulting in a high yield of thallium.

【図面の簡単な説明】 図面は本発明の方法のフローシートである。[Brief explanation of the drawing] The drawing is a flow sheet of the method of the invention.

Claims (1)

【特許請求の範囲】[Claims] 1、酸と酸化剤を用いてタリウム含有物質よりタリウム
を浸出酸化し、残渣を濾別する工程と濾液に還元剤を添
加し、タリウムを還元した後、塩素源を加えて塩化タリ
ウムを沈殿分離する工程と、上記塩化タリウムを還元し
、金属タリウムとして回収する工程とからなる高純度タ
リウムの製造方法。
1. A step of leaching and oxidizing thallium from a thallium-containing material using an acid and an oxidizing agent, and filtering off the residue. After adding a reducing agent to the filtrate and reducing thallium, a chlorine source is added to precipitate and separate thallium chloride. A method for producing high-purity thallium, comprising a step of reducing the thallium chloride and recovering it as metal thallium.
JP63053692A 1988-03-09 1988-03-09 Manufacture of high purity thallium Pending JPH01230733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053692A JPH01230733A (en) 1988-03-09 1988-03-09 Manufacture of high purity thallium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053692A JPH01230733A (en) 1988-03-09 1988-03-09 Manufacture of high purity thallium

Publications (1)

Publication Number Publication Date
JPH01230733A true JPH01230733A (en) 1989-09-14

Family

ID=12949863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053692A Pending JPH01230733A (en) 1988-03-09 1988-03-09 Manufacture of high purity thallium

Country Status (1)

Country Link
JP (1) JPH01230733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183213A (en) * 2014-03-24 2015-10-22 Dowaホールディングス株式会社 Method for producing metal thallium
CN113502404A (en) * 2021-06-11 2021-10-15 清华大学 Method for recovering thallium from flue gas and device for implementing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565382A (en) * 1978-11-10 1980-05-16 Dowa Mining Co Ltd Cleaning method of lead electrolyte for recovering tin and thallium from lead electrolyte
JPS55115934A (en) * 1979-02-28 1980-09-06 Nippon Mining Co Ltd Recovering method for thallium from thallium-containing substance
JPS56136941A (en) * 1980-03-29 1981-10-26 Sumitomo Metal Mining Co Ltd Manufacture of high purity metallic thallium from thallium-containing smelting intermediate
JPS58126942A (en) * 1982-01-22 1983-07-28 Nippon Mining Co Ltd Manufacture of thallium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565382A (en) * 1978-11-10 1980-05-16 Dowa Mining Co Ltd Cleaning method of lead electrolyte for recovering tin and thallium from lead electrolyte
JPS55115934A (en) * 1979-02-28 1980-09-06 Nippon Mining Co Ltd Recovering method for thallium from thallium-containing substance
JPS56136941A (en) * 1980-03-29 1981-10-26 Sumitomo Metal Mining Co Ltd Manufacture of high purity metallic thallium from thallium-containing smelting intermediate
JPS58126942A (en) * 1982-01-22 1983-07-28 Nippon Mining Co Ltd Manufacture of thallium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183213A (en) * 2014-03-24 2015-10-22 Dowaホールディングス株式会社 Method for producing metal thallium
CN113502404A (en) * 2021-06-11 2021-10-15 清华大学 Method for recovering thallium from flue gas and device for implementing method

Similar Documents

Publication Publication Date Title
NO158106B (en) PROCEDURE FOR TREATING Aqueous SOLUTION CONTAINING Precious Metals and Undesirable Elements.
LU85385A1 (en) PROCESS FOR LEACHING SULPHIDES CONTAINING ZINC AND IRON
JP2009102724A (en) Method for producing silver powder
JP3052535B2 (en) Treatment of smelting intermediates
US5431713A (en) Method for the reclamation of metallic compounds from zinc and lead containing dust
JPS6153103A (en) Recovery of high-purity tellurium from crude tellurium dioxide
JP3411320B2 (en) Zinc smelting method
JP4016680B2 (en) Method for dissolving selenium platinum group element-containing material
JP5200588B2 (en) Method for producing high purity silver
US5939042A (en) Tellurium extraction from copper electrorefining slimes
JPH01230733A (en) Manufacture of high purity thallium
EP1042518B1 (en) Oxidising elutriation of contaminated sludge containing iron with separation of zinc and lead
CN115747500A (en) Method for cooperatively removing chlorine in strong-acid arsenic solution from high-arsenic silver-containing smelting slag
CA2518250C (en) Method for removing thallium from a zinc-containing solution
JP2970095B2 (en) Manufacturing method of high-purity thallium
JPS6134495B2 (en)
JP2006083457A (en) Treatment method for zinc leach residue and the like
JP2001279344A (en) Method for recovering tin
JPH10280059A (en) Separation of gold and silver from noble metal alloy
JP3762047B2 (en) Method for treating and recovering liquid containing cadmium and zinc
JPH05311267A (en) Method for recovering indium from indium-containing matter
JP3837029B2 (en) Silver recovery method
US20240076759A1 (en) Method for recovering lead from copper smelting dust
JPH09137236A (en) Method for recovering cadmium and sponge cadmium.
JP2005060832A (en) Method of recovering silver, and high purity metal silver