JPH10280059A - Separation of gold and silver from noble metal alloy - Google Patents

Separation of gold and silver from noble metal alloy

Info

Publication number
JPH10280059A
JPH10280059A JP9091998A JP9199897A JPH10280059A JP H10280059 A JPH10280059 A JP H10280059A JP 9091998 A JP9091998 A JP 9091998A JP 9199897 A JP9199897 A JP 9199897A JP H10280059 A JPH10280059 A JP H10280059A
Authority
JP
Japan
Prior art keywords
silver
gold
sulfuric acid
noble metal
metal alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9091998A
Other languages
Japanese (ja)
Inventor
Naoyuki Tsuchida
直行 土田
Shiyunji Mimura
俊貳 三村
Yoshiaki Manabe
善昭 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9091998A priority Critical patent/JPH10280059A/en
Publication of JPH10280059A publication Critical patent/JPH10280059A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To rapidly separate gold and silver without using nitric acid and enable the prevention of environmental pollution and the improvement in cost effectiveness by adding sulfuric acid of a specific concn. to a noble metal alloy mainly contg. gold and silver of anode slime, etc., of copper electrolytic smelting, heating the alloy to melt the silver and separating the melt to a silver sulfate soln. and an unmolten residue contg. the gold. SOLUTION: The noble metal alloy is formed to a shot form of about -10N+30 meshes and the silver is melted by using the sulfuric acid of >=70% (by weight) in concn. and at 150 deg.C. The preferably sulfuric acid concn. and temp. are respectively about 84% and 170 to 180 deg.C. The sulfuric acid is thickened simultaneously with melting of the silver and the unmolten residue contg. The gold is separated. The remaining liquid is thereafter diluted with water to the sulfuric acid concn. of <=70%, by which the silver sulfate is deposited and recovered. On the other hand, the unmolten residue is melted by hydrochloric acid, hydrogen peroxide, gaseous chlorine, etc.; and the melt is treated by a known reduction method or org. solvent method, by which the melt is refined to the gold purity having a market value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅電解精製のアノ
ードスライムのような金と銀を含有する貴金属合金か
ら、金と銀を経済的に分離するための方法に関する。
The present invention relates to a method for economically separating gold and silver from precious metal alloys containing gold and silver, such as anode slime for copper electrorefining.

【0002】[0002]

【従来の技術】例えば、銅電解精製で生じるアノードス
ライム中には金及び銀が含有され、従来から、このアノ
ードスライムを処理することにより、金及び銀を回収す
ることが行われている。
2. Description of the Related Art For example, gold and silver are contained in anode slime generated by electrolytic copper refining, and gold and silver have been conventionally recovered by treating the anode slime.

【0003】この金及び銀の具体的な回収方法として
は、前記アノードスライムを硫酸化焙焼して銅を分離し
た後、その残渣を酸化焙焼してセレンを揮発分離し、次
いで焙焼物に還元剤を混合して加熱熔解することにより
金や銀のような貴金属を鉛中に濃縮する。得られた貴鉛
を灰吹き炉に投入し、加熱熔解して熔体に空気を吹き当
て、貴鉛中の鉛や不純物を順次酸化除去することによっ
て、金と銀を主として含有する粗銀板とする。
As a specific method for recovering the gold and silver, the anode slime is sulfated and roasted to separate copper, and the residue is oxidized and roasted to volatilize and separate selenium. Noble metals such as gold and silver are concentrated in lead by mixing and heating and melting a reducing agent. The obtained noble lead is put into an ash-blowing furnace, heated and melted, and air is blown against the melt to sequentially oxidize and remove the lead and impurities in the noble lead, thereby forming a coarse silver plate mainly containing gold and silver. And

【0004】この金と銀を含む粗銀板を、メーピアス式
銀電解で電解処理することにより、銀は電着銀として分
離される。この銀電解で発生したアノードスライムは、
金を回収するため硝酸で銀を溶解した後、残った残渣を
加熱熔解して金アノードに鋳造し、金電解により金を回
収する。また、硝酸に溶解した液には、銀と共に白金、
パラジウムといった白金族金属も同様に溶解されてお
り、この液から銀及び白金族を精製して回収する。
[0004] Silver is separated as electrodeposited silver by subjecting the coarse silver plate containing gold and silver to electrolytic treatment with a Mepiers type silver electrolysis. The anode slime generated by this silver electrolysis is
After silver is dissolved with nitric acid to recover gold, the remaining residue is heated and melted and cast on a gold anode, and the gold is recovered by gold electrolysis. In addition, the solution dissolved in nitric acid contains platinum together with silver,
Platinum group metals such as palladium are similarly dissolved, and silver and platinum groups are purified and recovered from this solution.

【0005】上記銅電解精製のアノードスライムの他に
も、バークス法で得られた亜鉛クラストの亜鉛を蒸留す
ることにより得た貴鉛や、電子機器のスクラップを灰吹
き炉で処理した金及び銀を含有する合金等も、通常は上
記灰吹き炉に投入されて他の貴鉛と一緒に処理され、貴
金属合金とされた後、上記と同様に処理して銀及び金を
順次回収している。
In addition to the above-mentioned anode slime for electrolytic copper refining, noble lead obtained by distilling zinc of zinc crust obtained by the Barks method, and gold and silver obtained by processing scraps of electronic equipment in an ash blowing furnace Alloys, etc., are usually thrown into the above ash-blowing furnace and processed together with other noble lead, and after being made into a noble metal alloy, are processed in the same manner as described above to sequentially recover silver and gold. .

【0006】[0006]

【発明が解決しようとする課題】上記の金及び銀の回収
方法での精製コストを考えると、コストの多くは系内に
滞留する金が占めていることが分かる。即ち、精製コス
トの上昇は、灰吹き炉で処理された貴金属合金中の金
が、銀電解によりアノードスライムとなり、更に酸処理
を経て、金電解により市場価値のある純度の電気金にな
るように、金が最終工程で精製されるため、銀電解工
程、アノードスライムの酸処理工程、金電解工程の各々
に金が滞留することによる。
Considering the refining costs in the above-mentioned method for recovering gold and silver, it can be seen that most of the costs are occupied by gold remaining in the system. That is, the increase in the refining cost is such that the gold in the noble metal alloy treated in the ash blowing furnace becomes an anode slime by silver electrolysis, and further becomes an electrolytic gold having a market value by gold electrolysis through an acid treatment. Because gold is purified in the final step, gold is retained in each of the silver electrolysis step, the anode slime acid treatment step, and the gold electrolysis step.

【0007】従って、精製コストを圧縮するためには、
金を出来るだけ早く銀と分離して回収するような工程の
変更が必要である。例えば、電解処理を経ない湿式処理
を考えると、金の回収については、特公平1−3353
7号公報や特公昭64−3930号公報に、金の濃縮物
を塩酸、過酸化水素、又は塩素ガスで溶解し、溶解した
液を還元処理する方法等が提案されている。また、その
他の方法として、有機溶媒DBCを用いた金の精製法も
知られている。
Therefore, in order to reduce the purification cost,
It is necessary to change the process to separate and recover gold from silver as soon as possible. For example, considering a wet process that does not go through an electrolytic process, the recovery of gold is described in Japanese Patent Publication No. 1-3353.
No. 7 and Japanese Patent Publication No. 64-3930 propose a method of dissolving a gold concentrate with hydrochloric acid, hydrogen peroxide, or chlorine gas, and subjecting the dissolved solution to a reduction treatment. As another method, a method for purifying gold using an organic solvent DBC is also known.

【0008】一方、銀の回収については、銀を一旦溶解
した後、塩化銀や硫酸銀のような難溶性の化合物として
不純物を分離し、アンモニア水で浸出して水素還元する
方法や、例えば商品名Cyanex 471X(サイテ
ック社製)で知られる硫黄を分子中に含む有機燐化合物
等の溶媒を用いて抽出することにより精製する方法等が
知られている。
On the other hand, silver can be recovered by dissolving silver once, separating impurities as a hardly soluble compound such as silver chloride or silver sulfate, and leaching with ammonia water to reduce hydrogen. A method of purifying by extracting using a solvent such as an organic phosphorus compound containing sulfur in the molecule known as Cyanex 471X (manufactured by Cytec Corporation) and the like are known.

【0009】しかし、上記のような金と銀を同時に含有
する貴金属合金を、上記した銀の回収方法によって処理
するためには、銀を一旦溶解させる必要がある。この銀
の溶解には硝酸が通常用いられるが、溶解に際して多量
の窒素酸化物(NOx)が発生したり、溶解後の液を処
理した排水中のトータル窒素が上昇することから、環境
汚染の問題があり、汚染防止の対策が必要となる欠点が
あった。
However, in order to treat the above-mentioned noble metal alloy containing gold and silver simultaneously by the above-described silver recovery method, it is necessary to dissolve silver once. Nitric acid is usually used to dissolve the silver, but a large amount of nitrogen oxides (NO x ) is generated during the dissolution, and the total nitrogen in the wastewater obtained by treating the solution after the dissolution increases, thereby causing environmental pollution. There was a problem, and there was a drawback that measures for preventing pollution were required.

【0010】このように、銅電解精製のアノードスライ
ムのような金及び銀を主として含有する貴金属合金か
ら、金と銀を回収する従来の方法は精製コストが高く、
経済的でなかった。また、金を早期に回収して精製コス
トを低減させることが考えられるが、その場合には銀の
溶解時に硝酸を使用するため、新たに環境汚染の問題が
生じるという欠点があった。
As described above, the conventional method of recovering gold and silver from a noble metal alloy mainly containing gold and silver, such as an anode slime for copper electrolytic refining, has a high purification cost,
It was not economic. In addition, it is conceivable to recover gold at an early stage to reduce the refining cost, but in that case, since nitric acid is used when silver is dissolved, there is a disadvantage that a new problem of environmental pollution occurs.

【0011】本発明は、このような従来の事情に鑑み、
金と銀を含む貴金属合金から早期に金と銀を分離するこ
とができ、経済的であって、しかも環境汚染の心配がな
い、金と銀の分離方法を提供することを目的とする。
The present invention has been made in view of such a conventional situation,
An object of the present invention is to provide a method for separating gold and silver, which can separate gold and silver from a precious metal alloy containing gold and silver at an early stage, is economical, and has no concern about environmental pollution.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する貴金属合金からの金と銀の分離方
法は、金及び銀を主として含有する貴金属合金に濃度7
0重量%以上の硫酸を加え、150℃以上の温度に加熱
することにより銀を溶解すると同時に硫酸を濃縮させ、
金を含む未溶解残渣を分離した後、残った溶液に硫酸濃
度が70重量%以下となるように水を加え、溶液中の銀
を硫酸銀として析出回収することを特徴とする。
In order to achieve the above object, the present invention provides a method for separating gold and silver from a noble metal alloy, which comprises adding a concentration of 7 to a noble metal alloy mainly containing gold and silver.
0% by weight or more of sulfuric acid is added and silver is dissolved by heating to a temperature of 150 ° C. or more, and at the same time, sulfuric acid is concentrated.
After separating the undissolved residue containing gold, water is added to the remaining solution so that the sulfuric acid concentration becomes 70% by weight or less, and silver in the solution is precipitated and recovered as silver sulfate.

【0013】[0013]

【発明の実施の形態】本発明においては、銅電解精製の
アノードスライム等の金及び銀を主として含有する貴金
属合金から金と銀を分離するにあたり、まず硫酸を用い
て銀を溶解する。このとき、貴金属合金に含まれる金は
硫酸に溶解されず、また白金やパラジウム等の他の貴金
属が含まれる場合、これらの貴金属も硫酸に溶解され
ず、残渣中に残る。尚、本方法では、銀の溶解に硝酸を
使用しないので、環境を汚染する問題は殆どない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in separating gold and silver from a noble metal alloy mainly containing gold and silver such as anode slime for electrolytic copper refining, silver is first dissolved using sulfuric acid. At this time, gold contained in the noble metal alloy is not dissolved in sulfuric acid, and when other noble metals such as platinum and palladium are contained, these noble metals are not dissolved in sulfuric acid but remain in the residue. In this method, since nitric acid is not used for dissolving silver, there is almost no problem of polluting the environment.

【0014】この硫酸による銀の溶解工程において、銀
の溶解速度を早めるため、貴金属合金をショット状にし
て溶解処理することが好ましい。貴金属合金のショット
は小さいほど好ましいが、例えば−10〜+30メッシ
ュ程度(粒径で0.5〜1.65mm程度)であれば、濃
度98重量%の硫酸を用いて、温度170℃、1時間で
98%以上の銀浸出率が得られる。
In the step of dissolving silver with sulfuric acid, it is preferable to dissolve the noble metal alloy in the form of a shot in order to increase the dissolution rate of silver. The smaller the shot of the noble metal alloy is, the more preferable it is. , A silver leaching rate of 98% or more is obtained.

【0015】銀の溶解に使用する硫酸の濃度を70重量
%以上とするのは、硫酸濃度が低いほど銀を溶解させる
力が弱く、工業的な規模と効率で銀を溶解させるために
は70重量%以上の硫酸濃度が必要なためであり、好ま
しくは濃度84重量%以上の硫酸を使用する。尚、貴金
属合金に加えた硫酸は、銀の加熱溶解と同時に濃縮さ
れ、添加時の濃度よりも更に高濃度になる。
The reason why the concentration of sulfuric acid used for dissolving silver is set to 70% by weight or more is that the lower the concentration of sulfuric acid, the weaker the ability to dissolve silver. This is because a sulfuric acid concentration of at least 84% by weight is required. The sulfuric acid added to the noble metal alloy is concentrated at the same time as the silver is dissolved by heating, and has a higher concentration than that at the time of addition.

【0016】銀の溶解速度は溶解温度が高いほど速くな
り、実用的には150℃以上の温度で溶解する必要があ
る。しかし、170〜180℃程度の溶解温度であれば
貴金属合金中の銀は十分に溶解されるうえ、これ以上高
温にしてもエネルギー的に不経済であり、硫酸の濃縮も
過度に進みすぎるので好ましくない。従って、銀溶解の
ための加熱温度は150〜180℃程度が好ましい。
The dissolution rate of silver increases as the dissolution temperature increases, and practically it is necessary to dissolve at a temperature of 150 ° C. or higher. However, if the melting temperature is about 170 to 180 ° C., the silver in the noble metal alloy is sufficiently melted, and even if the temperature is higher than that, it is uneconomical in terms of energy and the concentration of sulfuric acid excessively proceeds too much. Absent. Therefore, the heating temperature for dissolving silver is preferably about 150 to 180 ° C.

【0017】銀の溶解後、濾過により未溶解残渣を取り
除く。この残渣は主に金を含むものであるから、その
後、前記した通常の金の回収方法に従って、即ち、塩
酸、過酸化水素、塩素ガス等で溶解し、公知の還元法又
は有機溶媒法で処理することによって、金を市場価値の
ある純度まで精製することができる。
After dissolution of the silver, undissolved residues are removed by filtration. Since this residue mainly contains gold, it is then to be dissolved by hydrochloric acid, hydrogen peroxide, chlorine gas or the like according to the above-mentioned usual method for recovering gold, and treated by a known reduction method or an organic solvent method. Gold can be refined to a marketable purity.

【0018】一方、残渣を除去した後に残った溶液は、
濃縮された硫酸(通常80重量%以上)であって、且つ
銀を溶解している。図1の溶解度曲線に示すように、硫
酸銀の溶解度は70重量%以下の硫酸濃度で極端に低下
するため、濃縮された硫酸濃度を70重量%以下に希釈
することによって、硫酸銀を析出させて回収することが
できる。
On the other hand, the solution remaining after removing the residue is:
It is concentrated sulfuric acid (usually 80% by weight or more) and dissolves silver. As shown in the solubility curve of FIG. 1, since the solubility of silver sulfate extremely decreases at a sulfuric acid concentration of 70% by weight or less, silver sulfate is precipitated by diluting the concentrated sulfuric acid concentration to 70% by weight or less. Can be collected.

【0019】析出した硫酸銀を回収した後の残った溶液
は、濃度70重量%以下、通常は60〜70重量%の硫
酸であるから、これに濃硫酸を加えて混合し、再度濃度
70重量%以上の硫酸とすることにより、貴金属合金か
らの銀の溶解に繰り返して使用することができる。
The solution remaining after collecting the precipitated silver sulfate is sulfuric acid having a concentration of 70% by weight or less, usually 60 to 70% by weight. By using sulfuric acid of not less than%, it can be repeatedly used for dissolving silver from a noble metal alloy.

【0020】[0020]

【実施例】実施例1 銀83.5重量%、金13.4重量%、白金0.14重量
%、パラジウム0.81重量%、銅0.35重量%を含む
貴金属合金を、加熱熔解してショット状に造粒した後、
−10〜+18.5メッシュに篩別した。
EXAMPLE 1 A noble metal alloy containing 83.5% by weight of silver, 13.4% by weight of gold, 0.14% by weight of platinum, 0.81% by weight of palladium, and 0.35% by weight of copper was melted by heating. After granulating in a shot shape,
It was sieved to -10 to +18.5 mesh.

【0021】このショット状の貴金属合金を、各々10
0gずつに分け、各100gをそれぞれ1リットルのガ
ラス製ビーカーに入れ、濃度98重量%の硫酸を250
ml添加し、液の温度が各々100℃、130℃、15
0℃、170℃になるように加熱して一時間撹拌した。
Each of the shot-shaped noble metal alloys was
0 g each, 100 g of each was placed in a 1-liter glass beaker, and sulfuric acid having a concentration of 98 wt%
ml, and the liquid temperature was 100 ° C., 130 ° C., 15
The mixture was heated to 0 ° C. and 170 ° C. and stirred for 1 hour.

【0022】その後、ガラス製の濾紙で濾過して、未溶
解残渣を除去した。この残渣と、残渣を除去した後の溶
液(濾液)を分析し、各金属元素の溶解の程度を調べ
た。その結果を、溶解温度ごとに下記表1に示す。
Thereafter, the mixture was filtered through a glass filter paper to remove undissolved residues. The residue and the solution (filtrate) from which the residue was removed were analyzed to determine the degree of dissolution of each metal element. The results are shown in Table 1 below for each dissolution temperature.

【0023】[0023]

【表1】 [Table 1]

【0024】上記表1に示すように、溶解温度を150
℃以上にすることにより、急激に銀の溶解度が増加する
ことが分かる。また、銀以外の、金、白金、パラジウム
等の貴金属は、溶解温度に拘らず硫酸に溶解せず、残渣
中に残ることが分かる。このように、貴金属合金を硫酸
と共に150℃以上に加熱することにより、銀が硫酸に
溶解し且つ金が残渣中に残るので、金と銀を簡単に且つ
効率良く分離することが可能である。
As shown in Table 1 above, the melting temperature was 150
It can be seen that by setting the temperature to not less than ° C., the solubility of silver sharply increases. Also, it can be seen that noble metals other than silver, such as gold, platinum and palladium, do not dissolve in sulfuric acid regardless of the dissolution temperature and remain in the residue. By heating the noble metal alloy together with sulfuric acid to 150 ° C. or more, silver dissolves in sulfuric acid and gold remains in the residue, so that gold and silver can be easily and efficiently separated.

【0025】実施例2 銀88.2重量%、金9.7重量%、白金0.14重量
%、パラジウム0.96重量%、銅0.81重量%を含む
貴金属合金を、加熱熔解してショット状に造粒した後、
−10〜+30メッシュに篩別した。
EXAMPLE 2 A noble metal alloy containing 88.2% by weight of silver, 9.7% by weight of gold, 0.14% by weight of platinum, 0.96% by weight of palladium, and 0.81% by weight of copper was heated and melted. After granulating into shots,
It was sieved to -10 to +30 mesh.

【0026】得られたショット状の貴金属合金100g
を、1リットルのガラス製ビーカーに入れ、濃度70重
量%の硫酸1000mlを加えて、液温度が170℃に
なるように加熱して12時間撹拌保持した。この間、下
記表2に示す経過時間ごとに少量の溶液を採取し、銀の
溶解の程度と硫酸の濃縮程度を調べた。その結果を下記
表2に示した。
100 g of the obtained shot-shaped noble metal alloy
Was placed in a 1 liter glass beaker, 1000 ml of sulfuric acid having a concentration of 70% by weight was added, and the mixture was heated so that the liquid temperature became 170 ° C. and stirred and maintained for 12 hours. During this time, a small amount of the solution was sampled at each time shown in Table 2 below, and the degree of silver dissolution and the degree of sulfuric acid concentration were examined. The results are shown in Table 2 below.

【0027】[0027]

【表2】 [Table 2]

【0028】上記表2に示すように、濃度70重量%の
硫酸を用いて170℃の温度で銀を溶解する場合には、
約6時間以上の溶解時間が必要であることが分かる。ま
た、この溶解時間の間に、最初に添加された70重量%
の硫酸濃度は約84重量%まで濃縮される。
As shown in Table 2, when silver is dissolved at a temperature of 170 ° C. using sulfuric acid having a concentration of 70% by weight,
It turns out that a dissolution time of about 6 hours or more is required. Also, during this dissolution time, 70% by weight initially added
Is concentrated to about 84% by weight.

【0029】更に、上記の加熱溶解を12時間続けた
後、ガラス製の濾紙で濾過し、未溶解の残渣を回収し
た。この残渣は11.4gであり、成分分析したとこ
ろ、Au:85.2重量%、Ag:2.7重量%、Pt:
1.23重量%、Pd:8.29重量%の組成であり、金
のロスは無かった。尚、この残渣は、塩酸、過酸化水
素、又は塩素ガスで溶解し、公知の還元法、若しくは有
機溶媒法で処理することにより、金を市場価値のある純
度に精製することが可能であり、また精製に要する日数
も従来より短縮することが可能である。
Further, after the above-mentioned heating and melting were continued for 12 hours, the solution was filtered through a glass filter paper to recover undissolved residues. This residue weighed 11.4 g and was analyzed for its components. As a result, 85.2% by weight of Au, 2.7% by weight of Ag, and Pt:
The composition was 1.23% by weight and Pd: 8.29% by weight, and there was no gold loss. In addition, this residue can be dissolved in hydrochloric acid, hydrogen peroxide, or chlorine gas, and then treated by a known reduction method or an organic solvent method, whereby gold can be purified to a marketable purity. Further, the number of days required for purification can be reduced as compared with the conventional case.

【0030】次いで、上記の残渣を濾過した後の溶液
(硫酸濃度84重量%)に、水を200ml加えて希釈
することにより硫酸銀を析出させ、再度濾過して硫酸銀
を回収した。この析出した硫酸銀は、濾過性がかなり良
いものであった。回収された硫酸銀は、湿潤状態で11
0gであった。下記表3に、残渣を濾過した後の濾液
と、硫酸銀回収の濾液の組成を示す。また、下記表4
に、回収された硫酸銀の品位を示す。
Next, 200 ml of water was added to the solution obtained by filtering the above residue (sulfuric acid concentration: 84% by weight) to dilute silver sulfate, and the solution was filtered again to recover silver sulfate. The precipitated silver sulfate had a very good filterability. The recovered silver sulfate is 11
It was 0 g. Table 3 below shows the compositions of the filtrate after filtering the residue and the filtrate for silver sulfate recovery. Table 4 below
The following shows the quality of the recovered silver sulfate.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】この結果から分かるように、硫酸銀への銀
の分配は85.8%であり、主な不純物としてPdが検
出された。尚、この硫酸銀を原料として、上記した公知
の還元法や溶媒抽出法で処理することにより、銀を市場
価値のある純度に精製することが可能である。また、硫
酸銀回収後の濾液は、濃度60〜70重量%の硫酸であ
るから、濃度98重量%の濃硫酸を補充添加することに
よって、再度貴金属合金の溶解に使用することができ
る。
As can be seen from the results, the distribution of silver to silver sulfate was 85.8%, and Pd was detected as a main impurity. The silver sulfate can be used as a raw material and subjected to the above-described known reduction method or solvent extraction method to purify silver to a purity having a market value. Further, since the filtrate after the recovery of silver sulfate is sulfuric acid having a concentration of 60 to 70% by weight, it can be used again for dissolving the noble metal alloy by supplementing and adding concentrated sulfuric acid having a concentration of 98% by weight.

【0034】[0034]

【発明の効果】本発明によれば、金と銀を含む貴金属合
金中の銀を簡単に溶解し、金を残渣中に濃縮すること
で、金と銀を早期に分離して金の回収期間を短縮するこ
とができるので、精製コストの低減を図ることができ
る。
According to the present invention, the silver in the noble metal alloy containing gold and silver is easily dissolved and the gold is concentrated in the residue, so that the gold and silver can be separated at an early stage to recover the gold. , The purification cost can be reduced.

【0035】また、銀の溶解に使用する硫酸は、濃硫酸
の補充により銀の溶解に繰り返して使用することができ
るので、この点でも経済的である。更に、銀の溶解に硝
酸を使用しないので、窒素酸化物など環境汚染の原因と
なる物質の発生がなく、従ってその処理等に特別な設備
を設ける必要がない。
Further, sulfuric acid used for dissolving silver can be repeatedly used for dissolving silver by replenishing with concentrated sulfuric acid, which is also economical in this respect. Further, since nitric acid is not used for dissolving silver, there is no generation of substances causing environmental pollution such as nitrogen oxides, and therefore, there is no need to provide special equipment for the treatment and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】硫酸濃度と銀溶解度の関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between sulfuric acid concentration and silver solubility.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金及び銀を主として含有する貴金属合金
に濃度70重量%以上の硫酸を加え、150℃以上の温
度に加熱することにより銀を溶解すると同時に硫酸を濃
縮させ、金を含む未溶解残渣を分離した後、残った溶液
に硫酸濃度が70重量%以下となるように水を加え、溶
液中の銀を硫酸銀として析出回収することを特徴とする
貴金属合金からの金と銀の分離方法。
1. A sulfuric acid having a concentration of 70% by weight or more is added to a noble metal alloy mainly containing gold and silver, and heated to a temperature of 150 ° C. or more, thereby dissolving the silver and simultaneously concentrating the sulfuric acid. After separating the residue, water is added to the remaining solution so that the sulfuric acid concentration becomes 70% by weight or less, and silver in the solution is precipitated and recovered as silver sulfate. Separation of gold and silver from a noble metal alloy, Method.
【請求項2】 硫酸銀を析出させて回収した後、残った
溶液を濃硫酸と混合して、前記貴金属合金の溶解に使用
することを特徴とする、請求項1に記載の貴金属合金か
らの金と銀の分離方法。
2. The method according to claim 1, wherein the remaining solution is mixed with concentrated sulfuric acid and used for dissolving the noble metal alloy after silver sulfate is precipitated and recovered. How to separate gold and silver.
JP9091998A 1997-04-10 1997-04-10 Separation of gold and silver from noble metal alloy Pending JPH10280059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9091998A JPH10280059A (en) 1997-04-10 1997-04-10 Separation of gold and silver from noble metal alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9091998A JPH10280059A (en) 1997-04-10 1997-04-10 Separation of gold and silver from noble metal alloy

Publications (1)

Publication Number Publication Date
JPH10280059A true JPH10280059A (en) 1998-10-20

Family

ID=14042100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9091998A Pending JPH10280059A (en) 1997-04-10 1997-04-10 Separation of gold and silver from noble metal alloy

Country Status (1)

Country Link
JP (1) JPH10280059A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080919A (en) * 2000-09-07 2002-03-22 Nikko Materials Co Ltd Method for producing high purity silver
JP2003520901A (en) * 2000-01-28 2003-07-08 ユミコア Method for refining silver bullion with gold separation
WO2005028686A1 (en) * 2003-09-23 2005-03-31 Outokumpu Technology Oy Method for processing anode sludge
KR100991229B1 (en) 2008-10-07 2010-11-05 한국지질자원연구원 Separation and recycling method of gold and silver from gold and silver alloy
CN104368316A (en) * 2014-11-18 2015-02-25 辽宁大学 Sulfydryl cellulose type straw adsorbent and preparation method thereof as well as recycling of noble metal silver
CN107991207A (en) * 2017-11-29 2018-05-04 长春黄金研究院 Golden assay method in a kind of high impurity copper anode mud
CN115112518A (en) * 2022-07-04 2022-09-27 山东招金金银精炼有限公司 Analysis method for gold content in electroforming cylinder liquid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520901A (en) * 2000-01-28 2003-07-08 ユミコア Method for refining silver bullion with gold separation
JP2002080919A (en) * 2000-09-07 2002-03-22 Nikko Materials Co Ltd Method for producing high purity silver
WO2005028686A1 (en) * 2003-09-23 2005-03-31 Outokumpu Technology Oy Method for processing anode sludge
EA009399B1 (en) * 2003-09-23 2007-12-28 Ототек Оюй Method for processing anode sludge
ES2304095A1 (en) * 2003-09-23 2008-09-01 Outokumpu Technology Oyj Method for processing anode sludge
US7731777B2 (en) 2003-09-23 2010-06-08 Outotec Oyj Method for processing anode sludge
KR100991229B1 (en) 2008-10-07 2010-11-05 한국지질자원연구원 Separation and recycling method of gold and silver from gold and silver alloy
CN104368316A (en) * 2014-11-18 2015-02-25 辽宁大学 Sulfydryl cellulose type straw adsorbent and preparation method thereof as well as recycling of noble metal silver
CN107991207A (en) * 2017-11-29 2018-05-04 长春黄金研究院 Golden assay method in a kind of high impurity copper anode mud
CN115112518A (en) * 2022-07-04 2022-09-27 山东招金金银精炼有限公司 Analysis method for gold content in electroforming cylinder liquid
CN115112518B (en) * 2022-07-04 2023-09-12 山东招金金银精炼有限公司 Analysis method for gold content in electroforming cylinder liquid

Similar Documents

Publication Publication Date Title
JP3879126B2 (en) Precious metal smelting method
KR100843025B1 (en) Method for recycling a platinum from a waste water comprising selenium using hydrazine
US6773487B2 (en) Process for refining silver bullion with gold separation
KR100804122B1 (en) Method of recovering platinum-group metals selectively
FI116684B (en) Procedure for treating anode slurry
JP3079034B2 (en) How to recover platinum
JP7198079B2 (en) Method for treating acidic liquids containing precious metals, selenium and tellurium
CA1257970A (en) Process to manufacture silver chloride
JPH10280059A (en) Separation of gold and silver from noble metal alloy
JP4016680B2 (en) Method for dissolving selenium platinum group element-containing material
JP2020105588A (en) Treatment method of mixture containing noble metal, selenium and tellurium
CN1132946C (en) Noble metal smelting slag wet metallurgical process
JPH05247552A (en) Decopperizing method of lead electrolysis anode slime by wet process treatment
JPH0781172B2 (en) Silver refining ore mud purification method
CA2278834A1 (en) Improved tellurium extraction from copper electrorefining slimes
JP3407600B2 (en) Silver extraction and recovery method
JP2001279344A (en) Method for recovering tin
JP2018044201A (en) Method of treating metal-containing hydrochloric acidic liquid
JP3753554B2 (en) Silver recovery method
CA2017032C (en) Hydrometallurgical silver refining
JP4403259B2 (en) Method for recovering platinum group elements
JPS6221851B2 (en)
JPH0233777B2 (en)
JP3309801B2 (en) How to collect gold
JP2004190135A (en) Method of recovering silver from silver and lead-containing material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121129

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121129

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131129

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250