JPH0123054B2 - - Google Patents

Info

Publication number
JPH0123054B2
JPH0123054B2 JP19642482A JP19642482A JPH0123054B2 JP H0123054 B2 JPH0123054 B2 JP H0123054B2 JP 19642482 A JP19642482 A JP 19642482A JP 19642482 A JP19642482 A JP 19642482A JP H0123054 B2 JPH0123054 B2 JP H0123054B2
Authority
JP
Japan
Prior art keywords
resin
temperature
viscosity
equation
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19642482A
Other languages
Japanese (ja)
Other versions
JPS5985938A (en
Inventor
Hayami Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP19642482A priority Critical patent/JPS5985938A/en
Publication of JPS5985938A publication Critical patent/JPS5985938A/en
Publication of JPH0123054B2 publication Critical patent/JPH0123054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Drying Of Solid Materials (AREA)

Description

【発明の詳細な説明】 本発明は高圧回転機絶縁の含浸レジンの漏れ指
数決定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the leakage index of impregnated resin for high-pressure rotating machine insulation.

近年、高圧回転機絶縁では、コイルとコアを一
体にして真空加圧含浸させる絶縁方法が主流にな
つてきている。この絶縁法では、コイル単体で真
空加圧含浸させてキユアさせる場合と比べ、キユ
ア過程で次の問題がある。即ち、コイルとコアが
一体となつている為、熱容量が大きく一定温度に
達するまで長時間を要する。以上の為含浸レジン
の硬化が遅くなり、レジンが流出し易い。レジン
の流出により絶縁層中にはボイドが形成され、絶
縁不良の原因となる。従つて、レジンの漏れ程度
を定量的に把握することは品質管理上非常に重要
である。しかし、従来は、この漏れ程度を定量的
に把握することができず、品質管理が非常に困難
であつた。
In recent years, insulation methods for high-voltage rotating machines have become mainstream, in which the coil and core are integrally impregnated under vacuum pressure. This insulation method has the following problems in the curing process compared to the case where the coil itself is vacuum-pressurized and impregnated to cure it. That is, since the coil and core are integrated, the heat capacity is large and it takes a long time to reach a certain temperature. For this reason, the curing of the impregnated resin is delayed, and the resin tends to flow out. Due to the resin flowing out, voids are formed in the insulating layer, causing insulation defects. Therefore, it is very important for quality control to quantitatively understand the degree of resin leakage. However, in the past, it was not possible to quantitatively grasp the extent of this leakage, making quality control very difficult.

本発明の目的は、乾燥炉中の製品の温度を一定
時間間隔でサンプリングし、このサンプリングデ
ータと含浸レジンの温度粘度特性、一定温度にお
ける粘度変化を示す実験式からコンピユータを用
いて前記レジンの漏れ指数を決定することにより
前記レジンの漏れ程度を定量的に把握することに
ある。
The purpose of the present invention is to sample the temperature of a product in a drying oven at regular time intervals, and use a computer to detect leakage of the resin based on this sampling data, the temperature-viscosity characteristics of the impregnated resin, and an experimental formula showing the viscosity change at a constant temperature. The objective is to quantitatively grasp the degree of leakage of the resin by determining the index.

以下レジンの漏れ指数の計算方法を説明する。
一定温度における任意のレジンの時間の経過に対
する粘度変化は第1図のようになり、よつて、粘
度の時間変化は次の式で表わすことができる。
The method for calculating the resin leakage index will be explained below.
The change in viscosity of any resin over time at a constant temperature is as shown in FIG. 1. Therefore, the change in viscosity over time can be expressed by the following equation.

ηt=f(t)―(1) t;時間 f;関数 又、To℃でηTpの粘度を示す任意の3種類のレ
ジンの温度粘度特性は第2図のようになり、次の
式で表わすことができる。
η t = f (t) - (1) t: time f: function In addition, the temperature viscosity characteristics of any three types of resins that exhibit a viscosity of η Tp at To℃ are as shown in Figure 2, and are expressed by the following formula: It can be expressed as

ηT=g(T)+(ηTp−g(Tp))―(2)T;温度 g;関
数 一方レジンの硬化反応量と温度と時間とにはア
レニウスの式が成り立ち、次の式で示される。
η T = g (T) + (η Tp − g (Tp) ) - (2) T: Temperature g: Function On the other hand, the Arrhenius equation holds for the resin curing reaction amount, temperature, and time, and the following equation holds: shown.

Int1=ΔE/R(1/T1−1/T2)+Int2―(3)t1,t2
;時間 T1,T2;温度 R;気体定数 ΔE;活性化エ
ネルギー 今、基準温度をTsに決め、基準温度における
粘度変化式を求めると(1)式と同様次の式で表わす
ことができる。
Int 1 = ΔE/R (1/T 1 - 1/T 2 ) + Int 2 - (3) t 1 , t 2
; Time T 1 , T 2 ; Temperature R; Gas constant ΔE; Activation energy Now, by setting the standard temperature as Ts and finding the viscosity change formula at the standard temperature, it can be expressed by the following formula, similar to formula (1). .

ηst=fs(t)―(4) 任意の温度Ta℃で粘度ηxのレジンがtx時から
微少時間Δts経た時の粘度は次の様にして求める
ことができる。Tx℃におけるΔtx時間は(3)式を
用いて標準温度Ts℃では次の式で換算される。
ηst=fs(t)−(4) The viscosity of a resin having a viscosity ηx at an arbitrary temperature Ta°C after a short time Δts has passed from time tx can be determined as follows. The Δtx time at Tx°C is converted using the following formula at the standard temperature Ts°C using equation (3).

InΔtsx=ΔE/R(1/Tx−1/Ts)+In(Δtx)―
(5) Δtsx;標準温度に換算したΔtx 又、同様にしてtxも次の様に換算される。
InΔtsx=ΔE/R(1/Tx−1/Ts)+In(Δtx)—
(5) Δtsx: Δtx converted to standard temperature Also, tx is similarly converted as follows.

Intsx=ΔE/R(1/Tx−1/Ts)+In(tx)―(6) tsx;標準温度に換算した 標準温度で(tsx+Δtsx)経過したもののレジ
ンの標準温度における粘度は(4)式を用いて次の式
で計算できる。
Intsx = ΔE/R (1/Tx - 1/Ts) + In (tx) - (6) tsx; Converted to standard temperature The viscosity of the resin at standard temperature after (tsx + Δtsx) has passed is calculated using equation (4). It can be calculated using the following formula.

ηs(tx+Δtx)=fs(tsx+Δtsx)―(7) ηs(tx+Δtx)標準温度で(tsx+Δtsx)経過後
の粘度 標準温度に於ける粘度は(2)式を用いてTa℃に
おける粘度に換算でき次式で表わすことができ
る。
ηs (tx + Δtx) = fs (tsx + Δtsx) - (7) ηs (tx + Δtx) Viscosity after (tsx + Δtsx) has elapsed at standard temperature The viscosity at standard temperature can be converted to the viscosity at Ta℃ using equation (2) using the following formula. It can be expressed as

ηa(tx+Δtx)=g(Ta) +(ηs(tx+Δtx)−g(Ts))―(8) ηa(tx+Δtx);Ta℃で(tx+Δtx)経過後の
粘度 以上の計算方式に従えば、硬化過程のレジンの
粘度変化は容易に計算できる。ここでレジンの漏
れ指数として次式を定義することにする。
ηa (tx + Δtx) = g (Ta) + (ηs (tx + Δtx) − g (Ts) ) - (8) ηa (tx + Δtx); Viscosity after (tx + Δtx) at Ta℃ According to the above calculation method, the curing process The change in viscosity of the resin can be easily calculated. Here, the following equation is defined as the resin leakage index.

IND=∫t p1/ηdt―(9) IND;漏れ指数 (9)式は次式で近似できる。 IND=∫ t p 1/ηdt - (9) IND; Leakage index Equation (9) can be approximated by the following equation.

IND≒oi=1 Δti/ηi ―(10) ここでΔt1=Δt2=…=Δti =…Δtn=t/n 一方、(10)式におけるηiは(8)式によつて計算でき
るので、(10)式も容易に計算できる。(9)式から明ら
かな様に漏れ指数INDは数値の大きいほど漏れ
易いことを表わしている。なお、(1),(2)式で用い
る関数f,gは通常3次式程度を考えれば十分で
ある。
IND≒ oi=1 Δti/ηi - (10) where Δt 1 = Δt 2 =...=Δti =...Δtn=t/n On the other hand, ηi in equation (10) can be calculated by equation (8) Therefore, equation (10) can be easily calculated. As is clear from equation (9), the larger the value of the leakage index IND, the more likely it is to leak. Note that it is usually sufficient to consider the functions f and g used in equations (1) and (2) to be cubic equations.

以下、本発明の実施例を説明する。今、乾燥炉
内の任意の製品Aの時間の経過に対する温度変化
グラフを描くと第3図1になる。この製品に任意
の3種のレジン,,を含浸させた場合の乾
燥炉内でのそれぞれのレジンの時間の経過に対す
る粘度変化のグラフを描くと第4図2−1,2−
2,2−3になる。また、これら前記レジン,
,の漏れ指数を前述の方法で計算しグラフを
描くと、それぞれ第3図3−1,3−2,3−3
となる。なお、2−1,3−1はレジン、2−
2,3−2はレジン、2−3,3−3はレジン
を用いている。ここでは、レジンが漏れ指数
が一番小さく、したがつて、レジンを含浸させ
た製品が一番質が良いことがわかる。この発明に
よれば、前述の方法により、レジンの漏れ程度を
定量的に把握することができるため、製品の良・
否の判断が簡単にでき、品質管理にも役立たせる
ことができるという利点がある。
Examples of the present invention will be described below. Now, if we draw a graph of temperature change over time for any product A in the drying oven, it will be as shown in Fig. 31. When this product is impregnated with any three types of resin, the graph of the viscosity change over time in the drying oven for each resin is shown in Figure 4 2-1, 2-
It becomes 2, 2-3. In addition, these resins,
, when the leakage index of
becomes. In addition, 2-1, 3-1 are resin, 2-
2 and 3-2 use resin, and 2-3 and 3-3 use resin. Here, it can be seen that resin has the lowest leakage index, and therefore products impregnated with resin are of the best quality. According to the present invention, the degree of resin leakage can be quantitatively determined by the method described above, so that the quality of the product can be determined.
It has the advantage that it is easy to judge whether or not to use the product, and it can also be useful for quality control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一定温度における任意のレジンの時間
の経過に対する粘度変化のグラフ、第2図は任意
のレジン3種類の温度粘度特性グラフ、第3図は
実施例におけるレジン,,の乾燥炉内での
時間の経過に対する漏れ指数の変化グラフ及び乾
燥炉内での製品1の時間の経過に対する温度変化
グラフ、第4図は実施例におけるレジン,,
の乾燥炉内での時間の経過に対する粘度変化グ
ラフである。
Figure 1 is a graph of the viscosity change over time of an arbitrary resin at a constant temperature, Figure 2 is a graph of temperature-viscosity characteristics of three types of arbitrary resins, and Figure 3 is a graph of the resin in the drying oven in the example. A graph of the change in leakage index over time and a graph of temperature change over time of Product 1 in the drying oven, Fig. 4 shows the resin in Example.
2 is a graph of viscosity change over time in a drying oven.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧回転機絶縁の含浸レジンの加熱硬化過程
において、製品又は含浸レジンの温度を一定時間
間隔でサンプリングする第1工程、及び前記第1
工程の結果と含浸レジンの温度粘度特性、一定温
度における粘度変化特性を示す実験式からコンピ
ユーターを用いて、前記レジンの漏れ指数を計算
する第2工程とからなる乾燥炉中におけるレジン
の漏れ指数決定方法。
1. A first step of sampling the temperature of the product or the impregnated resin at fixed time intervals in the heat curing process of the impregnated resin for high-pressure rotating machine insulation;
Determining the leakage index of the resin in the drying oven, which consists of a second step of calculating the leakage index of the resin using a computer from the process results, the temperature viscosity characteristics of the impregnated resin, and an experimental formula showing the viscosity change characteristics at a constant temperature. Method.
JP19642482A 1982-11-08 1982-11-08 Method for determining resin leaking index number in drying furnace Granted JPS5985938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19642482A JPS5985938A (en) 1982-11-08 1982-11-08 Method for determining resin leaking index number in drying furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19642482A JPS5985938A (en) 1982-11-08 1982-11-08 Method for determining resin leaking index number in drying furnace

Publications (2)

Publication Number Publication Date
JPS5985938A JPS5985938A (en) 1984-05-18
JPH0123054B2 true JPH0123054B2 (en) 1989-04-28

Family

ID=16357613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19642482A Granted JPS5985938A (en) 1982-11-08 1982-11-08 Method for determining resin leaking index number in drying furnace

Country Status (1)

Country Link
JP (1) JPS5985938A (en)

Also Published As

Publication number Publication date
JPS5985938A (en) 1984-05-18

Similar Documents

Publication Publication Date Title
US2941911A (en) Method of forming continuous structures of polytetrafluoroethylene
Pappalardo DSC evaluation of epoxy and polyimide‐impregnated laminates (prepregs)
JPH0123054B2 (en)
US2166205A (en) Fixed capacitor
US1874723A (en) Electrical coil
Gotro et al. Simultaneous dielectric and dynamic mechanical analysis of thermosetting polymers
US2739638A (en) Resinous silicon-containing compositions and products produced therewith
Li et al. Selectivity equivalence of poly (dimethyldiphenylsiloxane) stationary phases for open‐tubular column gas chromatography
Ungarish et al. Cure cycle optimization of composites by dielectric measurements
Wang et al. Characterization of the aging behavior of raw epoxidized natural rubber with a rubber processing analyzer
Lasocka Application of Piloyan's method in the study of the energetics of a glass-to-crystal transition
JPH0344377B2 (en)
JPS60136111A (en) Method of producing enameled insulated wire
CN204882213U (en) A loading structure that is used for dynamic loading to cross cheng qian sample intensifying
JPH0233497B2 (en) KANSOROCHUNIOKERUREJINNOKOKAJIKANKETSUTEIHOHO
JPS58118926A (en) Method for estimating operation temperature log of electric apparatus
US4417872A (en) Heat treating
JP2019129567A (en) Manufacturing apparatus and manufacturing method for rotary electric machine coil
Korzhavin et al. Solid-phase chemical reactions during the cyclodehydration of polyamic acids
JPS598113A (en) Magnetic head
CN111380904A (en) Method for rapidly detecting thermal diffusion coefficient of thin heat conduction and dissipation material
RU2028607C1 (en) Method of hardening composition materials on the base of phenolformaldehyde binder
SU1662977A1 (en) Method of manufacturing heat insulating materials
Yoon et al. Thermoacoustic measurements during cure of epoxy resin at room temperature
JPS6331449A (en) Method of testing thermic life of heat-proof rotating machine winding