JPH01229974A - Automatic analyzer and reaction container - Google Patents

Automatic analyzer and reaction container

Info

Publication number
JPH01229974A
JPH01229974A JP63210740A JP21074088A JPH01229974A JP H01229974 A JPH01229974 A JP H01229974A JP 63210740 A JP63210740 A JP 63210740A JP 21074088 A JP21074088 A JP 21074088A JP H01229974 A JPH01229974 A JP H01229974A
Authority
JP
Japan
Prior art keywords
reaction
stirring
disk
container
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63210740A
Other languages
Japanese (ja)
Other versions
JP2585740B2 (en
Inventor
Fumihisa Hamazaki
浜崎 文寿
Hajime Betsui
別井 肇
Kyoko Imai
恭子 今井
Hiroshi Umetsu
梅津 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63210740A priority Critical patent/JP2585740B2/en
Priority to DE3838361A priority patent/DE3838361A1/en
Publication of JPH01229974A publication Critical patent/JPH01229974A/en
Priority to US07/793,650 priority patent/US5272092A/en
Application granted granted Critical
Publication of JP2585740B2 publication Critical patent/JP2585740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/20Mixing the contents of independent containers, e.g. test tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/452Magnetic mixers; Mixers with magnetically driven stirrers using independent floating stirring elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00435Refrigerated reagent storage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0446Combinations of the above
    • G01N2035/0448Combinations of the above composed of interchangeable ring elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1079Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices with means for piercing stoppers or septums

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To make it possible to perform stirring of liquid in a reaction container efficiently without carry-over, by arranging the reaction containers wherein stirring balls are contained in a reaction disk, and reciprocating and vibrating the reaction disk in an arc pattern at a high speed. CONSTITUTION:A reaction disk 1 is reciprocated and vibrated in an arc pattern under the adequate conditions. Then, kinetic energy is imparted to stirring balls 4 in liquid in reaction containers 2 which are arranged in the disk 1. The ball 4 starts movement. The direction of the movement is restricted by the inner wall of the container 2. Therefore, the ball 2 is turned in the container 2, and the liquid to be stirred is agitated. In order to obtain efficient stirring, the disk 1 is reciprocated at a high speed under the vibrating conditions wherein the amplitude is 0.8-3.0mm and the frequency is 10-40Hz. The diameter of the ball is made to be one half or less the inner diameter of the container 2. The specific gravity of the ball 4 with respect to the liquid to be stirred is made to be 4 or more. Thus, the adequate stirring without splashing of the liquid out of the container 2 can be carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自り」分析装置および反応容器に係り、特に
反応容器内の液を撹拌するに好適な自動分析装置および
反応容器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an analytical device and a reaction vessel, and more particularly to an automatic analysis device and a reaction vessel suitable for stirring a liquid within the reaction vessel.

〔従来の技術〕[Conventional technology]

従来の臨床用自動分析装置では、反応容器に添加した試
料と試薬を撹拌する場合に、例えば特開昭57−827
69号に示されているように順次撹拌位置に位置づけら
れた反応容器内に同し撹拌体を挿入してかきまぜること
により混合するのが一般的であった。しかしながら、こ
のような撹拌方法は反応液相互のキャリオーバを完全に
除去することが困難である。そこで反応液に非接触撹拌
することが考えられるようになった。
In conventional clinical automatic analyzers, when stirring the sample and reagent added to the reaction container, for example,
As shown in No. 69, mixing was generally carried out by inserting the same stirring body into the reaction vessels that were sequentially positioned at the stirring position and stirring. However, with such a stirring method, it is difficult to completely remove carryover between the reaction solutions. This led to the idea of non-contact stirring of the reaction solution.

特開昭57−42325号は、ターンテーブル上に配列
された反応容器列の内周側に複数の反応容器の外壁と接
触する円板を設け、この円板を往復運動させることによ
り反応容器を従動回転させる混合方法を示している。
JP-A No. 57-42325 discloses that a disk is provided on the inner circumferential side of a row of reaction vessels arranged on a turntable and contacts the outer walls of a plurality of reaction vessels, and the reaction vessels are moved by reciprocating the disk. This shows a mixing method using driven rotation.

一方、分析計の機能のない撹拌装置ではあるが、特開昭
52−143551号は、矩形のプラスチック製板にX
方向およびY方向に多数の希釈液室を形成し、その板に
水平に振動を与えることによって液をかきまぜる方法を
示している。この例では、単なる振動だけによっては完
全なかきまぜを行うことができないことを考慮し、板の
一端を支柱で支え、電磁石等を働かせて板に円弧状の振
動を与えるようにしている。
On the other hand, although the stirring device does not have the function of an analyzer, JP-A No. 52-143551 uses
This shows a method in which a large number of diluent chambers are formed in the direction and the Y direction, and the liquid is stirred by applying horizontal vibration to the plate. In this example, considering that complete stirring cannot be achieved by mere vibration, one end of the plate is supported by a support, and an electromagnet or the like is activated to give the plate arc-shaped vibration.

また、特開昭61−56972号は、複数の試料セルを
セットしたセルホルダを直線的に移送して、各試料セル
を順次測定位置に移行させ、測定後セルホルダを逆送し
て戻す分光光度計において、セルホルダの駆動源に正転
、逆転の信号を交互に与えて試料セルを前後方向に動揺
し試料を撹拌することを示している。
In addition, Japanese Patent Application Laid-open No. 61-56972 discloses a spectrophotometer in which a cell holder with a plurality of sample cells is linearly transferred, each sample cell is sequentially moved to a measurement position, and the cell holder is returned after measurement. , it is shown that forward and reverse rotation signals are alternately applied to the drive source of the cell holder to swing the sample cell in the front and back direction and stir the sample.

〔発明が解決°しようとする課題〕[Problem that the invention attempts to solve]

自動分析装置では、多数の試料を効率的に処理しなけれ
ばならないため、被撹拌液間にキャリオーバのない撹拌
動作を短時間で実行しなければならない。
In an automatic analyzer, since a large number of samples must be efficiently processed, a stirring operation must be performed in a short time without carryover between the stirred liquids.

特開昭57−42325号は、反応容器自体を自転させ
ることによって内部の液を撹拌することができるが、撹
拌装置の機構が複雑である。特開昭52−143551
号は、希釈棒を次々と各希釈液室に挿入して試料を順次
希釈するものであり、撹拌時のキャリオーバの影響につ
いて配慮していない。特開昭61−56972号は、角
型セルを前後方向に揺動させるだけであるため、試料セ
ル内の液が十分に混合されるのに比較的長時間を要する
In Japanese Patent Application Laid-Open No. 57-42325, the liquid inside can be stirred by rotating the reaction vessel itself, but the mechanism of the stirring device is complicated. Japanese Patent Publication No. 52-143551
In this method, dilution rods are inserted one after another into each diluent chamber to dilute the sample one after another, and the influence of carryover during stirring is not considered. In Japanese Patent Application Laid-Open No. 61-56972, since the rectangular cell is simply swung back and forth, it takes a relatively long time for the liquid in the sample cell to be sufficiently mixed.

本発明の目的は、簡単な構成で反応容器内の液の撹拌を
効率的に行い得る自動分析装置を提供することにある。
An object of the present invention is to provide an automatic analyzer that has a simple configuration and can efficiently stir the liquid in a reaction container.

本発明の他の目的は、試料および試薬の添加から反応液
の測定までの期間の間撹拌を繰り返し行うことを可能に
して試料と試薬の反応を促進することができる自動分析
装置を提供することにある。
Another object of the present invention is to provide an automatic analyzer that can promote the reaction between the sample and reagent by repeatedly stirring the sample and reagent during the period from addition of the sample to measurement of the reaction solution. It is in.

本発明のもう1つの目的は、反応液間のキャリオーバの
ない撹拌を容易に実行し得る自動分析装置を提供するこ
とにある。
Another object of the present invention is to provide an automatic analyzer that can easily perform stirring without carryover between reaction solutions.

本発明の他の目的は、液の撹拌効果を高めることができ
、取扱の容易な反応容器を提供することにある。
Another object of the present invention is to provide a reaction vessel that can enhance the liquid stirring effect and is easy to handle.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、撹拌ボールの入った反応容器を反応ディス
クに配列し、反応ディスクを弧状に高速往復動させて振
動し、この振動によって反応容器内の撹拌ボールを回動
させて反応容器内の液を撹拌するように構成した。
In the present invention, reaction vessels containing stirring balls are arranged on a reaction disk, the reaction disk is vibrated by reciprocating at high speed in an arc, and this vibration rotates the stirring ball in the reaction vessel, causing the liquid in the reaction vessel to flow. It was configured to stir.

〔作用〕[Effect]

反応ディスクを適正な条件で弧状に往復動振動させると
、反応ディスク上に配列された反応容器内の液中に沈め
られている撹拌ボールに運動エネルギーが与えられる。
When the reaction disk is reciprocated in an arc under appropriate conditions, kinetic energy is imparted to the stirring balls submerged in the liquid in the reaction vessels arranged on the reaction disk.

これにともなって撹拌ボールは運動を始めるが、反応容
器の内壁によって運動の方向が制限されるので、撹拌ボ
ールは反応容器の中で回転し、被撹拌液を撹拌すること
になる。
Along with this, the stirring ball starts to move, but the direction of movement is restricted by the inner wall of the reaction container, so the stirring ball rotates inside the reaction container and stirs the liquid to be stirred.

本発明の望ましい実施例では、効率の良い撹拌を得るた
めに振幅が0.8〜3.0mmであり周波数が10〜4
0 Hzの振動条件で反応ディスクを高速往復動する。
In a preferred embodiment of the present invention, the amplitude is 0.8 to 3.0 mm and the frequency is 10 to 4 mm to obtain efficient stirring.
The reaction disk is reciprocated at high speed under vibration conditions of 0 Hz.

撹拌ボールの直径を反応容器の内径の半分以下とし、被
撹拌液に対する撹拌ボールの比重を4以上とすることに
より反応容器からの液の飛び出し等のない好適な撹拌が
実行される。
By setting the diameter of the stirring ball to be less than half the inner diameter of the reaction vessel, and by setting the specific gravity of the stirring ball to the liquid to be stirred to be 4 or more, suitable stirring without splashing out of the liquid from the reaction vessel can be carried out.

また1反応ディスク」二のそれぞれの反応容器内に撹拌
ボールが入れられるので、撹拌ボールを介在しての反応
液間のキャリオーバは生じない。
Furthermore, since a stirring ball is placed in each of the reaction vessels of the first reaction disk and the second reaction vessel, carryover between reaction liquids does not occur through the stirring balls.

本発明を自動分析装置に実際的に適用する場合には、高
い測光精度が得られなければならない。
When the present invention is practically applied to an automatic analyzer, high photometric accuracy must be obtained.

内壁側面が湾曲している反応容器に一対の平滑な透光窓
を形成することによって、光度計の光路位置における反
応容器の位置が多少ずれても安定した測光値を得ること
ができ、撹拌ボールの回転運動も好適に行わしめること
ができろ。撹拌子を強磁性体で形成し、磁石を測光位置
付近に設けることによって、dlす売時に撹拌子が光路
の妨害をすることを防止できる。
By forming a pair of smooth light-transmitting windows in the reaction vessel whose inner wall side surface is curved, stable photometric values can be obtained even if the position of the reaction vessel in the optical path of the photometer is slightly shifted. It is also possible to suitably perform the rotational movement of. By forming the stirrer from a ferromagnetic material and arranging the magnet near the photometry position, it is possible to prevent the stirrer from interfering with the optical path when selling the DL.

反応ディスク全体が振動されるので、反応ディスク上の
複数の反応容器内の液が一斉に撹拌され。
Since the entire reaction disk is vibrated, the liquids in multiple reaction containers on the reaction disk are stirred all at once.

この撹拌は新しい反応容器に試料および試薬が添加され
る都度行われるので、結果的に反応開始から1fJ11
定までの期間反応液が頻繁に撹拌されることになる。反
応容器中に液体とは比重の異なる不溶性試薬が入ってい
る場合には、このような繰り返し撹拌により反応が促進
される。
Since this stirring is performed each time a sample and reagent are added to a new reaction vessel, the result is 1fJ11 from the start of the reaction.
The reaction solution will be frequently stirred for a certain period of time. When the reaction vessel contains an insoluble reagent having a specific gravity different from that of the liquid, the reaction is promoted by such repeated stirring.

〔実施例〕〔Example〕

本発明の一実施例を、第1図〜第4図を参照して説明す
る。
An embodiment of the present invention will be described with reference to FIGS. 1 to 4.

回転型円板状の反応ディスク1の円周上に複数個の反応
容器2を配列し、反応ディスク1を駆動機構3により回
転する。その駆動機構3により反応容器2を1ピツチず
つ間欠回転したり、又は短周期往復運動可能にする。反
応ディスク1は、微小振幅で高速往復動され1反応容器
内の液が撹拌される。
A plurality of reaction vessels 2 are arranged on the circumference of a rotating disk-shaped reaction disk 1, and the reaction disk 1 is rotated by a drive mechanism 3. The drive mechanism 3 enables the reaction container 2 to be rotated intermittently one pitch at a time or to reciprocate in short periods. The reaction disk 1 is reciprocated at high speed with minute amplitude to stir the liquid in one reaction container.

反応ディスク1に装着される反応容器2には、第3図に
示すように、内部にパーマロイ製の攪拌ボール4があら
かじめ入れられている。第3図の反応容器は蛍光測光用
のものである。反応容器2の上端は、アルミニウム製膜
5によってシールされているので、輸送時に攪拌ボール
4が反応容器2から飛び出すことがない、この反応容器
2は、内径6.2+amで深さが30m+aの円筒状と
なっており、底面に平滑な入射窓24を有し、側面に平
滑な出射窓25を有している。この反応容器2は透光性
材料であるガラス又はアクリル樹脂からなる。
As shown in FIG. 3, a stirring ball 4 made of permalloy is placed in the reaction container 2 mounted on the reaction disk 1 in advance. The reaction vessel shown in FIG. 3 is for fluorescence photometry. The upper end of the reaction vessel 2 is sealed with an aluminum membrane 5, so that the stirring ball 4 will not jump out of the reaction vessel 2 during transportation. It has a smooth entrance window 24 on the bottom and a smooth exit window 25 on the side. This reaction vessel 2 is made of a transparent material such as glass or acrylic resin.

反応容器2が反応ディスク1にセットされると、図示し
ないシールブレーカ装置によってシール膜5に所望の大
きさの穴5aが開けられる。従ってその後に分注機構1
4のプローブ15によって実行される試料および/また
は試薬の分注動作は。
When the reaction container 2 is set on the reaction disk 1, a hole 5a of a desired size is made in the seal membrane 5 by a seal breaker device (not shown). Therefore, after that, the dispensing mechanism 1
The sample and/or reagent dispensing operation performed by the probe 15 of No. 4 is as follows.

シール膜5によって妨げられない。unobstructed by sealing membrane 5.

反応恒温槽6の内部には、光度計19の測光位置付近に
第1図に示すように永久磁石又は電磁石7を配置する。
Inside the reaction constant temperature bath 6, a permanent magnet or electromagnet 7 is arranged near the photometry position of the photometer 19, as shown in FIG.

この磁石7により測光位置に来た反応容器内の撹拌ボー
ル4が出射窓25とは反対側の側壁に引き付けられるの
で、光束22の通路を撹拌ボール4が妨げることはない
Since the magnet 7 attracts the stirring ball 4 in the reaction vessel that has come to the photometry position to the side wall opposite to the exit window 25, the stirring ball 4 does not obstruct the passage of the light beam 22.

一方、回転型円板状の試料ディスク8と、回転型円板状
の試薬ディスク9とを同心円状に配列し、中心の駆動軸
10により試料ディスク8と試薬ディスク9とを同時に
一体に回転駆動する。尚、図示では試料ディスク8を中
心側、試薬ディスク9を外周側に設けているが、この逆
に設けてもよい。
On the other hand, a rotating disk-shaped sample disk 8 and a rotating disk-shaped reagent disk 9 are arranged concentrically, and the sample disk 8 and the reagent disk 9 are simultaneously and integrally driven to rotate by a central drive shaft 10. do. In addition, although the sample disk 8 is provided on the center side and the reagent disk 9 is provided on the outer circumferential side in the illustration, it is also possible to provide the sample disk 8 in the opposite direction.

試料ディスク8に複数個の試料容器11を配列する。ま
た試薬ディスク9には、数種類の試薬容器をグループと
した試薬容器群12を配列する。
A plurality of sample containers 11 are arranged on the sample disk 8. Further, on the reagent disk 9, a reagent container group 12, which is a group of several types of reagent containers, is arranged.

試薬容器12は特定の分析項目に対する第一試薬、第二
試薬等をグループとして配置する。試薬ディスク9及び
試料ディスク8を駆動軸10の周りに回転し、試薬容器
12及び試料容器11を1ピツチまたは指定したピッチ
数だけ回転するように構成する。また試薬容器12及び
試料容器11をそれぞれ別個に分析対象に対応して取り
付け、取り外し可能にしてセットする。また試料容器1
1を試料恒温槽に、試薬容器12を試薬保冷槽]3に別
個に配置して所定温度を保つ。
In the reagent container 12, a first reagent, a second reagent, etc. for a specific analysis item are arranged as a group. The reagent disk 9 and sample disk 8 are configured to rotate around a drive shaft 10, and the reagent container 12 and sample container 11 are rotated by one pitch or a specified number of pitches. Further, the reagent container 12 and the sample container 11 are set so that they can be attached and removed separately depending on the object to be analyzed. Also, sample container 1
1 in a sample constant temperature bath, and the reagent container 12 in a reagent cold storage bath] 3 to maintain a predetermined temperature.

丘I述した試料あるいは標僧物質又は試薬のそれぞれを
試料容器11又は試薬容器12から、反応容器2に分注
する為にピペッティング機構14を設ける。そのピペッ
ティング機構14は回転アーム14aの先端にプローブ
15を設け、プローブ〕5により試料又は試薬を吸引し
、プローブ15を回転移動させて試料および試薬分注位
置16にある反応容器2に吐出する。その際1分注され
る試料容器11又は試薬容器12を、ピペッティング機
構L 11のプローブ15の移動軌跡に配置するように
し、かつ駆動軸10により試料ディスク8又は試薬ディ
スク9を回転して移動軌跡−にに停止するようにする。
A pipetting mechanism 14 is provided for dispensing the sample, target substance, or reagent described above from the sample container 11 or the reagent container 12 into the reaction container 2, respectively. The pipetting mechanism 14 includes a probe 15 at the tip of a rotary arm 14a, sucks up a sample or reagent with the probe 5, rotates the probe 15, and discharges it into the reaction container 2 located at a sample and reagent dispensing position 16. . At this time, the sample container 11 or reagent container 12 to be dispensed once is arranged in the movement trajectory of the probe 15 of the pipetting mechanism L 11, and the sample disk 8 or reagent disk 9 is rotated and moved by the drive shaft 10. Make it stop on the trajectory.

またプローブ洗浄装置17を設け、プローブ15の内部
及び外部に洗浄水をポンプで送り、十分に洗浄する。
Further, a probe cleaning device 17 is provided, and cleaning water is pumped to the inside and outside of the probe 15 to thoroughly clean it.

試料ディスク8上の試料容器11からピペッティング機
構14により所定量の試料をプローブ15で吸引して秤
量し、反応ディスク1上の指定された位置において反応
容器2に移送し吐出する。
A predetermined amount of sample is aspirated by the probe 15 from the sample container 11 on the sample disk 8 by the pipetting mechanism 14, weighed, and transferred to the reaction container 2 at a designated position on the reaction disk 1 and discharged.

吐出後、ピペッティング機構14のプローブ15を洗浄
装置17で十分に洗浄し、試料液のキャリーオーバによ
る汚染を防ぐ。次に反応ディスク1を高速往復!lI駆
動機構31こより周波数33 Hz 。
After discharging, the probe 15 of the pipetting mechanism 14 is thoroughly cleaned by the cleaning device 17 to prevent contamination due to sample liquid carryover. Next, move the reaction disk 1 back and forth at high speed! The frequency of the II drive mechanism 31 is 33 Hz.

振幅1.2+nmで3秒間往復動させたのち、1ピンチ
進むように回転する。
After reciprocating for 3 seconds with an amplitude of 1.2+nm, it is rotated so as to advance by 1 pinch.

高速往復動駆動機構3は、第1図に示すようにステップ
モータ3aを動力源とし、ギヤまたは連結ベルト3bに
より反応ディスク1の回転@3Cと連結されている。も
ちろんステップモータ3aの回転軸と反応ディスクの回
転軸3Cを一体化させることも可能であり、その場合は
ギヤも連結ベルトも不要である。ステップモータ3aの
動作は、中央処理装置18により制御されており、30
m秒間に、正逆方向にそれぞれ5パルス分だけ回転し、
これを3秒間くり返すことにより1反応ディスクを周波
数約33Hzで高速往復動させる。これにより反応容器
も約33 Hzで高速往復動じ、直径300+nn+程
度の反応ディスクを用いることにより、ギヤ此等に依存
して、数Ill Il+程度の振幅を得る。また、この
高速往復動駆動機構3は1反応ディスクをステップ送り
のために回転させ、反応容器2を目的位置に移動させる
ためにも使われる、一方、試料ディスク8を次の吸引の
ピペッティング位置に回転する。この操作を順次繰り返
すことにより、始めに試料液を必要数だけ反応容器2に
移送分注する。次に試薬液を試薬容器12から同様にピ
ペッティング機構14で吸引し、試料および試薬分注位
置16において、反応容器2に分注する。
As shown in FIG. 1, the high-speed reciprocating drive mechanism 3 uses a step motor 3a as a power source, and is connected to the rotation of the reaction disk 1 @3C by a gear or a connecting belt 3b. Of course, it is also possible to integrate the rotational shaft of the step motor 3a and the rotational shaft 3C of the reaction disk, and in that case, neither a gear nor a connecting belt is necessary. The operation of the step motor 3a is controlled by a central processing unit 18.
It rotates by 5 pulses each in the forward and reverse directions in m seconds,
By repeating this for 3 seconds, one reaction disk is reciprocated at high speed at a frequency of about 33 Hz. As a result, the reaction vessel also reciprocates at high speed at about 33 Hz, and by using a reaction disk with a diameter of about 300+nn+, an amplitude of about several Ill Il+ can be obtained depending on the gears. This high-speed reciprocating drive mechanism 3 is also used to rotate one reaction disk for step feeding and move the reaction container 2 to the target position, while moving the sample disk 8 to the pipetting position for the next aspiration. Rotate to. By sequentially repeating this operation, a required number of sample liquids are first transferred and dispensed into the reaction container 2. Next, the reagent solution is similarly aspirated from the reagent container 12 by the pipetting mechanism 14 and dispensed into the reaction container 2 at the sample and reagent dispensing position 16.

次に反応ディスク1を高速往復動駆動機構3により3秒
間往復動させることによって、反応容器2の反応液を撹
拌したのち、1ピッチ回転移送する。
Next, the reaction liquid in the reaction container 2 is stirred by reciprocating the reaction disk 1 for 3 seconds by the high-speed reciprocating drive mechanism 3, and then transferred one pitch rotation.

試薬は、試薬容器群の試薬系列の第一試薬から順次移送
分注する。このようにして反応ディスク1に、指定した
回転を行なわせ、試料と試薬とを反応容器2にバッチ分
注する。試料としては、血清、血漿あるいは尿などの生
体液が用いられる。
The reagents are sequentially transferred and dispensed starting from the first reagent in the reagent series of the reagent container group. In this manner, the reaction disk 1 is rotated in a specified manner, and the sample and reagent are dispensed into the reaction container 2 in batches. A biological fluid such as serum, plasma, or urine is used as the sample.

試薬としては、通常使用されているのと同じ試薬を使用
することができる。
As the reagent, the same reagent that is commonly used can be used.

試料および試薬の分注位置16において、反応容器2に
順次分注された試料と試薬は反応容器2内で反応を開始
する。例えば反応容器が1ピツチ移送される間隔を18
秒9反応ディスク1の往復動駆動時間を3秒間とすると
1反応ディスク1上の全ての反応容器は、18秒毎に3
秒間の往復動を繰り返すことになる。これによってすべ
ての反応容器中の反応液は反応全過程において18秒毎
に3秒間の撹拌を施されることになる。試薬分注位置1
6において反応容器に発色試薬が添加されると皇色反応
が進行する。
At the sample and reagent dispensing position 16, the sample and reagent sequentially dispensed into the reaction vessel 2 start reacting within the reaction vessel 2. For example, the interval at which one reaction container is transferred is 18
If the reciprocating drive time of the reaction disk 1 is 3 seconds, all the reaction vessels on one reaction disk 1 will move 3 seconds every 18 seconds.
It will repeat the reciprocating motion for seconds. As a result, the reaction liquid in all reaction vessels is stirred for 3 seconds every 18 seconds during the entire reaction process. Reagent dispensing position 1
When a coloring reagent is added to the reaction vessel in step 6, a magenta reaction proceeds.

光度計19は、複数検知器を有する多波長同時J1り光
形であり、反応容器2と相対し、反応ディスク1上に測
光位置20にある反応容器が、光源ランプ21からの光
束22を通過するように構成されている。
The photometer 19 is a multi-wavelength simultaneous J1 light type having a plurality of detectors, and the reaction vessel facing the reaction vessel 2 and located at the photometry position 20 on the reaction disk 1 passes the light beam 22 from the light source lamp 21. is configured to do so.

第1図において、光源ランプ21からの光は、レンズ2
3a、23bにより集光され、反応容器2の底面の入射
窓24から反応容器内の反応液へ励起光として入射する
。反応液から放射された蛍光は、反応容器の出射窓25
から取り出され、レンズ23cを通ってフ第1−マルチ
プライヤ26により蛍光強度が検出される。反応ディス
ク1の移送動作により、次々と反応容器がalす光位置
20に位置づけられ、光度計19によって各試料に基づ
く蛍光強度が測定される。光度計19の出力は、マルチ
プレクサにより現在必要な測定波長の信号が選択され、
A/D変換器27により中央処理装置18に取り込まれ
て、RAMに記憶される。
In FIG. 1, the light from the light source lamp 21 is transmitted through the lens 2.
3a and 23b, and enters the reaction liquid in the reaction vessel 2 through the entrance window 24 on the bottom of the reaction vessel 2 as excitation light. The fluorescence emitted from the reaction solution is emitted through the exit window 25 of the reaction container.
The fluorescence intensity is detected by the first multiplier 26 after passing through the lens 23c. By the movement of the reaction disk 1, reaction vessels are positioned one after another at the optical position 20, and the fluorescence intensity based on each sample is measured by the photometer 19. For the output of the photometer 19, a signal of the currently required measurement wavelength is selected by a multiplexer.
The data is taken into the central processing unit 18 by the A/D converter 27 and stored in the RAM.

上記試料及び試薬分注から測定終了までの一連の動作を
、高速往復動による撹拌動作を含めて第4図にフローチ
ャートで示す。
The series of operations from dispensing the sample and reagent to the end of the measurement is shown in a flowchart in FIG. 4, including the stirring operation by high-speed reciprocating motion.

中央処理装置18は、機構系を含めた装量全体の制御と
、濃度演算などのデータ処理全般を行なうものでマイク
ロコンピュータが使用される。
The central processing unit 18 is a microcomputer that controls the entire dosage including the mechanical system and performs general data processing such as concentration calculation.

化学反応の進行におよぼす反応液の撹拌の効果を第5図
に示す。実験例1と同様のテオフィリン測定用試薬とテ
オフィリン標準液30μg / m Qを反応させたと
きの、第1試薬添加後からitl’l光までの全反応過
程における撹拌総時間と、反応進行の結果生じた蛍光強
度の関係を示す。第5図中、データAは、本実施例の自
動分析装置を用いて反応容器を1ピンチ移送する毎に反
応液を3秒間撹拌した場合のデータを示しており、試料
と試薬が混合されて反応が開始された時点から測光に至
るまでの全反応過程において反応液は連続的に完全に撹
拌されている。データBは、従来の自動分析装置を用い
た場合に相当するが、1反応工程あたり1回のみ反応液
は撹拌される。
The effect of stirring the reaction solution on the progress of the chemical reaction is shown in FIG. Total stirring time during the entire reaction process from addition of the first reagent to itl'l light and reaction progress results when the theophylline measurement reagent similar to Experimental Example 1 and theophylline standard solution 30 μg / m Q were reacted. The relationship between the resulting fluorescence intensities is shown. In FIG. 5, data A shows the data when the reaction solution was stirred for 3 seconds every time the reaction container was transferred by one pinch using the automatic analyzer of this example, and the sample and reagent were mixed. The reaction solution is continuously and thoroughly stirred during the entire reaction process from the time the reaction is initiated to photometry. Data B corresponds to the case where a conventional automatic analyzer is used, but the reaction solution is stirred only once per reaction step.

第5図から明らかなように、反応液の撹拌を高頻度に(
すなわち、撹拌総時間を長時間に)するにつれて反応は
促進されて、反応の結果生成する蛍光強度は著しく増加
した。しかしながら、本発明の自動分析装置が採用した
撹拌条件(データAの条件)よりもさらに高頻度な撹拌
を試みても。
As is clear from Figure 5, the reaction solution was stirred frequently (
That is, as the total stirring time was increased (longer), the reaction was accelerated and the fluorescence intensity generated as a result of the reaction increased significantly. However, even if attempts were made to stir more frequently than the stirring conditions (conditions of data A) adopted by the automatic analyzer of the present invention.

第5図中、データCで示したように得られた蛍光強度は
データAとほぼ同程度であり、さらなる反応の促進は認
められなかった。これによって、データAは、頻繁な撹
拌によって最も高効率に、反応が進行した点であること
がわかった。以トの結果によって、反応過程におけろ反
応液の撹拌は、反応の促進に大きな影響力を持ち、本実
施例の自動分析装置のように反応全過程において連続的
に反応液を撹拌することによって反応の進行が著しく促
進されることが明らかである。
In FIG. 5, the fluorescence intensity obtained as shown in data C was almost the same as data A, and no further promotion of the reaction was observed. This revealed that data A was the point at which the reaction proceeded most efficiently due to frequent stirring. Based on the above results, stirring the reaction solution during the reaction process has a great influence on promoting the reaction, and it is important to continuously stir the reaction solution throughout the reaction process as in the automatic analyzer of this example. It is clear that the progress of the reaction is significantly accelerated.

また、非溶解性で、分散性が良くない成分が反応液中に
含まれる場合には、頻繁に撹拌することにより沈降を防
止して反応を促進する必要があるが、このような場合に
も、上述した撹拌法は有用である。
In addition, if the reaction solution contains components that are insoluble and have poor dispersibility, it is necessary to prevent sedimentation and accelerate the reaction by stirring frequently. , the stirring method described above is useful.

予め撹拌子を入れた反応容器2を使用する場合のシール
材としては、アルミニウムフィルム、ポリエチレンフィ
ルム、シリコン膜など種々の+[を使用することができ
る。分注プローブ15による試料や試薬の分注に際して
シール5が分注の妨げにならないように、容易にシール
5を破壊するためにシールブレーカを分注プローブとは
別に設けて、試料や試薬の反応容器内への分注に先立た
せてシール5を破壊しておいてもよいし、分注プローブ
15でシールを破壊してもよい。
When using the reaction vessel 2 containing a stirrer in advance, various materials such as an aluminum film, a polyethylene film, and a silicone film can be used as the sealing material. In order to prevent the seal 5 from interfering with the dispensing of the sample or reagent using the dispensing probe 15, a seal breaker is provided separately from the dispensing probe to easily break the seal 5, so that the reaction of the sample or reagent is prevented. The seal 5 may be broken prior to dispensing into the container, or the seal may be broken with the dispensing probe 15.

反応容器2の材質は、ガラスやプラスチック類を使用す
ることができる。容器の強度、反応試薬や試料の吸着性
が少ないこと、安価であることおよび特に反応液を直接
測光する場合には透光性が良いことが必要とされ、アク
リル樹脂を好適に使用できる。
As the material of the reaction container 2, glass or plastics can be used. The container needs to have strength, low adsorption of reaction reagents and samples, low cost, and good translucency especially when directly photometrically measuring the reaction solution, and acrylic resin can be suitably used.

撹拌子4の材質としては、ここではパーマロイを用いた
が、被撹拌溶液に対する比重が1より太きいものであれ
ば撹拌子として使用可能であるがもじれない。被撹拌溶
液の液量や粘度によって撹拌子の大きさを変えることで
撹拌効果を上げることができる。ただし、鉄の様にさび
やすいものや溶液と化学反応をおこしてしまい本来の反
応に悪影響を及ぼしてしまうものは、撹拌子にプラスチ
ックコーティングやメツキ等の表面処理が必要である。
Although permalloy was used here as the material for the stirrer 4, any material having a specific gravity relative to the solution to be stirred greater than 1 can be used as a stirrer without twisting. The stirring effect can be increased by changing the size of the stirring bar depending on the volume and viscosity of the solution to be stirred. However, for materials such as iron that rust easily, or materials that cause chemical reactions with the solution and adversely affect the original reaction, surface treatment such as plastic coating or plating is required for the stirrer.

直接測光を行う場合、鉄、パーマロイ等の強磁性体を用
いると、磁石の磁力により容易に光束22を避けること
ができる。この場合、それ白身が反応するしないにかか
わらず、反応に強磁性体が関与する場合、例えば鉄触媒
を用いた反応等では、撹拌子4に残留磁気が残ると、反
応液中強磁性体と撹拌子4が吸着し、反応に悪影響を及
ぼすことが考えられる。この場合撹拌子4として残留磁
気の微小な材質を用いる必要がある。パーマロイは残留
磁気が残りにくく、この様に残留磁気が問題になる様な
反応には好適である。撹拌子の形状は略球状であること
が好ましい。
When performing direct photometry, if a ferromagnetic material such as iron or permalloy is used, the light flux 22 can be easily avoided by the magnetic force of the magnet. In this case, regardless of whether the whites react or not, if a ferromagnetic substance is involved in the reaction, for example in a reaction using an iron catalyst, if residual magnetism remains in the stirrer 4, the ferromagnetic substance in the reaction solution will It is conceivable that the stirring bar 4 may be adsorbed and adversely affect the reaction. In this case, it is necessary to use a material with minute residual magnetism as the stirrer 4. Permalloy has little residual magnetism and is suitable for reactions where residual magnetism is a problem like this. The shape of the stirrer is preferably approximately spherical.

次に、高速往復動条件、反応容器2形状、撹拌子形状等
の撹拌効率に与える影響について第6図。
Next, FIG. 6 shows the effects of high-speed reciprocating conditions, the shape of the reaction vessel 2, the shape of the stirrer, etc. on the stirring efficiency.

第7図を参照して述べる。第6図の縦軸に高速往復動の
振幅を横軸に周波数をとり、異なる撹拌効率を与える高
速往復動条件の範囲をA−Eで区分している。
This will be described with reference to FIG. In FIG. 6, the amplitude of high-speed reciprocating motion is plotted on the vertical axis and the frequency is plotted on the horizontal axis, and the range of high-speed reciprocating motion conditions that provide different stirring efficiencies is divided by A-E.

球状撹拌子(以下撹拌ボールと称す)の場合、第6図A
、B及びEに示すような十分大きな高速往復動を、円筒
反応容器35に加えると、第7図のAに示すように撹拌
ボール4は円筒容器35内壁面に沿って公転運動を行う
。撹拌ボール4のこのような公転運動によれば撹拌ボー
ル直径の10倍以内の液深の場合3秒間以内に撹拌が完
了する。
In the case of a spherical stirrer (hereinafter referred to as a stirring ball), Figure 6A
, B, and E are applied to the cylindrical reaction vessel 35, the stirring ball 4 performs a revolving motion along the inner wall surface of the cylindrical vessel 35, as shown in A of FIG. According to such a revolving movement of the stirring ball 4, stirring is completed within 3 seconds when the liquid depth is within 10 times the diameter of the stirring ball.

これは撹拌ボール4の公転により溶液に渦流が生しるた
めで、ポルテックスミキサやマグネチックスターラと同
様の結果が得られる。
This is because a vortex is generated in the solution due to the revolution of the stirring ball 4, and results similar to those obtained with a portex mixer or a magnetic stirrer can be obtained.

同じ高速往復動でも、反応容器が四角柱の形状を有する
場合、底面が平面なら、撹拌ボール4の直径の2〜3倍
の高さまでしか撹拌できない(第7図B)。ただし、同
じ条件で四角柱の対角方向に高速往復動させれば第7図
Cに示すように撹拌ボール4が四角柱容器36の底面で
二次元的に動き回り、撹拌ボール4の直径の10倍以内
の液深の場合約5秒間で撹拌が完了する。
Even with the same high-speed reciprocating motion, if the reaction container has a square prism shape and the bottom surface is flat, stirring can only be carried out to a height of 2 to 3 times the diameter of the stirring ball 4 (FIG. 7B). However, if the stirring ball 4 is made to reciprocate at high speed in the diagonal direction of the square prism under the same conditions, the stirring ball 4 will move around two-dimensionally on the bottom surface of the square prism container 36, as shown in FIG. If the liquid depth is within twice the depth, stirring will be completed in about 5 seconds.

第6図Cの範囲の周波数及び振幅を有する往復動を底面
が平たい反応容器に加えると、第7図りに示すように円
筒容器35ではもはや撹拌ボール4の上記公転運動は起
きない。そのため撹拌ボール4の直径の10倍以内の液
深の場合、3〜20秒間の撹拌時間が必要である。第7
図Eに示すように四角柱容器36側面方向に高速往復動
させた場合撹拌ボール4の直径の2倍程度の高さまでし
か撹拌できない。しかし第7図Fに示すように上記四角
柱容器36を対角方向に高速往復動させた場合もほぼ円
筒容器と同程度の撹拌効率を得ることができる。
When a reciprocating motion having a frequency and amplitude in the range shown in FIG. 6C is applied to a flat-bottomed reaction vessel, the above-mentioned revolving motion of the stirring ball 4 no longer occurs in the cylindrical vessel 35 as shown in FIG. 7. Therefore, when the liquid depth is within 10 times the diameter of the stirring ball 4, a stirring time of 3 to 20 seconds is required. 7th
As shown in Figure E, when the rectangular prism container 36 is reciprocated at high speed in the lateral direction, stirring can only be performed up to a height approximately twice the diameter of the stirring ball 4. However, as shown in FIG. 7F, even when the square columnar container 36 is reciprocated diagonally at high speed, it is possible to obtain a stirring efficiency approximately equal to that of a cylindrical container.

第6図に示すDの範囲の周波数、振幅を有する高速往復
動を底面が平たい反応容器に加えても、撹拌ボール4の
直径の2倍程度の高さまでしか撹拌できない。ところが
第7図G、Hに示すように底面内周に撹拌ボール4の半
径程度の高さを有する段をつけると、撹拌ボール4の水
平運動に上下動が加わり撹拌効率は改善される。この段
の代わりとしては、くぼみ(第7図I、J) 、底面を
横段する段(第7図に、L) 、その他の底面形状が考
えられる。この場合も、円筒容器35(第7図G、I、
K)の方が四角柱容器36(第7図H1J、L)より、
撹拌効率がよい。これは、撹拌ボール4と反応容器の衝
突角を底面に投影した場合、四角柱容器36では常に9
0’の角度であるのに対し、円筒容器35の場合、O°
〜90’のさまざまな角度をとり得るので、撹拌ボール
4の移動範囲が広くなるためである。この場合も、四角
柱容器36を対角方向に高速往復動させれば、撹拌効率
は1円筒容器35とほぼ同じになる。
Even if high-speed reciprocating motion having a frequency and amplitude in the range D shown in FIG. 6 is applied to a reaction vessel with a flat bottom, stirring will only be possible to a height approximately twice the diameter of the stirring ball 4. However, as shown in FIGS. 7G and 7H, if a step having a height approximately equal to the radius of the stirring ball 4 is provided on the inner periphery of the bottom surface, vertical movement is added to the horizontal movement of the stirring ball 4, and the stirring efficiency is improved. As an alternative to this step, a recess (I, J in FIG. 7), a horizontal step on the bottom surface (L in FIG. 7), or other bottom shape can be considered. In this case as well, the cylindrical container 35 (FIG. 7 G, I,
K) is better than the square prism container 36 (Fig. 7 H1J, L).
Good stirring efficiency. This means that when the collision angle between the stirring ball 4 and the reaction container is projected onto the bottom surface, it is always 9 in the square prism container 36.
0', whereas in the case of the cylindrical container 35, the angle is O°
This is because the range of movement of the stirring ball 4 is widened since it can take various angles from 90' to 90'. In this case as well, if the rectangular prism container 36 is reciprocated diagonally at high speed, the stirring efficiency will be approximately the same as that of the single cylindrical container 35.

第7図M、Nに示すように棒状撹拌子37を用いた場合
、溶液の広い範囲を同時に移動できるので、やはり撹拌
できる。棒状撹拌子37を用いた場合も、上記撹拌ボー
ル4を用いた場合と同様に棒状撹拌子37の移動範囲が
広くなり、撹拌効率が向上するが、測光を考えた場合好
ましくない。
When a rod-shaped stirring bar 37 is used as shown in FIGS. 7M and 7N, the solution can be moved over a wide range at the same time, so that stirring can still be achieved. When the rod-shaped stirrer 37 is used, the movement range of the rod-shaped stirrer 37 is widened and the stirring efficiency is improved as in the case where the stirring ball 4 is used, but this is not preferable in terms of photometry.

直接測光を行う場合には、上記のように底面に段または
くぼみをつけて撹拌ボール4に上下運動を起こさせたり
、棒状撹拌子37を用いたりすると1反応容器2の側面
にある透光面をきずつけてしまい不適当である。さらに
撹拌効率を考えると、円筒容器を用いる場合第6図のA
及びBの周波数、振幅の範囲が撹拌に適する。ところが
、Aの範囲では高速往復動が激しすぎて、溶液が反応容
器から飛散する可能性が生じる。そのため、第6図のB
の範囲が実用−ヒ適するということになる。
In the case of direct photometry, if steps or depressions are made on the bottom surface as described above to cause the stirring ball 4 to move up and down, or if a rod-shaped stirring bar 37 is used, the translucent surface on the side of the reaction vessel 2 can be used. It is inappropriate as it may damage the person. Furthermore, considering the stirring efficiency, when using a cylindrical container,
The frequency and amplitude ranges of and B are suitable for stirring. However, in the range A, the high-speed reciprocating motion is too intense, and there is a possibility that the solution will scatter from the reaction container. Therefore, B in Figure 6
This means that the range is suitable for practical use.

実際に自動分析装置に高速往復動撹拌を適用する場合、
1ステツプより大きい振幅で往復動させると、例えば、
高速往復動させながら直接al11光を行う場合、光束
から反応容器がはずれてしまい測定が困難になったり、
また強磁性体の撹拌子4を含む反応容器2がマグネット
7の配置しであるil+’1光部の隣りに位置する場合
、反応容器2が、マグネット7位置とマグネット7の無
い位置を往復することにより、溶液の泡立ちや飛散が起
きてしまう等の問題が生じる。そのため、振幅は1ステ
ツプより小さい方が望ましい。
When actually applying high-speed reciprocating stirring to an automatic analyzer,
For example, when reciprocating with an amplitude larger than one step,
When performing direct Al11 light while reciprocating at high speed, the reaction vessel may be removed from the light beam, making measurement difficult.
Furthermore, when the reaction vessel 2 containing the ferromagnetic stirrer 4 is located next to the il+'1 light section where the magnet 7 is arranged, the reaction vessel 2 reciprocates between the magnet 7 position and the position without the magnet 7. This causes problems such as bubbling and scattering of the solution. Therefore, it is desirable that the amplitude be smaller than one step.

第6図から明らかな様に周波数を大きくしてゆくとBの
振幅の範囲が狭くなる。これは、反応ディスクの高速往
復動駆動機構3中のギヤのかみ合いのばらつき等により
生じる反応容器高速往復動における振幅のばらつきが1
0分の数ミリあると。
As is clear from FIG. 6, as the frequency increases, the range of the amplitude of B becomes narrower. This is because the amplitude variation in the high-speed reciprocating motion of the reaction vessel caused by variations in gear engagement in the high-speed reciprocating drive mechanism 3 of the reaction disk is 1.
It's a few tenths of a millimeter.

高速往復動の振動条件が適正範囲であるBから不適正範
囲であるAやCやDに移行することを示しており、安定
な撹拌が得られなくなる。
This indicates that the vibration conditions for high-speed reciprocating motion shift from the appropriate range B to inappropriate ranges A, C, and D, and stable stirring cannot be obtained.

これらのことを考慮して、自動分析装置に適用すべき反
応容器の高速往復動条件としては、第6図のEの範囲が
適することがわかった。即ち、振幅が0.8〜3.Oa
u++であり、周波数が10〜40Hzが適正である。
Taking these into consideration, it has been found that the range E in FIG. 6 is suitable for the high-speed reciprocating conditions of the reaction vessel that should be applied to the automatic analyzer. That is, the amplitude is 0.8 to 3. Oa
u++, and a frequency of 10 to 40 Hz is appropriate.

第8図に液深と、その液深の溶液を3秒間で撹拌するの
に必要な、撹拌ボールの被撹拌溶液に対する比重(以下
対溶液比重と称す)の関係を示す。
FIG. 8 shows the relationship between the liquid depth and the specific gravity of the stirring ball relative to the solution to be stirred (hereinafter referred to as the specific gravity of the solution) necessary to stir the solution at that depth for 3 seconds.

縦軸に撹拌ボールの被撹拌溶液に対する比重をとり、横
軸に液深の撹拌ボール直径に対する比をとっである。
The vertical axis shows the specific gravity of the stirring ball relative to the solution to be stirred, and the horizontal axis shows the ratio of the liquid depth to the diameter of the stirring ball.

撹拌時間3秒程度で十分な撹拌を行うのに必要な、撹拌
子材料の被撹拌溶液に対する比重は、被撹拌液量が増加
するにつれて大きくなる。第1図の撹拌ボール4の場合
、液深が撹拌ボール4の直径程度のとき、撹拌ボール4
は1.5程度の対溶液比重が必要であるが、15倍程度
の液深になると、これを3秒間で撹拌するには対溶液比
重4程度の撹拌ボールが必要である。
The specific gravity of the stirrer material relative to the solution to be stirred, which is necessary to perform sufficient stirring with a stirring time of about 3 seconds, increases as the amount of the liquid to be stirred increases. In the case of the stirring ball 4 in Fig. 1, when the liquid depth is about the diameter of the stirring ball 4, the stirring ball 4
requires a specific gravity to the solution of about 1.5, but when the liquid depth becomes about 15 times as deep, a stirring ball with a specific gravity to the solution of about 4 is required to stir this for 3 seconds.

また、撹拌ボール4の対溶液比重を4以上にしても、撹
拌効率はほとんど変わらない。これより、撹拌ボール4
による撹拌に限らず一般に、反応容器2を高速往復動さ
せることによる溶液の撹拌には、1.5以七の対溶液比
重を有する撹拌子4が必要であり、特に4以上の対溶液
比重をイイする撹拌子が適当である。
Further, even if the specific gravity of the stirring ball 4 to the solution is set to 4 or more, the stirring efficiency remains almost the same. From this, stirring ball 4
In general, stirring of a solution by reciprocating the reaction vessel 2 at high speed, not only stirring by A suitable stirrer is suitable.

対溶液比重の上限は、鉄、銅、タングステン等安価な物
質のほとんどが密度20g/cm”以内の値を持つので
、実用上20程度である。従って撹拌子4として実用に
適した対溶液比重の範囲は4〜20であることがわかる
The upper limit of the specific gravity to the solution is practically about 20, since most of the cheap materials such as iron, copper, and tungsten have a density of 20 g/cm" or less. Therefore, the specific gravity to the solution is practically suitable for the stirring bar 4. It can be seen that the range of is 4 to 20.

撹拌ボールの半径と、これを用いて撹拌可能な円筒容器
内半径の関係は1次の式で表オ〕されることがわかった
It has been found that the relationship between the radius of the stirring ball and the inner radius of the cylindrical container that can be stirred using this ball is expressed by the following equation.

D≦4(Az+d)、D≧1.1d(d<10)D≧d
 + 1 (d≧10) ここで、A2 :両振幅(振幅の2倍)  (m、、)
 。
D≦4 (Az+d), D≧1.1d (d<10) D≧d
+ 1 (d≧10) where, A2: both amplitudes (twice the amplitude) (m,,)
.

d:撹拌ボール直径(mm) 、 D :円筒容器内直
径(mm) 自動分析装置に適用される反応容器の大きさは、一般に
30o+n+以下であることを考慮すれば、撹拌効率が
優れている範囲は、両振幅A2が7.5mm以上の場合
が。
d: Stirring ball diameter (mm), D: Cylindrical container inner diameter (mm) Considering that the size of the reaction container applied to automatic analyzers is generally 30o+n+ or less, this is the range in which stirring efficiency is excellent. In this case, both amplitudes A2 are 7.5 mm or more.

1.48d≦D≦4.4d  (A2≧7.5)の範囲
、両振幅A2が7.5mm以下の場合が5(0,909
AZ、 4AZ)、 (2,73Az、 4A2)、 
(0,O)の3点を結合してできる3角形の内部及び(
0,909A2.4A2)、(2,73A2.4A2)
1.48d≦D≦4.4d (A2≧7.5), when both amplitudes A2 are 7.5mm or less
AZ, 4AZ), (2,73AZ, 4A2),
The interior of the triangle formed by joining the three points (0, O) and (
0,909A2.4A2), (2,73A2.4A2)
.

(22,2−0,25A、 30)、(12,5−0,
75A2.30)。
(22,2-0,25A, 30), (12,5-0,
75A2.30).

((0、909Ax、 4 A2)) の4点をこの順序に結合してできる台形の内部というこ
とがわかった。
((0, 909Ax, 4 A2)) It turns out that the interior of a trapezoid is formed by connecting the four points in this order.

第9図に、両振幅A2が2mmの場合の撹拌可能なりと
dの関係をグラフにより示す。縦軸が円筒容器内直径D
 (am)で横軸が撹拌ボール直径d (n+m)であ
る。Aの範囲が撹拌可能な範囲、Bの範囲が特に自動分
析装置に適する範囲を示している。
FIG. 9 is a graph showing the relationship between the ability to stir and d when both amplitudes A2 are 2 mm. The vertical axis is the inner diameter D of the cylindrical container.
(am), and the horizontal axis is the stirring ball diameter d (n+m). The range A indicates a range that can be stirred, and the range B indicates a range particularly suitable for automatic analyzers.

第11図は、第12図に示した反応容器2aを用いて反
応液の透過光特性を測定する場合の実施例の構成を示す
。第1図の実施例と同じ機能を有するものには同し符号
を付しである。第12UAの円筒状の反応容器2aには
互に平行な入射窓24aと出射窓25′aが形成されて
いる。透過光を測定する場合には、第11図に示すよう
に撹拌子4が反応容器4の底に沈むので、光束位置をそ
の撹拌子よりも上方に設定することにより、撹拌子によ
る遮光を防止することができる。この場合、撹拌ボール
4の材質としては、強磁性体に限らず、アルミニウム、
銅等の金属や、ガラス等の非金属、さらに磁石等も使用
できる。
FIG. 11 shows the configuration of an example in which the transmitted light characteristics of a reaction solution are measured using the reaction vessel 2a shown in FIG. 12. Components having the same functions as those in the embodiment shown in FIG. 1 are given the same reference numerals. The cylindrical reaction vessel 2a of the 12th UA is formed with an entrance window 24a and an exit window 25'a that are parallel to each other. When measuring transmitted light, the stirring bar 4 sinks to the bottom of the reaction vessel 4 as shown in Figure 11, so by setting the light flux position above the stirring bar, light blocking by the stirring bar can be prevented. can do. In this case, the material of the stirring ball 4 is not limited to ferromagnetic material, but also aluminum,
Metals such as copper, non-metals such as glass, and magnets can also be used.

第13図には反応容器の種々の形状を示す。円筒容器の
側面に複数の平面透光窓が形成されている。第13図A
のように円筒反応容器2の側面に対向する2個の平面状
光透過窓を有する略円筒容器は光吸収測定に使用でき、
第13図Bの様に2つの光透過窓が互いに90’の角度
を成しているものは、蛍光測定に使用でき、また第13
図Cの様に3つの平面状光透過窓を90°の間隔で配置
したものは、光吸収と蛍光を同時に測定する場合に使用
できる。
FIG. 13 shows various shapes of reaction vessels. A plurality of flat transparent windows are formed on the side surface of the cylindrical container. Figure 13A
A substantially cylindrical container having two planar light transmission windows facing each other on the side surface of the cylindrical reaction container 2 can be used for light absorption measurement, as shown in FIG.
The one in which the two light transmitting windows form an angle of 90' to each other, as shown in Figure 13B, can be used for fluorescence measurements;
A structure in which three planar light transmitting windows are arranged at 90° intervals as shown in Figure C can be used to simultaneously measure light absorption and fluorescence.

実験例1 第1図の実施例に示した自動分析装置を用いてテオフィ
リンを分析した例を説明する。
Experimental Example 1 An example in which theophylline was analyzed using the automatic analyzer shown in the example of FIG. 1 will be described.

試薬は、エームスTDMT″Iテオフィリンキット(マ
イルス三共株式会社製)を使用した。
As a reagent, Ames TDMT''I theophylline kit (manufactured by Miles Sankyo Co., Ltd.) was used.

試料ディスク8にテオフィリン標準液(0゜10.20
.30および40μg/mQ)を試料容器11に入れて
セットした。また、試薬ディスク9上にテオフィリン測
定用試薬(第1試薬:β−ガラクトシダーゼおよび抗テ
オフィリン抗体。
Theophylline standard solution (0°10.20
.. 30 and 40 μg/mQ) were placed in the sample container 11 and set. Also, on the reagent disk 9 are reagents for measuring theophylline (first reagent: β-galactosidase and anti-theophylline antibody).

第2試薬:蛍光標識テオフィリン(β−galacto
syl −umbelliferone −theop
hylline) )をセットした。
Second reagent: Fluorescently labeled theophylline (β-galacto
syl -umbelliferone-theop
hylline)) was set.

試料50μQと第1試薬250μQを混合して36分間
反応させたのち、第2試薬50μQを添加して5分後に
励起波長400 n m、蛍光波長450nmで測定し
た。測定した標準液のテオフィリン濃度を横軸に、測定
した標準液の蛍光強度を縦軸にプロットして作成した標
準曲線を第10図に示す。
After 50 μQ of the sample and 250 μQ of the first reagent were mixed and reacted for 36 minutes, 50 μQ of the second reagent was added, and 5 minutes later, measurement was performed at an excitation wavelength of 400 nm and a fluorescence wavelength of 450 nm. FIG. 10 shows a standard curve prepared by plotting the theophylline concentration of the measured standard solution on the horizontal axis and the fluorescence intensity of the measured standard solution on the vertical axis.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、簡単な構成で反応
容器内の液の攪拌を効率的に行うことができ、また攪拌
子を共用せずに済むのでキャリオーバのない攪拌を行う
ことができる。
As explained above, according to the present invention, it is possible to efficiently stir the liquid in the reaction container with a simple configuration, and since there is no need to share a stirring bar, stirring can be performed without carryover. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図の実施例における要部概略構成図、第2
図は本発明の一実施例を説明するための概略構成平面図
、第3図は蛍光測光用の反応容器の部分切欠断面図、第
4図は第2図の実施例のよ11定動作過程を示すフロー
チャー1〜、第5図は攪拌時間と蛍光強度の関係を示す
グラフ、第6図は高速往復動による振動条件の区分図、
第7図は第6図の条件下での攪拌子の動きを示す図、第
8図は攪拌ボール直径に対する液深と攪拌可能な液量の
関係を示すグラフ、第9図は両振幅が2n+mの場合の
攪拌可能な円筒状反応容器内径と攪拌ボール直径の関係
を示すグラフ、第10図は第2図の実施例装置を用いて
測定したテオフィリン標準曲線を示す図、第11図は本
発明の他の実施例の要部を示す概略構成図、第12図は
第11図の実施例に用いた光吸収直接測光用反応容器の
構成を示す図、第13図は反応容器の種々の形態例を示
す概略図である。 1・・・反応ディスク、2・・反応容器、3・・・駆動
機構、4・・撹拌ボール又は撹拌子。5・・・シール、
8・・・試料ディスク、9・・・試薬ディスク、14・
・・ピペッティング機構、15・・プローブ、18・・
中央処理装置、19・・・光度計、20・・・測光位置
、24・・・入射窓、25・・・出射窓。 Y j 口 第3の 第4I2I 第5″区 凌渉紙時間(枦ヲ 第4図 周   ’l   k   (ng 第8区 昇q口 第to ED 一                1■ O/θ    20   3θ   勿テ矛フィッン羽
尚ン珀 (11,に贋ツノ¥11図 不12−図
Figure 1 is a schematic diagram of the main parts of the embodiment shown in Figure 2;
3 is a partially cutaway sectional view of a reaction vessel for fluorescence photometry, and FIG. 4 is a 11 constant operation process similar to the embodiment of FIG. 2. Flowcharts 1 to 5 are graphs showing the relationship between stirring time and fluorescence intensity, and Figure 6 is a classification diagram of vibration conditions due to high-speed reciprocating motion.
Figure 7 is a diagram showing the movement of the stirrer under the conditions of Figure 6, Figure 8 is a graph showing the relationship between the liquid depth and the amount of liquid that can be stirred with respect to the diameter of the stirring ball, and Figure 9 is a graph showing the relationship between the stirring ball diameter and the amount of liquid that can be stirred. A graph showing the relationship between the inner diameter of the stirrable cylindrical reaction vessel and the diameter of the stirring ball in the case of FIG. 10 is a graph showing the theophylline standard curve measured using the embodiment apparatus of FIG. FIG. 12 is a diagram showing the structure of the reaction vessel for light absorption direct photometry used in the example of FIG. 11, and FIG. 13 is a diagram showing various forms of the reaction vessel. FIG. 2 is a schematic diagram illustrating an example. DESCRIPTION OF SYMBOLS 1... Reaction disk, 2... Reaction container, 3... Drive mechanism, 4... Stirring ball or stirring bar. 5...Seal,
8...sample disk, 9...reagent disk, 14.
... Pipetting mechanism, 15... Probe, 18...
Central processing unit, 19... Photometer, 20... Photometry position, 24... Entrance window, 25... Output window. Y j 口 3rd 4I2I 5th ward rounding paper time (枦wo 4th figure circumference 'l k (ng 8th ward rising q mouth to ED 1 1 ■ O/θ 20 3θ Mukute spear fin feather Naon Koh (11, counterfeit horn ¥11 unillustrated 12-figure)

Claims (1)

【特許請求の範囲】 1、それぞれに強磁性体からなる撹拌子が収容された複
数の反応容器と、これら複数の反応容器を配列した反応
ディスクと、上記反応ディスクに間欠移送運動および短
周期往復動に基づく振動を与える駆動装置と、上記反応
容器に試料および試薬を供給する装置と、上記反応容器
に光を照射してこの反応容器内の反応液を測光する光度
計と、上記光度計の測光位置付近に配置されており、測
光位置に位置づけられた反応容器内の撹拌子が光度計光
路を妨げないように当該撹拌子を反応容器壁面に引き付
ける磁石とを備えた自動分析装置。 2、撹拌ボールの入つた反応容器を反応ディスクに配列
し、反応ディスクを弧状に高速往復動させて振動し、こ
の振動によつて上記反応容器内の撹拌ボールを回動させ
て上記反応容器内の液を撹拌することを特徴とする自動
分析装置。 3、特許請求の範囲第2項記載の装置において、上記振
動は、振幅が0.8〜3.0mmであり、周波数が10
〜40Hzであることを特徴とする自動分析装置。 4、特許請求の範囲第2項記載の装置において、上記反
応容器内の液に対する上記撹拌ボールの比重は4以上で
あることを特徴とする自動分析装置。 5、特許請求の範囲第2項記載の装置において、上記反
応容器の内径は、上記撹拌ボールの直径の2倍以上であ
ることを特徴とする自動分析装置。 6、撹拌子の入つた複数の反応容器を反応ディスク上に
配列し、反応ディスクが停止している間に所定位置で試
料および試薬を該当する反応容器に添加し、上記反応デ
ィスクに短周期の往復運動を連続させて上記反応ディス
クを振動することによつて複数の反応容器内の液を撹拌
し、上記反応ディスクを歩進させることによつて上記試
料および試薬が添加された反応容器を測光位置の方へ進
めるように構成した自動分析装置。 7、内壁側面の少なくとも一部が湾曲しており、一対の
平滑な透光窓を有する反応容器であつて、ほぼ球状の撹
拌子が内部に収容されており、上端に撹拌子逃出防止用
膜を備えた反応容器。
[Claims] 1. A plurality of reaction vessels each containing a stirrer made of a ferromagnetic material, a reaction disk in which the plurality of reaction vessels are arranged, and an intermittent transfer motion and short-period reciprocating motion on the reaction disk. a drive device that applies vibration based on motion; a device that supplies a sample and a reagent to the reaction container; a photometer that irradiates the reaction container with light and measures the reaction liquid in the reaction container; An automatic analyzer equipped with a magnet that is disposed near a photometric position and attracts a stirrer in the reaction vessel positioned at the photometric position to a wall surface of the reaction vessel so that the stirrer does not obstruct the optical path of the photometer. 2. Arrange reaction vessels containing stirring balls on a reaction disk, vibrate the reaction disk by reciprocating it in an arc at high speed, and use this vibration to rotate the stirring ball in the reaction vessel, causing the inside of the reaction vessel to rotate. An automatic analyzer characterized by stirring a liquid. 3. In the device according to claim 2, the vibration has an amplitude of 0.8 to 3.0 mm and a frequency of 10
An automatic analyzer characterized in that the frequency is ~40Hz. 4. The automatic analyzer according to claim 2, wherein the specific gravity of the stirring ball relative to the liquid in the reaction container is 4 or more. 5. The automatic analyzer according to claim 2, wherein the inner diameter of the reaction vessel is at least twice the diameter of the stirring ball. 6. Arrange a plurality of reaction vessels containing stirrers on a reaction disk, add samples and reagents to the corresponding reaction vessels at predetermined positions while the reaction disk is stopped, and apply a short cycle to the reaction disk. By vibrating the reaction disk in a continuous reciprocating motion, the liquids in the plurality of reaction vessels are stirred, and by stepping the reaction disk, the reaction vessels to which the sample and reagent have been added are photometered. An automatic analyzer configured to advance toward a location. 7. A reaction vessel in which at least a part of the inner wall side surface is curved and has a pair of smooth light-transmitting windows, and a substantially spherical stirrer is housed inside, and a stirring bar is provided at the upper end to prevent the stirrer from escaping. Reaction vessel with membrane.
JP63210740A 1987-11-12 1988-08-26 Automatic analyzers and reaction vessels Expired - Fee Related JP2585740B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63210740A JP2585740B2 (en) 1987-11-12 1988-08-26 Automatic analyzers and reaction vessels
DE3838361A DE3838361A1 (en) 1987-11-12 1988-11-11 Analysis device for the agitation of a reaction solution and reaction container for use in the device
US07/793,650 US5272092A (en) 1987-11-12 1991-11-18 Method for analyzing a reaction solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-286168 1987-11-12
JP28616887 1987-11-12
JP63210740A JP2585740B2 (en) 1987-11-12 1988-08-26 Automatic analyzers and reaction vessels

Publications (2)

Publication Number Publication Date
JPH01229974A true JPH01229974A (en) 1989-09-13
JP2585740B2 JP2585740B2 (en) 1997-02-26

Family

ID=26518251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63210740A Expired - Fee Related JP2585740B2 (en) 1987-11-12 1988-08-26 Automatic analyzers and reaction vessels

Country Status (2)

Country Link
JP (1) JP2585740B2 (en)
DE (1) DE3838361A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242772A (en) * 2005-03-03 2006-09-14 Olympus Corp Reaction container
JP2008256716A (en) * 1998-05-01 2008-10-23 Gen-Probe Inc Automated diagnostic analyzer and method
JP2010517005A (en) * 2007-01-23 2010-05-20 ディアグノスチカ・スタゴ Reaction vessel for automatic analyzer
JP2015536466A (en) * 2012-11-27 2015-12-21 エルジー ライフ サイエンシーズ リミテッドLg Life Sciences Ltd. In-vitro automatic diagnostic device including an inclined rotating agitator
JP2019082419A (en) * 2017-10-31 2019-05-30 キヤノンメディカルシステムズ株式会社 Automatic analysis device and magnetic stirring device
WO2020066165A1 (en) * 2018-09-27 2020-04-02 株式会社日立ハイテクノロジーズ Reaction vessel for automated analyzer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051238A (en) * 1987-11-20 1991-09-24 Hitachi, Ltd. Automatic analyzing system
JPH0640100B2 (en) * 1987-11-27 1994-05-25 株式会社日立製作所 Automatic analyzer sample dispensing method
JPH04113060U (en) * 1991-03-20 1992-10-01 オリンパス光学工業株式会社 Reaction vessel for liquid optical measurement
JPH04348258A (en) * 1991-05-27 1992-12-03 Kowa Co Multi-channel optical measuring device
DE4205618A1 (en) * 1992-02-25 1993-11-18 Heinrich Amelung Gmbh Herstell Measuring vessel
DE4206107A1 (en) * 1992-02-27 1993-09-02 Funke Dr N Gerber Gmbh Determining dry mass in fluids esp. milk - using freezing point and turbidity measurements
FR2719905B1 (en) * 1994-05-10 1996-07-26 Anjou Rech Measuring device for controlling the bacteriological quality of water.
JP5069755B2 (en) * 2008-01-15 2012-11-07 協和メデックス株式会社 Reagent container
DE102009046762A1 (en) * 2009-11-17 2011-05-26 Diasys Technologies S.A.R.L. Configuration and operation of an automated analysis device
CH709399A1 (en) * 2014-03-20 2015-09-30 Werner Döbelin High-energy mixer for automatic sample preparation in a serial process sequence.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623844A (en) * 1969-07-17 1971-11-30 American Optical Corp Incubator and process turntable for chemical analysis apparatus for micro samples
US3645506A (en) * 1969-07-30 1972-02-29 Micro Metric Instr Co Sampling supply device having magnetic mixing
DD96784A1 (en) * 1971-05-07 1973-04-12
JPS52143551A (en) * 1976-05-25 1977-11-30 Fuji Zoki Seiyaku Method of diluting and stirring liquid and apparatus therefor
FR2474697B1 (en) * 1980-01-28 1985-07-26 Coulter Electronics MULTI-POSITION FLUID TRANSFER MECHANISM
US4539855A (en) * 1984-05-03 1985-09-10 Eastman Kodak Company Apparatus for transferring liquid out of a capped container, and analyzer utilizing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256716A (en) * 1998-05-01 2008-10-23 Gen-Probe Inc Automated diagnostic analyzer and method
JP2008292496A (en) * 1998-05-01 2008-12-04 Gen-Probe Inc Automated diagnostic analyzer and method
JP4550131B2 (en) * 1998-05-01 2010-09-22 ジェン−プロウブ インコーポレイテッド Automated diagnostic analyzer and method
JP4550130B2 (en) * 1998-05-01 2010-09-22 ジェン−プロウブ インコーポレイテッド Automated diagnostic analyzer and method
JP2006242772A (en) * 2005-03-03 2006-09-14 Olympus Corp Reaction container
JP2010517005A (en) * 2007-01-23 2010-05-20 ディアグノスチカ・スタゴ Reaction vessel for automatic analyzer
JP2015536466A (en) * 2012-11-27 2015-12-21 エルジー ライフ サイエンシーズ リミテッドLg Life Sciences Ltd. In-vitro automatic diagnostic device including an inclined rotating agitator
JP2019082419A (en) * 2017-10-31 2019-05-30 キヤノンメディカルシステムズ株式会社 Automatic analysis device and magnetic stirring device
WO2020066165A1 (en) * 2018-09-27 2020-04-02 株式会社日立ハイテクノロジーズ Reaction vessel for automated analyzer
CN112771382A (en) * 2018-09-27 2021-05-07 株式会社日立高新技术 Reaction vessel for automatic analyzer
JPWO2020066165A1 (en) * 2018-09-27 2021-11-25 株式会社日立ハイテク Reaction vessel for automatic analyzer
JP2022145896A (en) * 2018-09-27 2022-10-04 株式会社日立ハイテク Autoanalyzer
CN112771382B (en) * 2018-09-27 2024-03-22 株式会社日立高新技术 Automatic analysis device
US11965820B2 (en) 2018-09-27 2024-04-23 Hitachi High-Tech Corporation Reaction vessel for automatic analyzer

Also Published As

Publication number Publication date
DE3838361C2 (en) 1991-11-14
DE3838361A1 (en) 1989-05-24
JP2585740B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
US5272092A (en) Method for analyzing a reaction solution
JPH01229974A (en) Automatic analyzer and reaction container
JP3661076B2 (en) Chemical analyzer
EP0329183B1 (en) Analyzing apparatus in which liquid can be stirred and analyzing method thereof
US6284546B1 (en) Method and device for photodetection
US5882594A (en) Device and method for automatic sample pretreatment
CN110997147B (en) Automated analyzer and method for performing chemical, biochemical and/or immunochemical analyses
US20020132353A1 (en) Turntable type liquid reagent stirring apparatus and turntable type liquid reagent stirring/fractionally pouring apparatus using said stirring apparatus
US4960566A (en) Chemical reaction apparatus
US9423347B2 (en) Automatic analyzing apparatus
US6808304B2 (en) Method for mixing liquid samples using a linear oscillation stroke
WO2009136612A1 (en) Automated analyzer
US5254315A (en) Carrier device
US4227815A (en) Magnetic stirrer for sample container of photometric analyzer
US8765474B2 (en) Automatic analyzer and the analyzing method using the same
EP1729137A1 (en) Agitating method, cell, measuring equipment using the cell, and measuring method
JP4045452B2 (en) Chemical analyzer
JPH11271308A (en) Analyzer
JPH10267849A (en) Stirring apparatus
JP2020024198A (en) Method for detecting or quantifying detection object in specimen, method for stirring reaction mixed liquid, method for causing flow of liquid medium, additive, reagent, and automatic analysis device
US8790598B2 (en) Reaction cuvette for automatic analyzer and method of surface treatment for reaction cuvette
JPH01287465A (en) Apparatus and method of analysis in which liquid can be stirred
JP3783551B2 (en) Automatic analyzer
US20200057056A1 (en) Method of detecting or quantifying detection target in specimen, method of agitating reaction mixture, method of causing flow of liquid medium, additive, reagent, and automatic analyzing apparatus
JP4127814B2 (en) Analysis equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees