JPH0122967B2 - - Google Patents

Info

Publication number
JPH0122967B2
JPH0122967B2 JP55146453A JP14645380A JPH0122967B2 JP H0122967 B2 JPH0122967 B2 JP H0122967B2 JP 55146453 A JP55146453 A JP 55146453A JP 14645380 A JP14645380 A JP 14645380A JP H0122967 B2 JPH0122967 B2 JP H0122967B2
Authority
JP
Japan
Prior art keywords
resin
magnet
magnets
powder
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55146453A
Other languages
Japanese (ja)
Other versions
JPS5769711A (en
Inventor
Takeshi Anho
Takahiro Motone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP55146453A priority Critical patent/JPS5769711A/en
Publication of JPS5769711A publication Critical patent/JPS5769711A/en
Publication of JPH0122967B2 publication Critical patent/JPH0122967B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は異方性樹脂磁石の改良に関し、すぐれ
た耐熱性を有する樹脂磁石を提供する。 磁気異方性定数の大きい強磁性体の粉末を、合
成樹脂をバインダーとして成形し、その際に粉末
を磁場の力で一定の方向に整列させて異方性樹脂
磁石をつくることは、すでに行なわれている。 本発明者らも、さきにバリウムフエライト磁
石、ストロンチウムフエライト磁石、希土類コバ
ルト磁石などの粉末を各種の熱可塑性樹脂で結合
した異方性樹脂磁石を開発し、特公昭52−12400、
同52−31079、同54−37679、同55−15853、特開
昭53−117799、同53−135497、および特願昭54−
62259として、すでに開示または提案した。 従来の異方性樹脂磁石の技術開発努力は、主と
して磁気特性、機械的性質および加工性の改善に
向けられていた。従つて、在来の製品は連続耐用
温度が180〜200℃程度であつて、180℃以下の環
境温度でなければ使用できず、温度がそれを超え
ると、変形、ワレ、磁気特性の低下などが避けら
れなかつた。 最近、自動車部品をはじめとして異方性樹脂磁
石の用途が拡大するにつれ、もつと高温での使用
に耐える磁石が要求されるようになつた。 本発明者らは、この要求をみたすべく研究の結
果、少なくとも300℃までの温度で実用できる、
耐熱性のすぐれた異方性樹脂磁石を開発した。 本発明の耐熱性のすぐれた異方性樹脂磁石は、
磁気異方性定数の大きい強磁性体の粉末を、ポリ
フエニレンオキサイド樹脂またはポリフエニレン
オキサイド樹脂およびポリフエニレンサルフアイ
ド樹脂の混合物からなるバインダーと混練し、そ
の中の前記強磁性体の粉末が一定の方向に整列し
た状態で成形してなるものである。 バインダーとして用いるポリフエニレンサルフ
アイドおよびポリフエニレンオキサイドは、どち
らも熱可塑性樹脂であるが、軟化温度が著しく高
い点に着目して採用したところ、少量の使用でも
強磁性体粉末との混合物の成形性は良好であり、
成形品は所期の耐熱性を示すとともに、磁気特性
も高いことが確認された。 強磁性体の粉末は任意のものが使用できるが、
磁気異方性定数の大きいことが好ましいものはも
ちろんであつて、前掲のストロンチウムフエライ
トやバリウムフエライト、希土類コバルト等が好
適である。 ポリフエニレンオキサイド樹脂とポリフエニレ
ンサルフアイド樹脂とは互いに相溶性がよいか
ら、任意の割合に混合して使用できる。前者を単
独で用いるにしても、両者を併用するにしても、
強磁性体の粉末との混合割合は、重量で、粉末:
樹脂=70:30〜94:6の範囲からえらぶとよい。
いうまでもなく、混合物中の強磁性体粉末の割合
が高いほど樹脂磁石の磁気的特性は高くなるが、
それにも限界があり、強磁性体粉末が90%を超え
ると成形性が悪くなり、かえつて磁気特性が低下
する。したがつて、それらのバランスにおいて適
切な混合割合を決定すべきである。実用上の限界
は、場合によつて多少差はあるが、通常は94%で
ある。 混合物の成形は、樹脂の溶融温度が高いという
点を別にすれば、従来の樹脂磁石の成形と同様
に、押出成形、射出成形など常用の手段によつて
実施できる。樹脂が未固化の状態にあるときに磁
場を作用させ、強磁性体の粉末を一定の方向に整
列させたまま固化させることもまた、当業技術に
おいて確立されたところに従えばよい。 本発明の異方性樹脂磁石は、300℃までの温度
での連続使用に耐え、しかもその磁気的特性は、
従来の樹脂磁石と同等またはそれ以上である。 この事実を、以下に実施例をもつて示す。 実施例 1 バリウムフエライト磁石の粉末とポリフエニレ
ンオキサイド樹脂とを種々の割合で混合し、射出
成形により成形品とした。この成形品から試験片
を採取し、耐熱性と磁気特性を試験した。 耐熱性は、ストロンチウムフエライト86部、ポ
リフエニレンオキサイド樹脂14部(重量)からな
る成形品から、長さ80×幅15×厚さ3mmの試験片
をつくり、長手方向の一端を片持で水平に支持し
た状態で炉内におき、1℃/分の速度で昇温し、
軟化により先端が垂れ下がる距離を変形量として
測定することによつてしらべた。温度の変化に伴
い変形量が増大するようすを、第1図のグラフに
示す。比較のため、在来のポリエチレン樹脂磁石
(ポリエチレン88:ストロンチウムフエライト12)
およびポリアミド樹脂(ナイロン86:ストロンチ
ウムフエライト14)についても、同様の測定をし
た。第1図において、曲線は本発明による耐熱
性樹脂磁石の変形量を、曲線およびはポリエ
チレン樹脂磁石およびポリアミド樹脂磁石の変形
量を、それぞれ示す。 一方、磁気特性は、円板状試験片を用いて、残
留磁束密度Br、保磁力 BHCおよび最大エネルギ
ー積(BH)naxを測定した。その結果を、密度と
あわせて第1表に示す。
The present invention relates to improvements in anisotropic resin magnets, and provides resin magnets with excellent heat resistance. It has already been done to create anisotropic resin magnets by molding ferromagnetic powder with a large magnetic anisotropy constant using synthetic resin as a binder, and aligning the powder in a fixed direction using the force of a magnetic field. It is. The present inventors also developed anisotropic resin magnets in which powders such as barium ferrite magnets, strontium ferrite magnets, and rare earth cobalt magnets were bonded with various thermoplastic resins.
52-31079, 54-37679, 55-15853, JP 53-117799, JP 53-135497, and JP 54-
62259, already disclosed or proposed. Traditional technological development efforts for anisotropic resin magnets have been directed primarily toward improving magnetic properties, mechanical properties, and processability. Therefore, conventional products have a continuous withstand temperature of about 180 to 200 degrees Celsius, and cannot be used unless the environmental temperature is below 180 degrees Celsius.If the temperature exceeds that temperature, deformation, cracking, deterioration of magnetic properties, etc. may occur. was unavoidable. Recently, as the use of anisotropic resin magnets has expanded, including in automobile parts, there has been a demand for magnets that can withstand use at high temperatures. As a result of research to meet this requirement, the present inventors have found a system that can be put to practical use at temperatures up to at least 300°C.
We have developed an anisotropic resin magnet with excellent heat resistance. The anisotropic resin magnet with excellent heat resistance of the present invention is
A powder of a ferromagnetic material having a large magnetic anisotropy constant is kneaded with a binder consisting of a polyphenylene oxide resin or a mixture of a polyphenylene oxide resin and a polyphenylene sulfide resin, and the powder of the ferromagnetic material therein is It is formed by molding in a state in which the parts are aligned in a certain direction. Polyphenylene sulfide and polyphenylene oxide used as binders are both thermoplastic resins, but we adopted them because they have a significantly high softening temperature. Even when used in small amounts, the mixture with ferromagnetic powder The moldability is good;
It was confirmed that the molded product showed the expected heat resistance and also had high magnetic properties. Any ferromagnetic powder can be used, but
Of course, those having a large magnetic anisotropy constant are preferable, and the above-mentioned strontium ferrite, barium ferrite, rare earth cobalt, etc. are preferable. Since polyphenylene oxide resin and polyphenylene sulfide resin have good compatibility with each other, they can be used by mixing them in any proportion. Whether you use the former alone or both together,
The mixing ratio of ferromagnetic powder with powder is by weight:
It is preferable to select resin from the range of 70:30 to 94:6.
Needless to say, the higher the proportion of ferromagnetic powder in the mixture, the higher the magnetic properties of the resin magnet.
There is a limit to this, and if the ferromagnetic powder exceeds 90%, the moldability will deteriorate and the magnetic properties will deteriorate. Therefore, an appropriate mixing ratio should be determined with these balances in mind. The practical limit is usually 94%, although it varies somewhat depending on the case. The mixture can be molded by conventional means such as extrusion molding and injection molding, similar to the molding of conventional resin magnets, except that the melting temperature of the resin is high. Applying a magnetic field to the resin while it is in an unsolidified state to solidify the ferromagnetic powder while aligning it in a certain direction may also be done in accordance with what is established in the art. The anisotropic resin magnet of the present invention can withstand continuous use at temperatures up to 300°C, and its magnetic properties are
It is equivalent to or better than conventional resin magnets. This fact will be illustrated below with examples. Example 1 Barium ferrite magnet powder and polyphenylene oxide resin were mixed in various proportions and formed into molded products by injection molding. A test piece was taken from this molded product and tested for heat resistance and magnetic properties. Heat resistance was determined by making a test piece with a length of 80 x width of 15 x thickness of 3 mm from a molded product consisting of 86 parts of strontium ferrite and 14 parts of polyphenylene oxide resin (by weight), and holding one longitudinal end horizontally with a cantilever. Place it in a furnace while supporting it, and raise the temperature at a rate of 1°C/min.
The study was conducted by measuring the amount of deformation, which was the distance that the tip sagged due to softening. The graph in FIG. 1 shows how the amount of deformation increases as the temperature changes. For comparison, a conventional polyethylene resin magnet (polyethylene 88: strontium ferrite 12)
Similar measurements were also made for polyamide resin (nylon 86: strontium ferrite 14). In FIG. 1, the curve shows the amount of deformation of the heat-resistant resin magnet according to the present invention, and the curve and the curve show the amount of deformation of the polyethylene resin magnet and the polyamide resin magnet, respectively. On the other hand, the magnetic properties were determined by measuring the residual magnetic flux density Br, coercive force BH C , and maximum energy product (BH) nax using a disk-shaped test piece. The results are shown in Table 1 together with the density.

【表】【table】

【表】 次に、磁石粉末:樹脂=86:14のものを、300
℃に保つた空気浴中に長時間おいて、磁気特性
Brの変化を追跡した。その結果を第2図のプロ
ツトにより示す。加熱1000時間に及んでも、磁気
特性が劣化しないことが確認された。外観も変り
ない。これに対し、従来の樹脂磁石は、より低温
の200℃の空気浴中に置いた場合でも、結合剤の
樹脂が劣化してワレが発生することが観察され
た。 第1図および第2図のデータから、本発明の異
方性樹脂磁石の耐熱性がすぐれていることが、容
易に理解されるであろう。また第1表の結果は、
本発明の樹脂磁石の磁気特性が、従来品に対して
何らそん色のないレベルにあることを示してい
る。 別に、強磁性体をストロンチウムフエライト磁
石粉末に変えて、上記と同じ試験をした。同様の
傾向を得たが、しいて差異をいえば、バリウムフ
エライト磁石粉末の方がストロンチウムフエライ
ト磁石粉末より、樹脂に対して若干は多く配合で
きる。磁気特性については、両者ほとんど同じで
あつた。 実施例 2 強磁性体の粉末としてストロンチウムフエライ
ト磁石をとり、結合剤としてポリフエニレンオキ
サイド樹脂とポリフエニレンサルフアイド樹脂と
を併用した樹脂磁石について、実施例1と同様に
耐熱性と磁気特性とをしらべた。 加熱変形試験の結果は、ポリフエニレンオキサ
イド樹脂を単独で使用した実施例1の場合と、ほ
とんど同一であつた。 磁気特性および密度の特性値を、第2表に示
す。
[Table] Next, magnet powder: resin = 86:14 was added to 300
The magnetic properties of
Changes in Br were tracked. The results are shown in the plot of FIG. It was confirmed that the magnetic properties did not deteriorate even after heating for 1000 hours. The appearance remains unchanged. In contrast, with conventional resin magnets, even when placed in an air bath at a lower temperature of 200°C, it was observed that the binder resin deteriorated and cracked. From the data in FIGS. 1 and 2, it will be easily understood that the anisotropic resin magnet of the present invention has excellent heat resistance. Also, the results in Table 1 are
This shows that the magnetic properties of the resin magnet of the present invention are at a level comparable to that of conventional products. Separately, the same test as above was conducted by changing the ferromagnetic material to strontium ferrite magnet powder. Similar trends were obtained, but the difference is that barium ferrite magnet powder can be blended in a slightly larger amount with the resin than strontium ferrite magnet powder. Regarding magnetic properties, both were almost the same. Example 2 A resin magnet using a strontium ferrite magnet as a ferromagnetic powder and a polyphenylene oxide resin and a polyphenylene sulfide resin as a binder was tested in the same manner as in Example 1 to improve heat resistance and magnetic properties. I looked into it. The results of the heat deformation test were almost the same as in Example 1 in which polyphenylene oxide resin was used alone. Characteristic values of magnetic properties and density are shown in Table 2.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図面はともに本発明の異方性樹脂磁石の耐熱性
を説明するためのものであつて、第1図は、一実
施例における温度の上昇に伴う熱変形量の増大
を、従来の樹脂磁石のそれと比較して示したグラ
フであり、第2図は、同じ実施例のものを長時間
にわたつて加熱保持したときの磁気特性Brの変
化を追跡したグラフである。
Both drawings are for explaining the heat resistance of the anisotropic resin magnet of the present invention, and FIG. This is a graph shown in comparison, and FIG. 2 is a graph tracking changes in the magnetic property Br when the same example was heated and held for a long time.

Claims (1)

【特許請求の範囲】 1 磁気異方性定数の大きい強磁性体の粉末を、
ポリフエニレンオキサイド樹脂またはポリフエニ
レンオキサイド樹脂およびポリフエニレンサルフ
アイド樹脂の混合物からなるバインダーを用いて
成形してなる異方性樹脂磁石。 2 強磁性体の粉末70〜94重量%と、バインダー
30〜6重量%とからなる特許請求の範囲第1項の
異方性樹脂磁石。
[Claims] 1. Ferromagnetic powder with a large magnetic anisotropy constant,
An anisotropic resin magnet formed using a binder made of polyphenylene oxide resin or a mixture of polyphenylene oxide resin and polyphenylene sulfide resin. 2 70-94% by weight of ferromagnetic powder and binder
30 to 6% by weight of the anisotropic resin magnet according to claim 1.
JP55146453A 1980-10-20 1980-10-20 Anisotropic resin magnet Granted JPS5769711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55146453A JPS5769711A (en) 1980-10-20 1980-10-20 Anisotropic resin magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55146453A JPS5769711A (en) 1980-10-20 1980-10-20 Anisotropic resin magnet

Publications (2)

Publication Number Publication Date
JPS5769711A JPS5769711A (en) 1982-04-28
JPH0122967B2 true JPH0122967B2 (en) 1989-04-28

Family

ID=15407975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55146453A Granted JPS5769711A (en) 1980-10-20 1980-10-20 Anisotropic resin magnet

Country Status (1)

Country Link
JP (1) JPS5769711A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111329A (en) * 1983-11-21 1985-06-17 Fuji Photo Film Co Ltd Magnetic recording medium
JPS6190401A (en) * 1984-10-09 1986-05-08 Shin Etsu Chem Co Ltd Composition of plastic magnet
JPS61279106A (en) * 1985-06-04 1986-12-09 Seiko Epson Corp Resin-bonded type permanent magnet
US5271891A (en) * 1992-07-20 1993-12-21 General Motors Corporation Method of sintering using polyphenylene oxide coated powdered metal
US5568652A (en) * 1994-11-25 1996-10-22 Corning Incorporated Rapid setting compositions and method of making and using same
CN106205942B (en) * 2016-09-22 2018-04-13 电子科技大学 A kind of magnetic composite of formation PCB potting inductance cores and its preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492088A (en) * 1972-04-24 1974-01-09
JPS55127002A (en) * 1979-03-26 1980-10-01 Kanegafuchi Chem Ind Co Ltd Electric wave absorbing material with high heat resistance
JPS5688304A (en) * 1979-12-20 1981-07-17 Sumitomo Bakelite Co Ltd Magnet composition of plastics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492088A (en) * 1972-04-24 1974-01-09
JPS55127002A (en) * 1979-03-26 1980-10-01 Kanegafuchi Chem Ind Co Ltd Electric wave absorbing material with high heat resistance
JPS5688304A (en) * 1979-12-20 1981-07-17 Sumitomo Bakelite Co Ltd Magnet composition of plastics

Also Published As

Publication number Publication date
JPS5769711A (en) 1982-04-28

Similar Documents

Publication Publication Date Title
US4626371A (en) Magnetic composite
JP3986043B2 (en) Powder magnetic core and manufacturing method thereof
US2640813A (en) Reaction product of a mixed ferrite and lead titanate
JPH0122967B2 (en)
JPS62276804A (en) Permanent magnet
US4268430A (en) Ferrite composition having higher initial permeability and process for preparing molding product therefrom
WO2023120184A1 (en) Resin composition for bonded magnets and bonded magnets using same
JP2761277B2 (en) Plastic magnet composition
JPH0573784B2 (en)
JPS5816509A (en) Ferromagnetic substance
JP5329069B2 (en) Composite material for magnetic core
JPH0444304A (en) Plastic magnetic composition
JPH06287445A (en) Polyamide plastic material for magnet
JPS6037604B2 (en) Permanent magnet manufacturing method
JPS63185005A (en) Permanent magnet
JP3208739B2 (en) Manufacturing method of ferrite particle powder material for bonded magnet
JPS58125802A (en) Manufacture of rare-earth powder magnet
JPH02241007A (en) Ferrite magnetic material and its manufacture
JPS6454054A (en) Magnetic material composition
JPH01251702A (en) Plastic magnet and manufacture thereof
JPH01128503A (en) Composite magnet composition and preparation thereof
JP3059296B2 (en) Method for improving magnetic properties of molded resin magnet
JPH0366254B2 (en)
US3384589A (en) Nitrided iron powder core with controlled permeability coefficient
JPS6373604A (en) Resin magnet excellent in heat resistance