JPH01229134A - Vibration isolator - Google Patents

Vibration isolator

Info

Publication number
JPH01229134A
JPH01229134A JP5215888A JP5215888A JPH01229134A JP H01229134 A JPH01229134 A JP H01229134A JP 5215888 A JP5215888 A JP 5215888A JP 5215888 A JP5215888 A JP 5215888A JP H01229134 A JPH01229134 A JP H01229134A
Authority
JP
Japan
Prior art keywords
magnetic field
vibration
magnetic fluid
alternating current
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5215888A
Other languages
Japanese (ja)
Inventor
Takanori Tsutaoka
蔦岡 孝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5215888A priority Critical patent/JPH01229134A/en
Publication of JPH01229134A publication Critical patent/JPH01229134A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To check the extent of transmissibility of vibration at a resonance point by providing a magnetic fluid in an alternating current magnetic field and a static magnetic field each, and securing a large controlling force in utilizing reciprocation by the alternating current magnetic field of the magnetic fluid and a viscous increase by the static magnetic field. CONSTITUTION:A magnetic fluid 3 is poured into a cylinder 2. A damper gear consists of a piston 1, a static magnetic field generating coil 4 and alternating current magnetic field generating coils 5a, 5b. According to vibration conditions in a vibration source 15, the static magnetic field generating coil 4 is energized with current, adding a magnetic field to the magnetic fluid 3, and a coefficient of viscosity is increased and thus damping force is secured. A current in each of generators 9a, 9b is controlled with a controller 11, and this current is energized to these alternating current generating coils 5a, 5b whereby the magnetic fluid 3 is made in motion. Thus, the extent of transmissibility of vibration at a resonance point is checked, and vibro-isolability in a high frequency area is thus enlargeable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は除振台などに使用される振動絶縁装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vibration isolating device used for vibration isolating tables and the like.

〔従来の技術〕[Conventional technology]

従来、振動絶縁装置に用いられるダンパー装置として、
オリフィスを用いて空気やオイルの流量を調整するエア
ダンパーやオイルダンパーが使用されている。この方法
ては、はね−質量系の共振点における大きな振動伝達を
おさえ得るという利点を持つが、ダンパーを併用するこ
とにより振動絶縁領域の伝達率か大きくなるという欠点
かある。
Conventionally, as a damper device used in vibration isolating equipment,
Air dampers and oil dampers are used that use orifices to adjust the flow rate of air and oil. This method has the advantage of suppressing large vibration transmission at the resonance point of the spring-mass system, but has the disadvantage that the use of a damper in combination increases the transmission rate of the vibration isolation region.

一方、近年、磁性流体の粘性率か磁場を加えることによ
り変化することを利用して、減衰力を調整するようにし
たダンパー装置が知られているく特開昭55−1124
40公報)。この方法では、振動絶縁装置に加わる振動
に応じて、粘性率を磁場により変化させ、減衰力を変え
ることがてきる。これを用いて、振動に応じて減衰力を
制御するダンパーか知られている。
On the other hand, in recent years, a damper device has been known that adjusts the damping force by utilizing the fact that the viscosity of the magnetic fluid changes by applying a magnetic field.
40 Publication). In this method, the viscosity is changed by a magnetic field in response to vibrations applied to the vibration isolator, and the damping force can be changed. A damper that uses this to control damping force according to vibration is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上述へた従来の振動絶縁装置ては、粘性パラメーター
を外部から制御できるため、高周波側の振動絶縁性が改
善されるか、磁場による磁性流体の粘性率変化たけては
、減衰力の制御範囲が狭く、十分な振動制御性は得られ
ないという欠点かある。
In the conventional vibration isolating device described above, since the viscosity parameter can be controlled externally, the vibration isolation on the high frequency side is improved, and the control range of the damping force is determined by the change in the viscosity of the magnetic fluid due to the magnetic field. The disadvantage is that the width is narrow and sufficient vibration controllability cannot be obtained.

本発明の目的は、この従来の欠点を除去し、磁性流体を
用いて十分な制御力を得ることにより、共振点ての振動
伝達率をおさえ、高周波領域の振動絶縁性を大きくする
ことができる振動絶縁装置を提供することにある。
The purpose of the present invention is to eliminate this conventional drawback and obtain sufficient control force using magnetic fluid, thereby suppressing the vibration transmissibility at the resonance point and increasing vibration isolation in the high frequency region. An object of the present invention is to provide a vibration isolating device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の振動絶縁装置は、磁性流体を封入した非磁性体
のシリンダーと、該シリンダーに外接し萌記磁性流体に
磁場を加える静磁場発生装置と、振動源の上に位置し且
つ前記静磁場発生装置の上端あるいは下端に設けた交流
磁場発生用コイル及び前記磁性流体内に設りたピストン
から成るダンパー装置と、該タンバー装置に並列に接続
して設けたはね要素と、前記ピストンに連接した被制振
体と、前記振動源及び前記被制振体にそれぞれ設(つら
れた振動センサーと、診振動センザーからの振動信号に
応じて前記静磁場発生装置及び前記交流磁場発生コイル
からの磁場の強さを制御する制御部とを備えている。
The vibration isolating device of the present invention includes a cylinder made of a non-magnetic material that encloses a magnetic fluid, a static magnetic field generator that is circumscribed to the cylinder and applies a magnetic field to the magnetic fluid, and a static magnetic field generator that is located above a vibration source and that generates the static magnetic field. a damper device consisting of an alternating current magnetic field generating coil provided at the upper end or lower end of the generator and a piston provided within the magnetic fluid; a spring element connected in parallel to the tambour device; and a spring element connected to the piston. a vibration damped body, a vibration sensor attached to the vibration source and the vibration damped body, and a magnetic field from the static magnetic field generator and the alternating current magnetic field generating coil in response to vibration signals from the diagnostic vibration sensor. and a control section that controls the strength of the power.

〔作用〕[Effect]

以下、本発明の作用を図面を参照して説明する9第2図
は本発明の詳細な説明するための構成図、第3図は磁性
流体の粘性率の磁場に対する変化を示すグラフである。
Hereinafter, the operation of the present invention will be explained with reference to the drawings. 9. FIG. 2 is a block diagram for explaining the present invention in detail, and FIG. 3 is a graph showing changes in the viscosity of the magnetic fluid with respect to the magnetic field.

磁性流体の粘性率は、磁場を加えることにより増加し、
ある磁場以上では飽和する。それゆえ、磁場に対して粘
性率か増加する領域゛ζは、磁性流体内に置かれた物体
の運動に対して、減衰力を変化させることかてきる。
The viscosity of a magnetic fluid increases by applying a magnetic field,
It saturates above a certain magnetic field. Therefore, the region ζ where the viscosity increases with respect to the magnetic field can change the damping force for the motion of an object placed in the magnetic fluid.

また第2図に示すように、2つのコイル18a。Also, as shown in FIG. 2, two coils 18a.

181)に交流電流を流すことにより発生させた交流磁
場内に磁性流体20を置くと、磁性流体20には2つの
コイル18a、18bの作る磁場勾配■1に比例しな力
 f−μ。MトIか作用し、磁性流体20は矢印Aて示
ず往復運動を行なう。この時、管17内に置かれた物体
である非磁性体19は、磁性流体20の運動に伴なって
運動する。
When the magnetic fluid 20 is placed in an alternating magnetic field generated by passing an alternating current through the coils 181), the magnetic fluid 20 receives a force f-μ which is proportional to the magnetic field gradient 1 created by the two coils 18a and 18b. The magnetic fluid 20 performs a reciprocating motion as shown by the arrow A. At this time, the non-magnetic material 19, which is an object placed in the tube 17, moves in accordance with the movement of the magnetic fluid 20.

以上の2つの作用を利用することにより、磁性流体内に
置かれた物体に、この物体の運動に応じて、磁性流体の
枯+V率変化による減衰力と、磁性流体の運動を物体の
運動を相殺するように制御することによる制御力の2つ
を生しせしめることかできる。
By utilizing the above two effects, an object placed in a magnetic fluid is given a damping force due to the change in the dead + V ratio of the magnetic fluid, and a damping force is applied to the object placed in the magnetic fluid, depending on the movement of the object. It is possible to generate two types of control force by controlling so as to cancel each other out.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す部分断面を含む構成図
である。
FIG. 1 is a configuration diagram including a partial cross section showing one embodiment of the present invention.

本実施例はシリンダー2内に挿入された磁性流体3と、
ピストン1及び静磁場発生用コイル4ならひに交流磁場
発生用コイル5a、5bから成るダンパー装置と、振動
源15と、被制振体7に設けた振動センサー6a、6b
と、これら2つの振動信号の比較部10.12及び静磁
場発生用の電流源14ならひに振動に応じて電流を制御
するコントローラ13、さらに比較部10からの信号に
より磁性流体3を駆動する発振部921.91:lの信
号を制御するコントローラ11から成る制御部と、はね
要素8a、8bとから成る。
In this embodiment, a magnetic fluid 3 inserted into a cylinder 2,
A damper device consisting of a piston 1, a static magnetic field generating coil 4, and alternating current magnetic field generating coils 5a and 5b, a vibration source 15, and vibration sensors 6a and 6b provided on the damped body 7.
Comparing parts 10 and 12 for these two vibration signals, and a current source 14 for generating a static magnetic field, a controller 13 that controls the current according to the vibration, and further driving the magnetic fluid 3 with the signal from the comparing part 10. The oscillator 921.91: consists of a control section consisting of a controller 11 that controls the signal of l, and spring elements 8a, 8b.

被制振体7は、ばね要素Ra、8bとタンバー装置によ
り振動源15と接続される。振動源15の振動信号を振
動センサー6aて計測し、また被制振体7の振動を振動
センサー6bて計測することにより、振動源15の振動
状況に応じて、振動源15と被制振I*7か逆方向に変
位する場合には、これら2つの信号を比較部12を用い
て検知し、コントローラ13及び電流源14を用いて静
磁場発生用コイル4に通電し、磁性流体3に磁場を加え
て粘性率を増加させて減衰力を得る。また振動源]5と
被制振体7が同一方向に変位する場合には、電流源14
の電流を切って磁性流体3の粘性率を下げる。これによ
り、粘性減衰力を用いて振動を制御する。
The damped body 7 is connected to the vibration source 15 by spring elements Ra, 8b and a tambour device. By measuring the vibration signal of the vibration source 15 with the vibration sensor 6a and the vibration of the damped object 7 with the vibration sensor 6b, the vibration signal of the vibration source 15 and the damped object I are measured according to the vibration condition of the vibration source 15. *7 When the displacement is in the opposite direction, these two signals are detected using the comparator 12, and the controller 13 and current source 14 are used to energize the static magnetic field generating coil 4 to apply a magnetic field to the magnetic fluid 3. is added to increase the viscosity and obtain damping force. In addition, when the vibration source] 5 and the damped body 7 are displaced in the same direction, the current source 14
The current is cut off to lower the viscosity of the magnetic fluid 3. This allows vibration to be controlled using viscous damping force.

さらに、振動センサー6a、6bにより得られる振動信
号を比較し、振動源15の振動を相殺するように、シリ
ンダー2内の磁性流体3を、:lン6一 トローラ11を用いて発振部9a、9bの電流を制御し
て、交流磁場発生用コイル5a、5bに通電することに
より運動させる。
Furthermore, the vibration signals obtained by the vibration sensors 6a and 6b are compared, and the magnetic fluid 3 in the cylinder 2 is adjusted to the oscillating unit 9a, The current of the coil 9b is controlled to energize the alternating current magnetic field generating coils 5a and 5b, thereby causing movement.

これら2つの制御を同時に行なうことにより、充分な制
御力を得ることかでき、はね−質量系の共振点での振動
伝達率をほぼ1にし、がっ高周波側で充分な振動絶縁特
性を得ることができる。
By performing these two controls simultaneously, it is possible to obtain sufficient control power, make the vibration transmissibility at the resonance point of the spring-mass system nearly 1, and obtain sufficient vibration isolation characteristics on the high frequency side. be able to.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、交流磁場及び静磁場内に
磁性流体を設け、磁性流体の交流磁場による往復運動と
静磁場による粘性増加を利用して大きな制御力を得るこ
とにより、共振点での伝達力をほぼ1にし、かつ高周波
側の振動絶縁性を充分大きくてきるという効果を有する
As explained above, the present invention provides a magnetic fluid in an alternating magnetic field and a static magnetic field, and obtains a large control force by utilizing the reciprocating motion of the magnetic fluid due to the alternating magnetic field and the increase in viscosity due to the static magnetic field. This has the effect of making the transmission force approximately 1, and sufficiently increasing vibration isolation on the high frequency side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す部分断面を含む構成図
、第2図は本発明の詳細な説明するための構成図、第3
図は磁性流体の粘性率の磁場に対する変化を示すクラ7
である。 1 ピストン、2 シリンダー、3 磁性流体、4・静
磁場発生用コイル、5a、5b  交流磁場発生用コイ
ル、6a、6b  振動センサー、7−被制振体、8a
、3i+・・はね要素、9a、91:+発振部、10.
12 ・比較部、1 ] 、  ] 3−m1ントロー
ラ、14・電流源、コ5 振動源、1G−はね、17・
管、18a、]8b  コ、イル、10非磁性体、20
 磁性流体、21 a 、 2 ]、 b発J辰 器 
、  22   ご7 ン・ 1− ロ − ミン 。
FIG. 1 is a block diagram including a partial cross section showing one embodiment of the present invention, FIG. 2 is a block diagram for explaining the present invention in detail, and FIG.
The figure shows the change in the viscosity of a magnetic fluid with respect to the magnetic field.
It is. 1 Piston, 2 Cylinder, 3 Magnetic fluid, 4 Static magnetic field generation coil, 5a, 5b AC magnetic field generation coil, 6a, 6b Vibration sensor, 7 - Vibration-damped body, 8a
, 3i+...spring element, 9a, 91: +oscillation section, 10.
12・Comparison part, 1], ] 3-m1 controller, 14・Current source, 5 Vibration source, 1G-splash, 17・
Tube, 18a, ] 8b Co, Il, 10 Non-magnetic material, 20
Magnetic fluid, 21a, 2], b
, 22 years ago.

Claims (1)

【特許請求の範囲】[Claims] 磁性流体を封入した非磁性体のシリンダーと、該シリン
ダーに外接し前記磁性流体に磁場を加える静磁場発生装
置と、振動源の上に位置し且つ前記静磁場発生装置の上
端あるいは下端に設けた交流磁場発生用コイル及び前記
磁性流体内に設けたピストンから成るダンパー装置と、
該ダンパー装置に並列に接続して設けたばね要素と、前
記ピストンに連接した被制振体と、前記振動源及び前記
被制振体にそれぞれ設けられた振動センサーと、該振動
センサーからの振動信号に応じて前記静磁場発生装置及
び前記交流磁場発生コイルからの磁場の強さを制御する
制御部とを備えることを特徴とする振動絶縁装置。
a non-magnetic cylinder enclosing a magnetic fluid; a static magnetic field generator circumscribing the cylinder and applying a magnetic field to the magnetic fluid; and a static magnetic field generator located above the vibration source and provided at the upper or lower end of the static magnetic field generator. a damper device comprising an alternating current magnetic field generating coil and a piston provided within the magnetic fluid;
A spring element connected in parallel to the damper device, a damped body connected to the piston, a vibration sensor provided on the vibration source and the damped body, respectively, and a vibration signal from the vibration sensor. A vibration isolating device comprising: a control section that controls the strength of the magnetic field from the static magnetic field generating device and the alternating current magnetic field generating coil in accordance with the above.
JP5215888A 1988-03-04 1988-03-04 Vibration isolator Pending JPH01229134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5215888A JPH01229134A (en) 1988-03-04 1988-03-04 Vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5215888A JPH01229134A (en) 1988-03-04 1988-03-04 Vibration isolator

Publications (1)

Publication Number Publication Date
JPH01229134A true JPH01229134A (en) 1989-09-12

Family

ID=12907040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5215888A Pending JPH01229134A (en) 1988-03-04 1988-03-04 Vibration isolator

Country Status (1)

Country Link
JP (1) JPH01229134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006731A1 (en) * 1997-08-04 1999-02-11 Lord Corporation Magnetorheological fluid devices exhibiting settling stability
US6427813B1 (en) * 1997-08-04 2002-08-06 Lord Corporation Magnetorheological fluid devices exhibiting settling stability
WO2019111335A1 (en) * 2017-12-05 2019-06-13 株式会社 東芝 Vibration control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006731A1 (en) * 1997-08-04 1999-02-11 Lord Corporation Magnetorheological fluid devices exhibiting settling stability
US6427813B1 (en) * 1997-08-04 2002-08-06 Lord Corporation Magnetorheological fluid devices exhibiting settling stability
WO2019111335A1 (en) * 2017-12-05 2019-06-13 株式会社 東芝 Vibration control device
WO2019111950A1 (en) * 2017-12-05 2019-06-13 株式会社 東芝 Vibration damping device
JPWO2019111950A1 (en) * 2017-12-05 2020-11-26 株式会社東芝 Vibration damping device

Similar Documents

Publication Publication Date Title
US5802184A (en) Active noise and vibration control system
US5067684A (en) Vibration-isolating machine mount
JP2706051B2 (en) Vibration damping device
US10472055B2 (en) Resonator, and an aircraft fitted with the resonator
JPS59187124A (en) Vibration damping device
JPH07288995A (en) Measurement device requiring no sensor of electromagnetic actuator displacement device
JPH06675Y2 (en) Controlled vibration control device
JPH01229134A (en) Vibration isolator
JP2000210268A (en) Mri unit operation method and mri unit
CN103541295A (en) Double-wheel road roller vibration hydraulic system, control method and road roller
US5362987A (en) Fluidic generator
Shulman et al. Damping of mechanical-systems oscillations by a non-Newtonian fluid with electric-field dependent parameters
JPH0821482A (en) Vibration insulating device
CN104385874B (en) A kind of ultra-magnetic telescopic vehicle suspension vibration absorber of resonant frequency autotracking
Sapiński Magnetorheological dampers in vibration control of mechanical structures
JPH0674588A (en) Free piston type stirling cooler
JP2000234982A (en) Vibration-testing system
KR100347554B1 (en) Reactive Active Mount with MR Fluids
GB2503036A (en) Variable frequency resonant non-destructive borehole seismic source
JPS6057030A (en) Vibration control equipment
DE10053114C1 (en) Device for damping the vibration of an oscillating unit
JPH0415200A (en) Joint device
SU750176A1 (en) Vibration suppressor
JP2001071900A (en) Interior noise reduction apparatus for railway rolling stock
JP3163862B2 (en) Vibration absorber