JPH01228509A - Medium purifying equipment provided with membrane performance evaluation apparatus, method and equipment for evaluating membrane performance - Google Patents

Medium purifying equipment provided with membrane performance evaluation apparatus, method and equipment for evaluating membrane performance

Info

Publication number
JPH01228509A
JPH01228509A JP63054689A JP5468988A JPH01228509A JP H01228509 A JPH01228509 A JP H01228509A JP 63054689 A JP63054689 A JP 63054689A JP 5468988 A JP5468988 A JP 5468988A JP H01228509 A JPH01228509 A JP H01228509A
Authority
JP
Japan
Prior art keywords
membrane
filter
performance evaluation
condensate
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63054689A
Other languages
Japanese (ja)
Inventor
Tetsuro Adachi
安達 哲朗
Toshio Sawa
俊雄 沢
Takayuki Matsumoto
隆行 松本
Kiichi Shindo
新藤 紀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63054689A priority Critical patent/JPH01228509A/en
Publication of JPH01228509A publication Critical patent/JPH01228509A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/425Electro-ultrafiltration

Abstract

PURPOSE:To detect the electrification state of a porous membrane and to perform selection of the membrane, optimization of the operational conditions of the membrane and replacement period thereof with right judgment by measuring the electric physical quantity obtained between the electrodes provided to the upstream side and the downstream side of the porous membrane. CONSTITUTION:In a hollow yarn membrane filter 9 provided to the condensate treating system, etc., of a nuclear power station, the electrodes 19 are inserted into a hollow yarn membrane 12 and between the hollow yarn membranes 12 from the upper end face of a hollow yarn membrane module 13 so that the electrodes are opposed in the front and rear parts of the hollow yarn membrane 12 in the module 13; the leader lines 17 insulated from liquid are taken out from the electrodes 19 and connected to a measuring apparatus 18. The fluctuated potential or the signal of AC impedance of the front and rear parts of the membrane 12 is measured on-line with the measuring apparatus 18. In such a way, monitoring of electrification of the membrane and forecasting of contamination of the membrane are possible.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、火力、原子力発電所等において、復水及び廃
水等の浄化に使用する高分子膜等のフィルタの膜性能評
価装置を備えた媒体浄化設備並びに膜性能評価装置及び
膜性能評価方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a membrane performance evaluation device for filters such as polymer membranes used for purifying condensate and wastewater in thermal power plants, nuclear power plants, etc. The present invention relates to a medium purification facility, a membrane performance evaluation device, and a membrane performance evaluation method.

〔従来の技術〕[Conventional technology]

最近の原子力発電所における復水浄化設備は、その復水
処理系のなかに高分子膜からなる中空糸膜型フィルタと
、ベツド型脱塩器とを配設するのが主流となりつつある
。このような復水処理設備の一例を第10図に示す。な
お、この種の装置として関連するものには例えば特開昭
60−61089号、特開昭60−179104号又は
特開昭60−206405号公報等が挙げられる。
In recent years, condensate purification equipment in nuclear power plants has become mainstream in which hollow fiber membrane filters made of polymer membranes and bed desalters are installed in the condensate treatment system. An example of such a condensate treatment facility is shown in FIG. Incidentally, related devices of this type include, for example, JP-A-60-61089, JP-A-60-179104, and JP-A-60-206405.

第10図において、原子炉で発生した蒸気2は蒸気ター
ビン3を駆動し、発電機4で発電を行なった後、復水器
5に入り、海水6により冷却され復水7となる。この復
水7中には配管等の腐食による固形状やイオン状の不純
物(鉄の酸化物が主体である。)が微量含まれており、
発電所の安全性、信頼性の一層の向上のためにはこれら
の不純物を除去することが必要である。そこで、復水器
5から復水ポンプ8を介して原子炉1に至る流路中に中
空糸膜フィルタ9及びベツド型脱塩器10を設置し復水
処理系を構成する。
In FIG. 10, steam 2 generated in a nuclear reactor drives a steam turbine 3, generates electricity in a generator 4, enters a condenser 5, is cooled by seawater 6, and becomes condensate 7. This condensate 7 contains small amounts of solid and ionic impurities (mainly iron oxides) due to corrosion of pipes, etc.
In order to further improve the safety and reliability of power plants, it is necessary to remove these impurities. Therefore, a hollow fiber membrane filter 9 and a bed type demineralizer 10 are installed in the flow path from the condenser 5 to the nuclear reactor 1 via the condensate pump 8 to constitute a condensate treatment system.

中空糸膜フィルタ9は、第11図に示すようにポリエチ
レン等の高分子材料からなる外径1mm程度の中空状の
糸膜12を数千水束にして充填した中空糸膜モジュール
13を約100本はど濾過塔14に装着したものである
。中空糸膜12の外表面には内表面に連通した約0.1
μmの微細な孔が無数においており、復水を水入口15
から水出口16の方向へ流して膜外表面で復水中の固形
状の不純物を除去するようになっている。
As shown in FIG. 11, the hollow fiber membrane filter 9 consists of about 100 hollow fiber membrane modules 13 filled with several thousand water bundles of hollow fiber membranes 12 made of a polymeric material such as polyethylene and having an outer diameter of about 1 mm. The book is attached to the filtration tower 14. The outer surface of the hollow fiber membrane 12 has a diameter of about 0.1 mm connected to the inner surface.
There are countless microscopic holes of μm in size, and the condensate is transported to the water inlet 15.
The solid impurities in the condensate are removed on the outer surface of the membrane by flowing from the condensate toward the water outlet 16.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように中空糸膜フィルタは極めて微細な孔で直接固
形物を捕捉するため、除去性能が非常に高い。更に、プ
リコート材を介して固形物を捕捉するプリコートフィル
タのようにプリコート材が廃棄物として生成する問題が
無い。しかしながら、中空糸膜の素材であるポリエチレ
ン等の高分子材料は一般に電気的に絶縁性であるため、
原子力発電所の復水のように極めて導電率の低い(<0
.1μs/])水中で使用すると、中空糸膜と水との相
対運動によって、いわゆる流動帯電することがわかって
いる(参考文献:静電気ハンドブック、静電気学会等)
。膜が帯電すると液中の固形状、イオン状の不純物は静
電的に膜に付着するため、それが蓄積すると膜の孔を閉
塞する等の膜汚染が進行し、膜の透水性が低下し膜洗浄
又は膜交換が必要となってくる。原子力発電所の場合、
約6500 m / hの多量の復水を中空糸膜で浄化
するため、使用する中空糸膜の量は極めて多い。従って
In this way, hollow fiber membrane filters directly capture solid matter through extremely fine pores, and therefore have very high removal performance. Furthermore, there is no problem of the pre-coat material being generated as waste, unlike the case with pre-coat filters that capture solid matter through the pre-coat material. However, since polymeric materials such as polyethylene, which are the materials for hollow fiber membranes, are generally electrically insulating,
Water with extremely low conductivity (<0
.. 1μs/]) When used in water, it is known that a so-called flow charge occurs due to the relative motion between the hollow fiber membrane and water (References: Electrostatic Handbook, Japan Society of Electrostatics, etc.)
. When the membrane is charged, solid and ionic impurities in the liquid electrostatically adhere to the membrane, and when they accumulate, membrane contamination such as clogging of membrane pores progresses, and the water permeability of the membrane decreases. Membrane cleaning or membrane replacement becomes necessary. In the case of nuclear power plants,
Since a large amount of condensate of about 6500 m/h is purified by the hollow fiber membrane, the amount of hollow fiber membrane used is extremely large. Therefore.

汚染した膜を洗浄すると洗浄に使用した薬剤が大量の廃
棄物として生成され、又、新品の膜に交換すると膜が高
価なため、莫大なランニングコストの上昇につながるこ
とが問題となった。そこで。
When a contaminated membrane is cleaned, a large amount of the chemicals used for cleaning is generated as waste, and replacing the membrane with a new membrane is expensive, leading to a huge increase in running costs. Therefore.

流動帯電による膜汚染を極力防止し、膜寿命をできるだ
け延長し、低コストで廃棄物量の生成の少ない中空糸膜
等のフィルタを使用した媒体浄化システムの開発が望ま
れていた。
It has been desired to develop a media purification system using a filter such as a hollow fiber membrane that prevents membrane contamination due to flow charging as much as possible, extends the membrane life as much as possible, is low cost, and generates a small amount of waste.

本発明の目的は、膜の帯電状況を検出する方法及び装置
を提供すると共に、その装置を利用することにより膜の
選定、膜の運用条件の最適化及び膜交換時期の決定等を
正しい判断で行なえる媒体浄化設備を提供することにあ
る。
The purpose of the present invention is to provide a method and device for detecting the charging status of a membrane, and by using the device, it is possible to make correct judgments in membrane selection, optimization of membrane operating conditions, and determination of membrane replacement timing. The purpose of this invention is to provide media purification equipment that can perform the following steps.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明に係る媒体浄化設備は
、膜性能評価装置を備えたものである。
In order to achieve the above object, the medium purification equipment according to the present invention is equipped with a membrane performance evaluation device.

ここで、膜性能評価装置は、媒体中の不純物を除去する
多孔質膜からなるフィルタの膜上流側と膜下流側とに設
置される電極と、この電極と接続されて該電極間の電気
抵抗等の電気的物理量を測定する測定器とから成るもの
である。測定器は電気的物理量に対応して定まるが、電
位計、電流計、交流抵抗計又は静電気モニタ等が挙げら
れる。
Here, the membrane performance evaluation device includes electrodes installed on the membrane upstream side and membrane downstream side of a filter consisting of a porous membrane that removes impurities in the medium, and an electric resistance between the electrodes connected to the electrodes. It consists of a measuring instrument that measures electrical physical quantities such as. The measuring device is determined depending on the electrical physical quantity, and examples include an electrometer, an ammeter, an AC resistance meter, and a static electricity monitor.

また、膜性能評価方法としては、前記フィルタの膜上流
側と膜下流側との間の電気的物理量を測定することによ
り膜の性能を評価する方法がある。
Further, as a method for evaluating membrane performance, there is a method of evaluating membrane performance by measuring electrical physical quantities between the membrane upstream side and the membrane downstream side of the filter.

前記媒体浄化設備のフィルタの種類としては原子力発電
所の復水浄化用の中空糸膜フィルタや気化透化法で用い
られる疎水性多孔質膜よりなるものがある。
Types of filters used in the media purification equipment include hollow fiber membrane filters for condensate purification in nuclear power plants and hydrophobic porous membranes used in vaporization permeation methods.

媒体浄化設備は、フィルタによる濾過流速を調節可能に
するか、又は復水中に炭酸ガスを吹き込んで復水の導電
率を可変にしておくのがよい。
It is preferable that the media purification equipment is capable of adjusting the filtration flow rate through a filter, or that carbon dioxide gas is blown into the condensate to make the conductivity of the condensate variable.

また、媒体浄化設備は、フィルタ本体への復水流路を分
岐させ、その分岐させた流路に前記フィルタと同一仕様
の小型フィルタを設け、この小型フィルタに対して前記
膜性能評価装置を設けるのが望ましい。
In addition, the media purification equipment branches the condensate flow path to the filter body, installs a small filter with the same specifications as the filter in the branched flow path, and installs the membrane performance evaluation device on this small filter. is desirable.

〔作用〕[Effect]

本発明に係る媒体浄化設備は、膜性能評価装置を備えて
いることにより、例えば膜の流動帯電状況を検知するこ
とができ、膜汚染を極力防止するための制御が可能とな
る。特に濾過流速を変えたり、炭酸ガスを吹き込む等に
より、前記制御が容易となる1分岐させた復水流路に同
一仕様の小型フィルタを設けると、プラントを稼動させ
ながら各種評価を行なえる。
By being equipped with a membrane performance evaluation device, the medium purification equipment according to the present invention can detect, for example, the flow charging state of the membrane, and can perform control to prevent membrane contamination as much as possible. In particular, if a small filter of the same specification is installed in the single-branched condensate flow path, which facilitates the control described above by changing the filtration flow rate or blowing carbon dioxide gas, various evaluations can be performed while the plant is operating.

膜性能評価装置は、電極をフィルタの所定位置に設置す
るだけで、その膜に対する電気的物理斌の測定が行なえ
る。
The membrane performance evaluation device can measure the electrical and physical properties of the membrane simply by installing electrodes at predetermined positions on the filter.

〔実施例〕〔Example〕

膜の性能評価について先ず説明する。膜透過前後の液の
電位差及び膜前後の交流インピーダンス周波数応答を測
定することにより容易に評価し得る。第6図は第7図に
示した装置で膜透過前後の液の電位差を測定した結果で
、中空糸膜の上流側、下流側の液中に白金からなる電極
を挿入し、電極間に発生する電位を電圧計で測定した結
果である。
First, membrane performance evaluation will be explained. It can be easily evaluated by measuring the potential difference of the liquid before and after permeating the membrane and the AC impedance frequency response before and after the membrane. Figure 6 shows the results of measuring the potential difference of the liquid before and after membrane permeation using the apparatus shown in Figure 7. Electrodes made of platinum were inserted into the liquid on the upstream and downstream sides of the hollow fiber membrane, and the potential difference between the electrodes was measured. This is the result of measuring the potential with a voltmeter.

ポリエチレンを素材とする中空糸膜に導電率が0.1μ
S/cm以下(理論純水は0.055 μS/])の水
を透過させたところ、透過させる流速に応じて膜前後の
電極間に電位が発生し、流動帯電を検知することができ
た。確認のため膜に導電化処理を施こした流動帯電の起
りにくい膜では電極間にほとんど電位が発生せず、本方
法が流動帯電の検知に有効であることがわかった。
Hollow fiber membrane made of polyethylene has an electrical conductivity of 0.1μ
When water of less than S/cm (theoretical pure water is 0.055 μS/]) was permeated, a potential was generated between the electrodes in front and behind the membrane depending on the flow rate of the permeation, and flow charging could be detected. . For confirmation, we applied a conductive treatment to the membrane, which makes it difficult for fluid charging to occur, and almost no potential was generated between the electrodes, indicating that this method is effective in detecting fluid charging.

次に、第8図に第9図に示した装置で膜前後の交流イン
ピーダンス局波数応答を測定した結果を示す。これは膜
の前後に挿入した白金電極間に一定電圧の交流を印加し
、交流の周波数を変えることにより、交流抵抗(インピ
ーダンス)の周波数依存性を調べるものである。その結
果、帯電し易い膜、即ち表面処理を施こしていない膜の
インピーダンスは、特に低周波数で高くなることがわか
った。導電化処理を施こした膜はインピーダンスが全周
波数域で/J%さく、膜の交流インピーダンス周数数応
答が膜帯型の指標として有効であることがわかった。
Next, FIG. 8 shows the results of measuring the AC impedance station wave number response before and after the membrane using the apparatus shown in FIG. 9. This involves applying a constant voltage of alternating current between platinum electrodes inserted before and after the membrane, and changing the frequency of the alternating current to examine the frequency dependence of alternating current resistance (impedance). As a result, it was found that the impedance of a film that is easily charged, that is, a film that has not been subjected to surface treatment, becomes high especially at low frequencies. It was found that the impedance of the membrane subjected to conductivity treatment was /J% lower in all frequency ranges, and that the AC impedance frequency response of the membrane was effective as an index of membrane band type.

以上の如く、膜の流動帯電を把握する手段として、具体
的には膜前後の液の電位差及び膜前後の交流インピーダ
ンス周波数応答を測定する方法が挙げられる。膜前後の
液の電位差の測定は流動帯電のオンライン計測に利用で
き、又、膜前後の交流インピーダンス周波数応答の測定
は膜の経年劣化を知ることができ、膜汚染の予知、膜寿
命の延長が可能となる。従って、膜汚染の進行に対する
適切な対応や膜交換時期の把握が行なえるため。
As described above, as a means for understanding the flow charging of a membrane, specifically, there is a method of measuring the potential difference between the liquid before and after the membrane and the AC impedance frequency response before and after the membrane. Measuring the potential difference between the liquid before and after the membrane can be used for online measurement of flow charging, and measuring the AC impedance frequency response before and after the membrane can determine the aging of the membrane, predict membrane contamination, and extend the life of the membrane. It becomes possible. Therefore, it is possible to take appropriate measures against the progress of membrane contamination and to know when to replace the membrane.

中空糸膜フィルタを低コストで、かつ、安定した性能で
運用することが可能となる。
It becomes possible to operate a hollow fiber membrane filter at low cost and with stable performance.

以下、第1図乃至第4図に基づいて本発明の一実施例に
ついて詳細に説明する。
Hereinafter, one embodiment of the present invention will be described in detail based on FIGS. 1 to 4.

第4図に示した如く、原子炉1で発生した蒸気2は蒸気
タービン3を駆動して発電機4で発電を行なった後、復
水器5に入り、海水6により冷却され復水7となる。復
水7は復水ポンプ8により復水浄化系を構成する中空糸
膜フィルタ9とベツド型説塩器10に供給され、浄化さ
せた後給水11として原子炉1に給水される。
As shown in FIG. 4, steam 2 generated in the nuclear reactor 1 drives a steam turbine 3 and generates electricity in a generator 4, then enters a condenser 5, is cooled by seawater 6, and becomes condensate 7. Become. The condensate 7 is supplied by a condensate pump 8 to a hollow fiber membrane filter 9 and a bed-type salt clarifier 10 that constitute a condensate purification system, and after purification is supplied to the reactor 1 as feed water 11.

中空糸膜フィルタ9からは電気的物理斌である流動電位
又は交流インピーダンスの信号を送るリード線17が出
ており、電圧、又はインピーダンスを測る測定器18に
つながっている。詳細を第1図乃至第3図で説明する。
A lead wire 17 for transmitting a signal of flowing potential or alternating current impedance, which is an electrical physical force, comes out from the hollow fiber membrane filter 9, and is connected to a measuring device 18 for measuring voltage or impedance. Details will be explained with reference to FIGS. 1 to 3.

中空糸膜フィルタ9の濾過塔14内に装置された中空糸
膜モジユール13内に充填されている中空糸膜12の膜
前後に電極19が対向(第3図)するように、中空糸膜
モジユール13上部端面から中空糸膜12内と中空糸膜
12間に電極19を挿入し、この電極19から液と絶縁
されたリード線17を取り出し、濾過塔14のターミナ
ル部20を経て、更にリード線17で測定器18に結線
するものである。電極19としては例えば電気化学的に
不活性な白金線があげられる。又、電極19を挿入する
場所は1ケ所で良いが、複数ケ所や複数の中空糸膜モジ
ュール13で検出するようにすると、より測定の信頼性
が向上する。
The hollow fiber membrane module 13 is installed in the filtration tower 14 of the hollow fiber membrane filter 9 so that the electrodes 19 face each other before and after the hollow fiber membrane 12 (FIG. 3). 13 Insert the electrode 19 into the hollow fiber membrane 12 and between the hollow fiber membranes 12 from the upper end surface, take out the lead wire 17 insulated from the liquid from the electrode 19, pass through the terminal part 20 of the filtration tower 14, and then insert the lead wire At 17, it is connected to the measuring device 18. The electrode 19 may be, for example, an electrochemically inert platinum wire. Furthermore, although it is sufficient to insert the electrode 19 at one location, the reliability of the measurement is further improved by detecting at multiple locations or using multiple hollow fiber membrane modules 13.

中空糸膜12の内径や中空糸膜モジユール13構造の制
約から、電極19の挿入が困難な場合には、中空糸膜1
2の上流側、下流側に電極19を配置して総括的な流動
電位、インピーダンスを測定することも可能である。
If it is difficult to insert the electrode 19 due to the inner diameter of the hollow fiber membrane 12 or the structure of the hollow fiber membrane module 13, the hollow fiber membrane 1
It is also possible to measure the overall streaming potential and impedance by arranging electrodes 19 on the upstream and downstream sides of 2.

このように中空糸膜前後の流動電位、インピーダンスの
信号をオンラインで得ることができるので、膜の帯電の
モニタや膜汚染の予測が可能となった。即ち、流動電位
が高いと中空糸膜が帯電していることを示し、液中の不
純物が静電的に付着し、膜汚染が進行する可能性のある
ことがわかる。
In this way, the flow potential and impedance signals before and after the hollow fiber membrane can be obtained online, making it possible to monitor membrane charging and predict membrane contamination. That is, when the flowing potential is high, it indicates that the hollow fiber membrane is electrically charged, and it is understood that impurities in the liquid may be electrostatically attached and membrane contamination may proceed.

又、膜インピーダンスが経時的に増大する場合、将来、
膜の帯電が増大する可能性のあることを示唆しているた
め、中空糸膜フィルタの運用に十分注意を払い、対策を
講じる必要があるとの警告となり得る。尚、前記モニタ
として、測定する電気的物理量により定まるが、電位計
、交流抵抗計のほか電流計又は静電気モニタも測定器と
して用いることができる。
Also, if the membrane impedance increases over time, in the future,
This suggests that the electrostatic charge on the membrane may increase, so it can serve as a warning that it is necessary to pay close attention to the operation of the hollow fiber membrane filter and take countermeasures. The monitor may be determined by the electrical physical quantity to be measured, but in addition to an electrometer or an AC resistance meter, an ammeter or a static electricity monitor may also be used as the measuring instrument.

中空糸膜前後の流動電位、インピーダンスを検出し、そ
の信号により中空糸膜フィルタの運用を自動制御し、最
適化する手段として以下のものが挙げられる。流動電位
が高く膜帯型が大きい時、膜汚染の進行を防止するため
、中空糸膜フィルタで処理する水量を一時的に減少させ
て対応する。
Examples of means for detecting the flowing potential and impedance before and after the hollow fiber membrane and automatically controlling and optimizing the operation of the hollow fiber membrane filter using the signals are as follows. When the flow potential is high and the membrane band type is large, the amount of water processed by the hollow fiber membrane filter is temporarily reduced to prevent further membrane contamination.

すなわち、濾過流速を調節可能にする。具体的には、中
空糸膜(導電化、絶縁性膜)において、流動電位が0,
5V (濾過流速0.3m/h、水温20℃、導電率0
.1μS / as、電位計内部抵抗1013MΩ)以
下になるように制御するのが望ましい。又、炭酸ガスを
液中に吹き込んで、液の導電率を上げる操作を信号と連
動させ、膜の帯電を防止する。
That is, the filtration flow rate can be adjusted. Specifically, in a hollow fiber membrane (conductive, insulating membrane), the streaming potential is 0,
5V (filtration flow rate 0.3m/h, water temperature 20℃, conductivity 0
.. It is desirable to control the voltage to be 1 μS/as or less (electrometer internal resistance 1013 MΩ) or less. In addition, the operation of blowing carbon dioxide gas into the liquid to increase the conductivity of the liquid is linked with a signal to prevent the membrane from being charged.

次に第5図により他の実施例について説明する中空糸膜
フイルタ9本体とは別に同一の中空糸膜仕様からなる小
型の中空糸膜モジュール21を設置し、並列に水を流し
、小型の中空糸膜モジュール21に取り付けた電極によ
り、流動電位、インピーダンスの信号を得るものである
Next, a small hollow fiber membrane module 21 having the same hollow fiber membrane specifications is installed separately from the hollow fiber membrane filter 9 main body, another embodiment of which will be explained with reference to FIG. Flow potential and impedance signals are obtained by electrodes attached to the thread membrane module 21.

本実施例は中空糸膜の種類を種々変えて、流動電位、イ
ンピーダンスの測定値を比較できるので、最適な膜の選
定が容易に行なえる効果がある。
In this example, the measurement values of flowing potential and impedance can be compared by using various types of hollow fiber membranes, so that the optimum membrane can be easily selected.

又、十分に模擬された復水が得られる前提のもとでは中
空糸膜の製造設備や研究設備において、中空糸膜の性能
評価手段として小型モジュールを使用した流動電位、イ
ンピーダンス測定法が利用できる。
Furthermore, on the premise that sufficiently simulated condensate can be obtained, streaming potential and impedance measurement methods using small modules can be used as a means of evaluating the performance of hollow fiber membranes in hollow fiber membrane manufacturing and research facilities. .

上記実施例では原子力発電所の復水浄化用の中空糸膜フ
ィルタを対象として説明したが、以下の如く、他の膜に
対しても本発明を適用し得る。疎水性の多孔質膜を利用
する気化透化法において、膜汚染に伴う膜の親水化は気
化透化の性能を太きく低下させる。一般に、膜が親水化
されると膜内に液が侵入するため、膜前後のインピーダ
ンスが減少する。従って、疎水性膜において、膜前後の
インピーダンスをモニタすることにより、膜汚染(親水
化)の進行をオンラインで把握できる。
Although the above embodiment has been described with reference to a hollow fiber membrane filter for purifying condensate in a nuclear power plant, the present invention can also be applied to other membranes as described below. In vaporization permeation methods that utilize hydrophobic porous membranes, hydrophilicity of the membrane due to membrane contamination greatly reduces the performance of vaporization and permeation. Generally, when a membrane is made hydrophilic, liquid enters the membrane and the impedance across the membrane decreases. Therefore, in a hydrophobic membrane, by monitoring the impedance before and after the membrane, the progress of membrane contamination (hydrophilicization) can be grasped online.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、膜性能を評価することによって膜の汚
染を極力防止することができ、高価な膜の寿命延長が図
れるため、低コストで安定した運転が可能となる。
According to the present invention, by evaluating the membrane performance, membrane contamination can be prevented as much as possible, and the life of an expensive membrane can be extended, thereby enabling stable operation at low cost.

また、本発明の膜性能評価装置又は方法は、その電極を
媒体浄化設備の膜前後に設置するだけでよいため、取り
付けが簡単であり、ひいては評価が容易となる。
Furthermore, the membrane performance evaluation device or method of the present invention requires only that the electrodes be installed before and after the membrane of the medium purification equipment, so installation is simple and evaluation is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る設備の一実施例の一部断面図、第
2図は第1図の■矢視図、第3図は第2図の■−■線断
面図、第4図は本発明に係る設備を備えた原子力発電プ
ラントの概略構成図、第5図は本発明の他の実施例の概
略構成図、第6図は中空糸膜前後の流動電位の測定結果
を説明する図。 第7図は第6図の測定をする装置の構成図、第8図は中
空糸膜前後の交流インピーダンス周波数応答の測定結果
を説明する図、第9図は第8図の測定をする装置の構成
図であり、第10図は従来の原子力発電所の復水浄化設
備の一例を示す概略構成図、第11図は同従来例の中空
糸膜フィルタの構造図である。 1・・原子炉、2・・・蒸気、3・・・蒸気タービン、
4・・・発電機、5・・・復水器、7・・・復水、9・
・中空糸膜フィルタ、10・・・ベツド型説塩器、1」
−・・・給水、12・・・中空糸膜、13・・中空糸膜
モジュール、】、4・・・濾過塔、15・・水入口、1
−6・・・水出口、17・・・リード線、】8・・・測
定器、19・・・電極、20・・・ターミナル部、21
・・・小型中空糸膜モジュール。
Fig. 1 is a partial sectional view of an embodiment of the equipment according to the present invention, Fig. 2 is a view taken in the direction of the ■ arrow in Fig. 1, Fig. 3 is a sectional view taken along the line -■ in Fig. 2, and Fig. 4 5 is a schematic configuration diagram of a nuclear power plant equipped with equipment according to the present invention, FIG. 5 is a schematic configuration diagram of another embodiment of the present invention, and FIG. 6 explains the measurement results of the flowing potential before and after the hollow fiber membrane. figure. Figure 7 is a diagram showing the configuration of the device that performs the measurements shown in Figure 6, Figure 8 is a diagram explaining the measurement results of the AC impedance frequency response before and after the hollow fiber membrane, and Figure 9 is a diagram of the equipment that performs the measurements shown in Figure 8. FIG. 10 is a schematic configuration diagram showing an example of a conventional condensate purification equipment for a nuclear power plant, and FIG. 11 is a structural diagram of a hollow fiber membrane filter of the conventional example. 1...nuclear reactor, 2...steam, 3...steam turbine,
4... Generator, 5... Condenser, 7... Condensate, 9.
・Hollow fiber membrane filter, 10...Bed type salt filter, 1"
-... Water supply, 12... Hollow fiber membrane, 13... Hollow fiber membrane module, ], 4... Filtration tower, 15... Water inlet, 1
-6... Water outlet, 17... Lead wire, ]8... Measuring device, 19... Electrode, 20... Terminal section, 21
...Small hollow fiber membrane module.

Claims (1)

【特許請求の範囲】 1、媒体中の不純物を除去する多孔質膜からなるフィル
タの膜上流側と膜下流側とに設置される電極と、この電
極と接続されて該電極間の電気的物理量を測定する測定
器とから成る膜性能評価装置を備えたことを特徴とする
媒体浄化設備。 2、フィルタは原子力発電所の復水浄化用の中空糸膜フ
ィルタである請求項1記載の媒体浄化設備。 3、フィルタは気化透化法で用いられる疎水性の多孔質
膜よりなるものである請求項1記載の媒体浄化設備。 4、膜性能に対応する電気的物理量が、その膜の許容値
以下となるよう濾過流速を調節可能にした請求項1記載
の媒体浄化設備。 5、膜性能に対応する電気的物理量が、その膜の許容値
以下となるよう復水中に炭酸ガスを吹き込んで、復水の
導電率を可変にした請求項2記載の媒体浄化設備。 6、フィルタ本体への復水流路を分岐させ、その分岐さ
せた流路に前記フィルタと同一仕様の小型フィルタを設
け、この小型フィルタに対して請求項1記載の膜性能評
価装置を設けた請求項2記載の媒体浄化設備。 7、請求項1記載の膜性能評価装置。 8、電気的物理量は電圧又は電気抵抗である請求項7記
載の膜性能評価装置。 9、測定器は電位計、電流計、交流抵抗計又は静電気モ
ニタである請求項7記載の膜性能評価装置。 10、媒体中の不純物を除去する条項質膜からなるフィ
ルタの膜上流側と膜下流側との間の電気的物理量を測定
することにより膜の性能を評価することを特徴とする膜
性能評価方法。
[Claims] 1. Electrodes installed on the membrane upstream side and the membrane downstream side of a filter consisting of a porous membrane that removes impurities in a medium, and an electrical physical quantity connected to this electrode and between the electrodes. Media purification equipment characterized by being equipped with a membrane performance evaluation device consisting of a measuring device for measuring . 2. The media purification equipment according to claim 1, wherein the filter is a hollow fiber membrane filter for purifying condensate in a nuclear power plant. 3. The medium purification equipment according to claim 1, wherein the filter is made of a hydrophobic porous membrane used in a vaporization permeation method. 4. The medium purification equipment according to claim 1, wherein the filtration flow rate can be adjusted so that the electrical physical quantity corresponding to the membrane performance is equal to or less than the permissible value of the membrane. 5. The medium purification equipment according to claim 2, wherein the conductivity of the condensate is made variable by blowing carbon dioxide gas into the condensate so that the electrical physical quantity corresponding to the membrane performance is equal to or less than the allowable value of the membrane. 6. A claim in which the condensate flow path to the filter body is branched, a small filter having the same specifications as the filter is provided in the branched flow path, and the membrane performance evaluation device according to claim 1 is provided for this small filter. The medium purification equipment according to item 2. 7. The membrane performance evaluation device according to claim 1. 8. The membrane performance evaluation device according to claim 7, wherein the electrical physical quantity is voltage or electrical resistance. 9. The membrane performance evaluation device according to claim 7, wherein the measuring device is an electrometer, an ammeter, an AC resistance meter, or a static electricity monitor. 10. A membrane performance evaluation method characterized by evaluating the performance of a membrane by measuring electrical physical quantities between the membrane upstream side and the membrane downstream side of a filter consisting of a membrane that removes impurities in a medium. .
JP63054689A 1988-03-08 1988-03-08 Medium purifying equipment provided with membrane performance evaluation apparatus, method and equipment for evaluating membrane performance Pending JPH01228509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63054689A JPH01228509A (en) 1988-03-08 1988-03-08 Medium purifying equipment provided with membrane performance evaluation apparatus, method and equipment for evaluating membrane performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63054689A JPH01228509A (en) 1988-03-08 1988-03-08 Medium purifying equipment provided with membrane performance evaluation apparatus, method and equipment for evaluating membrane performance

Publications (1)

Publication Number Publication Date
JPH01228509A true JPH01228509A (en) 1989-09-12

Family

ID=12977764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63054689A Pending JPH01228509A (en) 1988-03-08 1988-03-08 Medium purifying equipment provided with membrane performance evaluation apparatus, method and equipment for evaluating membrane performance

Country Status (1)

Country Link
JP (1) JPH01228509A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132119B1 (en) 1997-04-08 2006-11-07 Pall Corporation Method for producing beer
WO2016171628A1 (en) * 2015-04-24 2016-10-27 Nanyang Technological University Method and apparatus for assessing a state of fouling of a reverse osmosis system
JP2016221449A (en) * 2015-05-29 2016-12-28 株式会社日立製作所 Water treatment system
JP2017047376A (en) * 2015-09-02 2017-03-09 株式会社川本製作所 Test device
JP2021016811A (en) * 2019-07-18 2021-02-15 国立大学法人信州大学 Method and device for evaluation of water permeability of filter membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132119B1 (en) 1997-04-08 2006-11-07 Pall Corporation Method for producing beer
WO2016171628A1 (en) * 2015-04-24 2016-10-27 Nanyang Technological University Method and apparatus for assessing a state of fouling of a reverse osmosis system
US11192069B2 (en) 2015-04-24 2021-12-07 Nanyang Technological University Method and apparatus for assessing a state of fouling of a reverse osmosis system
JP2016221449A (en) * 2015-05-29 2016-12-28 株式会社日立製作所 Water treatment system
JP2017047376A (en) * 2015-09-02 2017-03-09 株式会社川本製作所 Test device
JP2021016811A (en) * 2019-07-18 2021-02-15 国立大学法人信州大学 Method and device for evaluation of water permeability of filter membrane

Similar Documents

Publication Publication Date Title
EP0814887B1 (en) Filtration monitoring and control system
JP2001525545A (en) Method and apparatus for continuously monitoring water flow to detect and quantify ions
US6727099B2 (en) Equipment and method of local streaming potential measurement for monitoring the process of membrane fouling in hollow-fiber membrane filtrations
CN107894342B (en) Performance experiment system of electric dust collector
JPH01228509A (en) Medium purifying equipment provided with membrane performance evaluation apparatus, method and equipment for evaluating membrane performance
CN116727105A (en) Electrostatic particle filtration
Sasaki et al. Generation of static electricity during oil filtration
JP6014429B2 (en) Particle sensor
KR101501749B1 (en) Water disposal automatic control system having a function of smart equipment diagnosis
EP1322943A1 (en) A process and device for continuous ionic monitoring of aqueous solutions
CN211179618U (en) Measuring system for electrical conductivity of degassed hydrogen
CN110954365A (en) Automatic backwashing system of steam sampling filter of thermal power plant
CN208791382U (en) A kind of water purifier
JP3209489B2 (en) End point detection method for ion exchange type pure water production equipment
JP2000193641A (en) Testing device for insulating oil, test method of insulating oil, and maintenance control method of transformer
JP7064394B2 (en) Measurement system and measurement method of conductivity of decationized water
CN109442030B (en) Online electrostatic oil filtering device and method for wind driven generator gear box
SE467121B (en) SETTING AND DEVICE FOR MONITORING AND RECONDITIONING OF THE LIQUID FLOW IN HEATING AND COOLING SYSTEM
CN211497014U (en) Reverse osmosis membrane device
CN206281835U (en) The on-line analysis of generator hydrogen quality and sampling system
CN212833221U (en) Nuclear power plant steam generator sewage purification system
CN110563164B (en) Winding type electrochemical reactor, descaling method and heat exchanger
JPS6161864B2 (en)
KR860000441Y1 (en) Collecting device of chlorolella
CN219722178U (en) Operation monitoring system for pre-filter for condensate polishing