JPH01228465A - Novel beta-agarase and production thereof - Google Patents

Novel beta-agarase and production thereof

Info

Publication number
JPH01228465A
JPH01228465A JP5270088A JP5270088A JPH01228465A JP H01228465 A JPH01228465 A JP H01228465A JP 5270088 A JP5270088 A JP 5270088A JP 5270088 A JP5270088 A JP 5270088A JP H01228465 A JPH01228465 A JP H01228465A
Authority
JP
Japan
Prior art keywords
agarase
agarose
beta
agar
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5270088A
Other languages
Japanese (ja)
Other versions
JPH0797987B2 (en
Inventor
Toshiaki Kono
敏明 河野
Goichi Yamaguchi
山口 吾一
Miki Yamaguchi
美樹 山口
Hiroyuki Kitagawa
広進 北川
Tetsuo Hiraga
哲男 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Original Assignee
Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japanese Res & Dev Assoc Bio Reactor Syst Food Ind filed Critical Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Priority to JP5270088A priority Critical patent/JPH0797987B2/en
Publication of JPH01228465A publication Critical patent/JPH01228465A/en
Publication of JPH0797987B2 publication Critical patent/JPH0797987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To obtain thermostable beta-agarase capable of readily producing agar oligosaccharide industrially by cultivating a bacterium belonging to the genus Pseudomonas, having specific physical and chemical properties, capable of producing beta-agarase. CONSTITUTION:A bacterium belonging to the genus Pseudomonas, having the following physical and chemical properties, capable of producing beta-agarase is cultivated and the beta-agarase is collected from the culture mixture. (a) Action: hydrolyzing beta-1, 4 bond of agarose, rapidly reducing viscosity of agarose substance and forming mainly neoagarotetraose and neoagarohexaose. (b) Substrate specificity: acting on galactan polysaccharide such as agarose having beta-1,4 galctoside bond and on oligosaccahrides of >=neoagarooctaose, slightly acting on neoagarobexaose and not acting on lactose. Having other given physical and chemical properties of (c) optimum pH and pH stability, (d) optimum temperature and thermostability, (e) condition of deactivation, (f) molecular weight, (g) isoelectric point and (h) influence of metallic salt.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微生物由来の新規なβ−アガラーゼ及びその
製造法に関する。さらに詳しくは、シュードモナス(P
seudomonas)属に属する細菌を培養して得ら
れる新規なβ−アガラーゼ及びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel β-agarase derived from a microorganism and a method for producing the same. For more information, see Pseudomonas (P.
The present invention relates to a novel β-agarase obtained by culturing bacteria belonging to the genus Seudomonas and a method for producing the same.

〔従来の技術〕[Conventional technology]

アガロースは、テングサ、オゴノリなどのン毎藻(紅藻
)から得られる多vM類で、古くから食品用に供されて
きている寒天の主成分である。その構造は第1図に示し
たように、D−ガラクトースと3.6−アンヒドロ−し
−ガラクトースが交互にβ−1,4結合、α−1,3結
合した多糖である。
Agarose is a multi-vM compound obtained from red algae such as Amanita spp. As shown in FIG. 1, its structure is a polysaccharide in which D-galactose and 3,6-anhydro-galactose are alternately bonded by β-1,4 bonds and α-1,3 bonds.

また、寒天にはアガロースに硫酸やピルビン酸が部分的
にエステル結合したアガロペクチンも含まれている。
Agar also contains agaropectin, which is a partial ester bond of sulfuric acid or pyruvic acid to agarose.

アガロースを部分加水分解すると、オリゴ糖が得られる
が、加水分解方法によって異なったオリゴ糖が生成する
ことが知られている。今までの知見をまとめると、アガ
ロースの加水分解様式は第1図のようになる。すなわち
、希酸で弱く加水分解すると、α−1,3結合が比較的
選択的に分解されアガロビオース(酸(1)、酸(2)
、酸(3)の各位置で加水分解された2Iりをはじめと
するアガロオリゴ糖が得られる(C,Araki、 P
roceedings of 4thInt、 Con
gress of Biochemistry 1+ 
15〜30 (1959)Pergaa+on Pre
ss Ltd、)。
Oligosaccharides are obtained when agarose is partially hydrolyzed, but it is known that different oligosaccharides are produced depending on the hydrolysis method. Summarizing the knowledge so far, the hydrolysis pattern of agarose is shown in Figure 1. That is, when weakly hydrolyzed with dilute acid, α-1,3 bonds are relatively selectively decomposed and agarobiose (acid (1), acid (2)
, agarooligosaccharides including 2I-hydrolyzed at each position of acid (3) are obtained (C, Araki, P
roceedings of 4thInt, Con
Gress of Biochemistry 1+
15-30 (1959) Pergaa + on Pre
ss Ltd,).

また別にα−1,3結合を分解して、アガロテトラオー
ス(α−アガラーゼ(1)、 (2)を分解)を主とし
て生成するα−アガラーゼも知られている(K、S、 
Young ら、 Carbohydrate Re5
earch 66207〜212  (1978)) 
Additionally, α-agarase is also known (K, S,
Young et al., Carbohydrate Re5
66207-212 (1978))
.

一方、β−1,4結合は酵素β−アガラーゼによっての
み選択的に分解されて主としてネオアガロテトラオース
(β−アガラーゼ(1)と(2))、ネオアガロヘキサ
オース(β−アガラーゼ(1)と(3))を生ずる(L
、 M、 Morrice ら、 European 
Journalof Biochemistry 13
7.149−154 (1983)など)。
On the other hand, the β-1,4 bond is selectively decomposed only by the enzyme β-agarase, mainly neoagarotetraose (β-agarase (1) and (2)), neoagarohexaose (β-agarase ( 1) and (3)) (L
, M. Morris et al., European
Journal of Biochemistry 13
7.149-154 (1983), etc.).

一般にβ−アガラーゼはネオアガロテトラオース以下の
オリゴ糖は加水分解できず、これらのオリゴ糖は別の酵
素で分解されることが知られている(tl、J、 va
n der Meulenら、Antonie van
 Leeuwenhoek婬、81〜94 (1976
)など)。
Generally, β-agarase cannot hydrolyze oligosaccharides smaller than neoagarotetraose, and it is known that these oligosaccharides are degraded by other enzymes (TL, J, VA).
der Meulen et al., Antonie van
Leeuwenhoek 婬, 81-94 (1976
)Such).

寒天の主要な用途は食品用であり、ゲル化剤。The main use of agar is in food and as a gelling agent.

増粘剤として幅広く使われ、他にはゲル形成能を利用し
た試薬、培地原料、クロマトグラフ用担体。
It is widely used as a thickener, and is also used as a reagent, medium raw material, and chromatography carrier that utilizes its gel-forming ability.

電気泳動用担体、さらには歯科印象剤、芳香・消臭剤な
どの用途がある。一方、酵素分解などによって得られる
オリゴ糖類の用途は未開発であったが、最近澱粉老化防
止作用、静菌作用、難消化性が明らかになり、(特開昭
62−210955゜同62−210965.同62−
210974)、新たな用途開発が期待されている。
It can be used as a carrier for electrophoresis, as a dental impression agent, and as a fragrance/deodorizer. On the other hand, the uses of oligosaccharides obtained by enzymatic decomposition had not yet been developed, but recently their anti-starch, bacteriostatic, and indigestible properties have been revealed (JP-A-62-210955, JP-A-62-210965). .62-
210974), and the development of new applications is expected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

寒天のオリゴ糖を効率良く製造するためには、酵素によ
る部分加水分解法は酸による方法よりもオリゴ糖の収率
、脱色脱塩などの精製の容易性。
In order to efficiently produce oligosaccharides in agar, enzymatic partial hydrolysis methods have higher yields of oligosaccharides and easier purification through decolorization and desalting than acid methods.

作業性、製造装置の簡易性等の点で明らかに優れている
。しかし、今までに知られている寒天分解酵素アガラー
ゼはその殆んどが、海水、海藻、海辺の土壌など海由来
の微生物から調製されたものである。一般に海洋性微生
物から得られる酵素の耐熱性は低いことが知られており
、アガラーゼもまたその至適温度が高いもので40〜4
5°Cで、多(は40°C以下である。一方、寒天は高
温(80゛C以上)で水に溶解するが、寒天溶液の温度
を降下させると50〜40°Cでゲル化してしまい、酵
素による分解を非常に受けにくくなる。寒天をゲル化さ
せないためには基質である寒天の濃度を1%以下にしな
ければならず、オリゴ糖の生産性を著しく低めてしまう
という課題がある。従って、これらの課題を解決するた
めに耐熱性の酵素が必要となってきている。
It is clearly superior in terms of workability, simplicity of manufacturing equipment, etc. However, most of the agarases known to date have been prepared from microorganisms derived from the sea, such as seawater, seaweed, and seaside soil. It is generally known that enzymes obtained from marine microorganisms have low heat resistance, and agarase also has a high optimum temperature of 40-40°C.
On the other hand, agar dissolves in water at high temperatures (above 80°C), but when the temperature of the agar solution is lowered, it gels at 50-40°C. In order to prevent agar from gelling, the concentration of agar as a substrate must be kept below 1%, which poses the problem of significantly lowering oligosaccharide productivity. Therefore, thermostable enzymes are becoming necessary to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記の課題を解決するための、耐熱性の向
上したアガラーゼを取得すべく鋭意検討を重ねた結果、
シュードモナス属に属する微生物によって産生される新
規なβ−アガラーゼが従来より優れた耐熱性を有するこ
とを見出し、本発明を完成するに至った。
The present inventors have conducted intensive studies to obtain agarase with improved heat resistance in order to solve the above problems.
The present inventors have discovered that a novel β-agarase produced by a microorganism belonging to the genus Pseudomonas has better heat resistance than conventional ones, and have completed the present invention.

すなわち本発明は、このように微生物由来の優れた耐熱
性を存する新規なβ−アガラーゼを供給することにより
寒天オリゴ糖の製造を工業的に容易に実施可能とするも
のである。
That is, the present invention makes it possible to industrially easily produce agar oligosaccharides by supplying novel β-agarase derived from microorganisms and having excellent heat resistance.

本発明は第1に以下に示す理化学的性質を有する新規な
β−アガラーゼに関する。
The present invention first relates to a novel β-agarase having the following physicochemical properties.

0作用 アガロースのβ−1,4結合を加水分解して2、速にア
ガロース溶液の粘度を低下させ、主としてネオアガロテ
トラオースとネオアガロヘキサオースを生成する。
0 action It hydrolyzes the β-1,4 bonds of agarose and rapidly reduces the viscosity of the agarose solution, producing mainly neoagalotetraose and neoagarohexaose.

■基質特異性 β−1,4力ラクトシド結合を有するアガロース。■Substrate specificity Agarose with β-1,4-force lactosidic bonds.

アガロペクチン、寒天などのガラククン系の多糖類なら
びにネオアガロオクタオース以上の少糖類に作用する。
It acts on polysaccharides such as agaropectin and agar, as well as oligosaccharides greater than neoagarooctaose.

ネオアガロへキサオース、ネオアガロテトラオース、ネ
オアガロビオースには作用しにくく、乳糖には作用しな
い。
It has little effect on neoagarohexaose, neoagarotetraose, and neoagarobiose, and has no effect on lactose.

■至適ρ■及びpH安定性 寒天を基質としたとき至適pnは7.0であり、45°
C930分、基質非存在の条件下ではp)15〜9で安
定である。
■Optimal ρ■ and pH stability When using agar as a substrate, the optimal pn is 7.0, and 45°
Stable at C930 min, p) 15-9 under conditions in the absence of substrate.

■至適温度及び熱安定性 寒天を基質としたとき至適温度は50°Cであり、p1
16.0.30分、基質非存在の条件下では45°Cで
は安定、50’Cで約75%、55゛cで約35%の活
性が残存している。
■Optimal temperature and thermal stability When using agar as a substrate, the optimal temperature is 50°C, and p1
16.0.30 minutes, stable at 45°C in the absence of substrate, approximately 75% activity remaining at 50°C, and approximately 35% activity remaining at 55°C.

■失活の条件 pH6,0,65’C,30分以上又はpH6,0゜1
00°C110分でほぼ完全に失活する。
■Deactivation conditions pH 6.0, 65'C, 30 minutes or more or pH 6.0°1
It is almost completely inactivated at 00°C for 110 minutes.

■分子量 360.000 (ゲル濾過クロマト法)■等電点 4.9(等電点電気泳動法) ■金属塩の影響 pH6、o、45°C,1mMの金属塩濃度下、3時間
の処理でFe−”、Hg”“、Ag”、A/2”“が1
0%以下、Cu”、Zn’+が約50〜80%の残存活
性を示し、Na”、に’、Mg”、Co”。
■Molecular weight 360.000 (gel filtration chromatography) ■Isoelectric point 4.9 (isoelectric focusing) ■Effect of metal salts Treatment at pH 6, o, 45°C, 1mM metal salt concentration for 3 hours So Fe-", Hg"", Ag", A/2"" is 1
0% or less, Cu", Zn'+ shows residual activity of about 50-80%, Na", Ni', Mg", Co".

Mn″”、pb”では安定である。また、Ca ”によ
って活性化され、EDTA(5mM)で残存活性が10
%以下となる。
It is stable in Mn'' and pb''.It is also activated by Ca'', and the residual activity is 10% in EDTA (5mM).
% or less.

本発明のβ−アガラーゼの至適pH(基質;0.5%、
0.5d、温度:45°C1反応時間10分)を第2図
に、p)1安定性(45°C130分静置、45’C,
pH6,10分にて活性測定)を第3図に、至適温度(
基質=0.5%、0.5緘、pH6、IJン酸緩衝液、
反応時間10分)を第4図に、熱安定性(p)16.3
0分静置、45°C,pH6,10分にて活性測定)を
第5図にそれぞれ示す。
Optimum pH of β-agarase of the present invention (substrate; 0.5%,
0.5d, temperature: 45°C, 1 reaction time 10 minutes) is shown in Figure 2, p) 1 Stability (standing at 45°C for 130 minutes, 45'C,
Activity measurement at pH 6, 10 minutes) is shown in Figure 3, and the optimum temperature (
Substrate = 0.5%, 0.5%, pH 6, IJ acid buffer,
The reaction time (10 minutes) is shown in Figure 4, and the thermal stability (p) is 16.3.
The activity was measured at 45° C., pH 6, 10 minutes after standing for 0 minutes) and is shown in FIG.

本発明のβ−アガラーゼは分子量、至適温度。The β-agarase of the present invention has a molecular weight and an optimum temperature.

耐熱性が高いことにおいて従来のアガラーゼとは全く異
なるが、その他の性質、たとえば等電点。
Although it is completely different from conventional agarase in that it has high heat resistance, it has other properties such as isoelectric point.

至適pl+、基質特異性については近似するアガラーゼ
がある。
There are agarases that have similar optimal pl+ and substrate specificity.

第2に本発明は、シュードモナス(Pseudomon
as )属に属し、上記の性質を有する新規なβ−アガ
ラーゼの産生する微生物を培養し、培養液中に該酵素を
蓄積させて分離、採取することを特徴とするβ−アガラ
ーゼの製造法に関する。 本発明の新規なβ−アガラー
ゼは微生物を用いて生産されるが、その生産菌としては
シュードモナス(Pseudomonas )属に属し
、上記性質を有する酵素を生産する能力を有する微生物
であればよく、例えば本発明者らによって新たに土壌か
ら分離されたシュードモナス・エスピー N −7(P
seudomonas sp、 N−7)が挙げられる
。本菌株は微工研菌寄第9884号として微生物工業技
術研究所に寄託されており、その菌学的性質は以下の通
りである。
Second, the present invention is directed to Pseudomonas (Pseudomonas).
A method for producing β-agarase, which comprises culturing a microorganism that produces a novel β-agarase belonging to the genus As) and having the above-mentioned properties, and accumulating the enzyme in the culture solution, separating and collecting the enzyme. . The novel β-agarase of the present invention is produced using a microorganism, and any microorganism that belongs to the genus Pseudomonas and has the ability to produce an enzyme having the above-mentioned properties may be used. Pseudomonas sp. N-7 (P
seudomonas sp, N-7). This strain has been deposited with the National Institute of Microbial Technology as Microbiological Research Institute No. 9884, and its mycological properties are as follows.

(1)  形態 ■細胞の形および大きさ 桿菌   0.2〜0.4 μmX1.0〜2.0 p
m■多形性     なし ■運動性    あり ■鞭毛      極鞭毛1本を有する■胞子形成  
  なし ■ダラム染色   陰性 ■抗酸性     なし く2)各培地における生育状態 ■肉汁寒天平板培地 生育は微弱である。
(1) Morphology ■Cell shape and size Bacillus 0.2-0.4 μm x 1.0-2.0 p
m ■ Pleomorphism absent ■ Motility present ■ Flagellum One polar flagellum ■ Sporulation
None ■ Durham stain negative ■ Acid-fast None 2) Growth status in each medium ■ Broth agar plate growth is weak.

■肉汁液体培養(人工海水使用) 普通の生育、着脱色なし、表面生育なし、沈渣を生じる
■Liquid culture of meat juice (using artificial seawater) Normal growth, no color change, no surface growth, and sediment.

■マリンアガー平板培地(デイフコ社)生育は良好、形
状は円形であるが、寒天を穿孔し孔の表面に付着して生
育する。コロニー周辺の寒天の濁りは透明となる。色調
は黄白色。
■Marine agar plate medium (Difco) Growth is good. Although it is circular in shape, it grows by perforating the agar and adhering to the surface of the hole. The turbidity of the agar around the colony becomes transparent. The color is yellowish white.

(3)生理学的性質 ■硝酸塩の還元   :陽性 ■インドールの生成 :陰性 ■硫化水素の生成  :陰性 ■デンプンの加水分解:陽性 ■無機窒素源の利用:硝酸塩、アンモニウム塩を窒素源
として利用する。
(3) Physiological properties ■ Reduction of nitrate: Positive ■ Formation of indole: Negative ■ Formation of hydrogen sulfide: Negative ■ Hydrolysis of starch: Positive ■ Use of inorganic nitrogen sources: Nitrate and ammonium salts are used as nitrogen sources.

■色素生成:黄白色の非水溶性色素を生成する。■Pigment production: Produces a yellowish white water-insoluble pigment.

■オキシダーゼ:陰性 ■カタラーゼ :陽性 ■生育の範囲 :温度10〜45°Cで生育し、28〜
37゛Cが至適である。
■Oxidase: Negative ■Catalase: Positive ■Growth range: Grows at a temperature of 10 to 45°C, 28 to
37°C is optimal.

生育のpHは中性付近が適して いる。A pH around neutrality is suitable for growth. There is.

[相]酸素に対する態度二好気的にのみ生育する。[Phase] Attitude towards oxygen 2Grows only aerobically.

■0−Fテスト:0型 ■糖からの酸の生成 I! 類         酸生成 L−アラビノース       + D−キシロース         + D−グルコース         + D−マンノース         + D−フラクトース       − D−ガラクトース       士 麦芽糖            モ ショ糖               −乳糖    
  十 トレハロース          + D−ソルビトール       − D−マンニトール       − イノシトール         − グリセリン         − デンプン            + アドニトール         − ネオアガロテトラロース    士 ネオアガロヘキサオース    + アガロース          士 寒天      + (4)その他の諸性質 ■DNアーゼの生産  :陰性 ■ゼラチン分解テスト :陰性 ■アルギニン分解テスト:陰性 ■エスクリンの分解性 :陽性 ■好塩性試験 :好塩性(人工海水と水道水を用いた同
一培地で比較) 以上の菌学的性質を有する本菌株について、パージエイ
ズ・マニュアル・オプ・システマティソク・バタテリオ
ロジ−(Bergey’s Manual or Sy
stematicBacteriology) (19
86年)、海洋微生物研究法(学会出版センター、 1
985年)に基づき検索した結果、シュードモナス(P
seudomonas)属に属する菌株と同定した。ま
た、本菌株を詳細に比較すると、本菌株はシュードモナ
ス属に属する新菌株の可能性が大と認め、シュードモナ
ス・エスピー N−7(Pseudo+wonas s
p、 N−7)  と命名した。
■0-F test: Type 0 ■Generation of acid from sugar I! Acid-generated L-arabinose + D-xylose + D-glucose + D-mannose + D-fructose - D-galactose Maltose Mosucrose - Lactose
Tentrehalose + D-Sorbitol - D-Mannitol - Inositol - Glycerin - Starch + Adonitol - Neoagalotetralose Neoagarohexaose + Agarose Shiagar + (4) Other properties■DNase production: Negative■ Gelatin decomposition test: Negative ■Arginine decomposition test: Negative ■Degradability of Aesculin: Positive ■Halophilic test: Halophilic (compared with the same medium using artificial seawater and tap water) A book with the above mycological properties For bacterial strains, see Bergey's Manual or Syst.
Stematic Bacteriology) (19
1986), Marine Microbial Research Methods (Gakkai Publishing Center, 1)
As a result of the search based on Pseudomonas (P. 985),
The strain was identified as belonging to the genus Seudomonas. Furthermore, when comparing this strain in detail, it was recognized that this strain is highly likely to be a new strain belonging to the genus Pseudomonas, and it was found to be Pseudomonas sp. N-7 (Pseudo+wonas s.
p, N-7).

本発明に用いる微生物としては、本菌株とその変種、変
異株に限定されるものでなく、新規なβ−アガラーゼ生
産能を有するものであれば良い。
The microorganism used in the present invention is not limited to the present strain and its variants and mutants, but any microorganism that has a novel β-agarase producing ability may be used.

本発明の新規なβ−アガラーゼの生産菌は、公知の常法
によって培養することができる。使用する培地としては
炭素源、窒素源、無機化合物及びその他の栄養素を適当
量含有する培地ならば、合成培地または天然培地のいず
れも使用可能であり、液体または固体の培地を用いて培
養することができる。具体的には炭素源としては、アガ
ラーゼが誘導酵素であるので、寒天、アガロース、アガ
ロペクチン、寒天の部分加水分解物、さらには寒天の原
料であるテングサ、オゴノリなどの紅藻類を単独あるい
は併用して用いることが出来る。なお、グルコースなど
他の炭素源を併用することも可能である。
The novel β-agarase-producing bacteria of the present invention can be cultured by known conventional methods. The medium to be used can be either a synthetic medium or a natural medium as long as it contains appropriate amounts of carbon sources, nitrogen sources, inorganic compounds, and other nutrients, and culture can be performed using liquid or solid media. Can be done. Specifically, as a carbon source, since agarase is an inducible enzyme, agar, agarose, agaropectin, a partial hydrolyzate of agar, and even red algae such as Amanita spp. It can be used. Note that it is also possible to use other carbon sources such as glucose.

また、窒素源としては肉エキス、ペプトン、酵母エキス
、乾燥酵母、大豆粉、カゼイン、カザミノ酸、各種アミ
ノ酸、コーンステイープリカー。
Nitrogen sources include meat extract, peptone, yeast extract, dried yeast, soy flour, casein, casamino acids, various amino acids, and cornstarch liquor.

フィツシュミール、尿素など動物、植物、微生物由来の
蛋白質、その加水分解物のような有機窒素源や各種無機
アンモニウム塩、硝酸塩などの無機窒素化合物を使用微
生物の資化性を考慮して1種または2種以上を適宜選択
して用いる。
Uses organic nitrogen sources such as Fitzmeal, urea, and other proteins derived from animals, plants, and microorganisms, and their hydrolysates, as well as inorganic nitrogen compounds such as various inorganic ammonium salts and nitrates. Alternatively, two or more types can be appropriately selected and used.

無機塩としてナトリウム、マグネシウム、カルシウム、
鉄、亜鉛、マンガン、銅などのリン酸塩。
Inorganic salts include sodium, magnesium, calcium,
Phosphates such as iron, zinc, manganese, and copper.

塩酸塩、硫酸塩、炭酸塩、酢酸塩などの1種または2種
以上を適宜添加するか、好塩性の菌を使用する場合には
、人工海水を使用するか食塩濃度を海水濃度程度までの
適当な範囲で設定して用いることができる。また、必要
に応じて植物油、3面活性剤などの消泡剤を添加しても
良い。
Add one or more of hydrochloride, sulfate, carbonate, acetate, etc. as appropriate, or if halophilic bacteria are used, use artificial seawater or reduce the salt concentration to the same level as seawater. It can be set and used within an appropriate range. Further, an antifoaming agent such as vegetable oil or a three-surface active agent may be added as necessary.

培養は、前記培地成分を含む液体培地中で振とう培養2
通気撹拌培養、連続培養など通常の培養法を用いて実施
できる。培養条件は培地の種類。
Culture is performed by shaking culture 2 in a liquid medium containing the above-mentioned medium components.
This can be carried out using normal culture methods such as aerated agitation culture and continuous culture. Culture conditions depend on the type of medium.

培養法により適宜選択すれば良く、アガラーゼ生産菌が
増殖しβ−アガラーゼを産生できる条件であれば特段の
制限はない。通常、培養初発pH6,5〜8.5.25
〜37°Cで通気攪拌して培養するのが好ましい。培養
日数は通常1〜2日が適当である。
It may be selected as appropriate depending on the culture method, and there are no particular restrictions as long as the conditions are such that agarase-producing bacteria can proliferate and produce β-agarase. Usually, the initial culture pH is 6.5 to 8.5.25.
It is preferable to culture at ~37°C with aeration and agitation. The appropriate number of days for culturing is usually 1 to 2 days.

以上のようにして培養中に産生されたβ−アガラーゼは
次のような方法で分離、回収できる。木β−アガラーゼ
は主に菌体外に蓄積されるので、培養終了後、菌体を濾
過、遠心分離等の方法で除去して培養濾液を得る。菌体
酵素については通常用いられる手段により菌体を破砕し
てβ−アガラーゼを抽出し、用いることができる。
The β-agarase produced during the culture as described above can be separated and recovered by the following method. Since wood β-agarase is mainly accumulated outside the bacterial cells, after the cultivation is completed, the bacterial cells are removed by filtration, centrifugation, etc. to obtain a culture filtrate. The bacterial enzyme can be used by crushing the bacterial cell and extracting β-agarase by a commonly used means.

得られた酵素を含む液をそのまま真空−awI又は限外
濾過膜を用いて濃縮して液状酵素として、あるいは凍結
乾燥法、噴霧乾燥法により粉末化して用いることができ
る。別な方法としては通常用いられる精製方法、例えば
硫安塩析、溶媒沈澱法によりβ−アガラーゼを沈澱させ
精製する方法、あるいはイオン交換クロマト9ゲル濾過
クロマトさらにはアガロースアフィニティ吸着法、クロ
マトフオーカシング、等電点電気泳動などの精製方法を
1種あるいは2種以上組合わせて高純度に精製する方法
を用いることもできる。
The obtained enzyme-containing liquid can be used as it is by concentrating it using a vacuum-awl or ultrafiltration membrane to obtain a liquid enzyme, or by pulverizing it by a freeze-drying method or a spray-drying method. Other methods include commonly used purification methods such as ammonium sulfate salting out, solvent precipitation to precipitate β-agarase, ion exchange chromatography, gel filtration chromatography, agarose affinity adsorption, chromatography, It is also possible to use one or a combination of two or more purification methods such as isoelectric focusing to achieve high purity.

本発明でのβ−アガラーゼの活性測定法は以下の通りで
ある。pH6,0,0,1M酢酸緩衝液に希釈溶解した
酵素0.5 dを45°Cに保温しておき、これに0.
5%寒天溶液(45°Cに予熱)0.5meを添加して
反応を開始させる。反応は45°Cで1゛0分間行ない
、反応停止はソモギー液を添加することで行ない、ソモ
ギー・ふルソン法で還元糖を定量する。活性は1μmo
leのガラクトースに相当する還元力を生成する酵素量
を1単位として表示する。
The method for measuring β-agarase activity in the present invention is as follows. 0.5 d of enzyme diluted and dissolved in pH 6, 0, 0, 1M acetate buffer was kept at 45°C, and 0.
Start the reaction by adding 0.5 me of 5% agar solution (preheated to 45°C). The reaction is carried out at 45°C for 10 minutes, the reaction is stopped by adding Somogyi solution, and the reducing sugar is determined by the Somogyi-Fulson method. Activity is 1μmo
The amount of enzyme that generates the reducing power equivalent to le galactose is expressed as one unit.

[実施例] 次に、実施例により本発明をさらに詳細に説明する。[Example] Next, the present invention will be explained in more detail with reference to Examples.

実施例1 シュードモナス・エスピー N  7 (Pseudo
−monas sp、 N−7)(微工研菌寄第988
4号)を天草裁断物1.5%、ポリペプトン0.5%、
酵母エキス0.5%を人工海水に懸濁熔解し、pH6,
5に調整し殺菌した培地40d(200d三角フラスコ
)に1白金耳植菌し、25“Cで45時間振とう培養し
た。培養終了後、菌体と天草残渣を遠心分離で除去し、
酵素活性を測定したところ、β−アガラーゼが 0.1
9単位/戚生産されていた。
Example 1 Pseudomonas sp. N7 (Pseudo
-monas sp, N-7)
No. 4) with 1.5% Amakusa cut material, 0.5% polypeptone,
Suspend and dissolve 0.5% yeast extract in artificial seawater, pH 6,
One platinum loop was inoculated into a sterilized medium 40d (200d Erlenmeyer flask) adjusted to a temperature of
When enzyme activity was measured, β-agarase was 0.1
9 units/unit were produced.

実施例2 シュードモナス・エスピー N−7(微工研菌寄第98
84号)を粉末寒天0.7%、グルコース0.1%、硝
酸ナトリウム0.5%、酵母エキス0.5%。
Example 2 Pseudomonas sp.
No. 84), powdered agar 0.7%, glucose 0.1%, sodium nitrate 0.5%, and yeast extract 0.5%.

硫酸マグネシウム0.2%、塩化カルシウム0.2%。Magnesium sulfate 0.2%, calcium chloride 0.2%.

塩化ナトリウム2.0%を含むpH8,5の培地401
11!(200mf三角フラスコ)に1白金耳植菌し、
37℃で1口振とうして前培養した後、この前培養液を
同じ培地1.5I!、を含む31ジャーファーメンタ−
に植菌した。37°Cで24時間、通気量1、5 l/
min攪拌速度400 rpmの条件で培養した。
Medium 401 with pH 8.5 containing 2.0% sodium chloride
11! (200 mf Erlenmeyer flask) was inoculated with 1 platinum loop,
After pre-culturing at 37°C with one mouth of shaking, this pre-culture solution was mixed with 1.5 I of the same medium! 31 jar fermenters including
was inoculated. 24 hours at 37°C, air flow 1.5 l/
Culture was performed at a minimum stirring speed of 400 rpm.

培養終了後、菌体を遠心分離で除去して培養濾液1.4
j2を得た。培養濾液中のアガラーゼ活性は1.0単位
/dであった。この培養濾液を分画分子量1万の限外濾
過膜で約20倍に濃縮したところ、21.3単位/戚の
酵素液60dを得た。
After the culture is completed, the bacterial cells are removed by centrifugation and the culture filtrate 1.4
I got j2. Agarase activity in the culture filtrate was 1.0 units/d. When this culture filtrate was concentrated approximately 20 times using an ultrafiltration membrane with a molecular weight cutoff of 10,000, 60 d of enzyme solution with a concentration of 21.3 units/relative was obtained.

実施例3 シュードモナス・エスピー N−7(微工研菌寄第98
84号)をアガロース0.5%、硝酸ナトリウム0.5
%、酵母エキス0.5%を人工海水に溶解したp)17
.5の培地で前培養した。前培養液を同組成の培地15
I!、を入れた302ジャーファーメンタ−に植菌し、
30℃で30時間培養した。
Example 3 Pseudomonas sp.
No. 84) with 0.5% agarose and 0.5% sodium nitrate.
%, yeast extract 0.5% dissolved in artificial seawater p) 17
.. The cells were precultured in No. 5 medium. The preculture solution was mixed with medium 15 of the same composition.
I! , inoculated into a 302 jar fermenter containing
The cells were cultured at 30°C for 30 hours.

培養中、通気量は15 i!、/minとし、200r
pmの撹拌を行なった。
During cultivation, the aeration rate was 15 i! ,/min, 200r
pm stirring was performed.

培養終了後、菌体を濾過により除き培養濾液を得た。培
養濾液中のアガラーゼ活性は1.1単位1 mlであっ
た。培養濾液をCL−セファロース6B(ファルマシア
社)50mj!のカラムに500 ml/hrの流速で
通液しアフィニティー吸着させ、水洗浄後、2%ネオア
ガロオリゴtJH容液液500d7容出しアガラーゼを
溶出した。その後、常法として用いられているDEAE
 l−ヨバール(東ソー社)。
After the culture was completed, the bacterial cells were removed by filtration to obtain a culture filtrate. The agarase activity in the culture filtrate was 1.1 units/ml. The culture filtrate was added to CL-Sepharose 6B (Pharmacia) 50mj! The solution was passed through the column at a flow rate of 500 ml/hr for affinity adsorption, and after washing with water, 500 d7 volumes of 2% neoagarooligo tJH solution were poured out to elute the agarase. Since then, DEAE has been used as a routine method.
l-Jovar (Tosoh Corporation).

トヨバールHW55 S、  クロマトフオーカシング
で精製してほぼ純品に近い精製酵素を得た(22単位/
mg蛋白質)。なお、活性収率は約15%であった。
Toyobar HW55 S was purified by chromatography to obtain a purified enzyme that was almost pure (22 units/
mg protein). Note that the activity yield was about 15%.

〔発明の効果] 本発明によれば、シュードモナス属に属する綴植を培養
することにより新規なβ−アガラーゼが得られる。この
酵素は優れた耐熱性を有しているため、寒天オリゴ糖の
工業的製造に利用することができる。寒天オリゴ垢は澱
粉老化防止作用、静菌作用、難消化性などの性質を有し
ており、様々な分野での利用が期待される。
[Effects of the Invention] According to the present invention, a novel β-agarase can be obtained by culturing an explant belonging to the genus Pseudomonas. Since this enzyme has excellent heat resistance, it can be used for industrial production of agar oligosaccharides. Agar oligosaccharide has properties such as starch anti-aging action, bacteriostatic action, and indigestibility, and is expected to be used in a variety of fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアガロースの構造と加水分解様式を示すもので
ある。 第2図は本発明のβ−アガラーゼの至適pl+を示すも
のである。 第3図は本発明のβ−アガラーゼのpH安定性を示すも
のである。 第4図は本発明のβ−アガラーゼの至適温度を示すもの
である。 第5図は本発明のβ−アガラーゼの熱安定性を示すもの
である。 特許出願人 食品産業バイオリアクターシステム第2図 pH 第3r!1J 4)e+/a     9
Figure 1 shows the structure and hydrolysis mode of agarose. FIG. 2 shows the optimum pl+ of the β-agarase of the present invention. FIG. 3 shows the pH stability of β-agarase of the present invention. FIG. 4 shows the optimum temperature of β-agarase of the present invention. FIG. 5 shows the thermostability of β-agarase of the present invention. Patent Applicant Food Industry Bioreactor System Figure 2 pH 3r! 1J 4) e+/a 9

Claims (1)

【特許請求の範囲】 (1)下記の理化学的性質を有する新規なβ−アガラー
ゼ。 [1]作用 アガロースのβ−1,4結合を加水分解して急速にアガ
ロース溶液の粘度を低下させ、主としてネオアガロテト
ラオースとネオアガロヘキサオースを生成する。 [2]基質特異性 β−1,4ガラクトシド結合を有するアガロース、アガ
ロペクチン、寒天などのガラクタン系の多糖類ならびに
ネオアガロオクタオース以上の少糖類に作用する。ネオ
アガロヘキサオース、ネオアガロテトラオース、ネオア
ガロビオースには作用しにくく、乳糖には作用しない。 [3]至適pH及びpH安定性 寒天を基質としたとき至適pHは7.0であり、45℃
、30分、基質非存在の条件下ではpH5〜9で安定で
ある。 [4]至適温度及び熱安定性 寒天を基質としたとき至適温度は50℃であり、pH6
.0、30分、基質非存在の条件下では45℃では安定
、50℃で約75%、55℃で約35%の活性が残存し
ている。 [5]失活の条件 pH6.0、65℃、30分以上又はpH6.0、10
0℃、10分でほぼ完全に失活する。 [6]分子量 360,000(ゲル濾過クロマト法) [7]等電点 4.9(等電点電気泳動法) [8]金属塩の影響 pH6.0、45゜C、1mMの金属塩濃度下、3時間
の処理でFe^+^+^+、Hg^+^+、Ag^+、
Al^+^+^+が10%以下、Cu^+^+、Zn^
+^+が約50〜80%の残存活性を示し、Na^+、
K^+、Mg^+^+、Co^+^+、Mn^+^+、
Pb^+^+では安定である。また、Ca^+^+によ
って活性化され、EDTA(5mM)で残存活性が10
%以下となる。 (2)シュードモナス¥(Pseudomonas)¥
属に属する請求項1記載の理化学的性質を有する新規な
β−アガラーゼ生産菌を培養し、培養物から該β−アガ
ラーゼを採取することを特徴とする新規なβ−アガラー
ゼの製造法。 (3)シュードモナス¥(Pseudomonas)¥
属に属する新規なβ−アガラーゼ生産菌がシュードモナ
ス・エスピーN−7(¥Pseudomonas¥sp
.N−7)(微工研菌寄第9884号)である請求項2
記載の製造法。
[Claims] (1) A novel β-agarase having the following physical and chemical properties. [1] Effect: Hydrolyzes the β-1,4 bond of agarose to rapidly lower the viscosity of the agarose solution, producing mainly neoagalotetraose and neoagalohexaose. [2] Substrate specificity Acts on galactan polysaccharides such as agarose, agaropectin, and agar, which have β-1,4 galactoside bonds, and oligosaccharides of neoagarooctaose and higher. It has little effect on neoagarohexaose, neoagarotetraose, and neoagarobiose, and has no effect on lactose. [3] Optimal pH and pH stability When using agar as a substrate, the optimal pH is 7.0, and at 45°C
, 30 minutes, and is stable at pH 5-9 in the absence of substrate. [4] Optimal temperature and thermostability When using agar as a substrate, the optimal temperature is 50°C, and the pH is 6.
.. Under the conditions of 0 and 30 minutes in the absence of substrate, it is stable at 45°C, approximately 75% activity remains at 50°C, and approximately 35% activity remains at 55°C. [5] Inactivation conditions pH 6.0, 65°C, 30 minutes or more or pH 6.0, 10
It is almost completely deactivated in 10 minutes at 0°C. [6] Molecular weight 360,000 (gel filtration chromatography) [7] Isoelectric point 4.9 (isoelectric focusing) [8] Effect of metal salts pH 6.0, 45°C, 1mM metal salt concentration Bottom, after 3 hours of treatment, Fe^+^+^+, Hg^+^+, Ag^+,
Al^+^+^+ is 10% or less, Cu^+^+, Zn^
+^+ shows residual activity of about 50-80%, Na^+,
K^+, Mg^+^+, Co^+^+, Mn^+^+,
It is stable at Pb^+^+. It is also activated by Ca^+^+, and the residual activity is 10% with EDTA (5mM).
% or less. (2) Pseudomonas¥
A method for producing a novel β-agarase, which comprises culturing a novel β-agarase-producing bacterium having the physicochemical properties according to claim 1 belonging to the genus P. agarina and collecting the β-agarase from the culture. (3) Pseudomonas¥
A new β-agarase producing bacterium belonging to the genus Pseudomonas sp.
.. Claim 2 which is N-7) (Feikoken Bibori No. 9884)
Manufacturing method described.
JP5270088A 1988-03-08 1988-03-08 Novel β-agarase and method for producing the same Expired - Lifetime JPH0797987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5270088A JPH0797987B2 (en) 1988-03-08 1988-03-08 Novel β-agarase and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5270088A JPH0797987B2 (en) 1988-03-08 1988-03-08 Novel β-agarase and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01228465A true JPH01228465A (en) 1989-09-12
JPH0797987B2 JPH0797987B2 (en) 1995-10-25

Family

ID=12922167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5270088A Expired - Lifetime JPH0797987B2 (en) 1988-03-08 1988-03-08 Novel β-agarase and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0797987B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102279A (en) * 2007-10-25 2009-05-14 Kose Corp Anti-wrinkle agent and external preparation for skin to prevent formation of wrinkle
JP2012121910A (en) * 2012-03-05 2012-06-28 Kose Corp Interleukin 6 production inhibitor
CN110713997A (en) * 2019-11-04 2020-01-21 江南大学 Agarase with uniform degradation products and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102279A (en) * 2007-10-25 2009-05-14 Kose Corp Anti-wrinkle agent and external preparation for skin to prevent formation of wrinkle
JP2012121910A (en) * 2012-03-05 2012-06-28 Kose Corp Interleukin 6 production inhibitor
CN110713997A (en) * 2019-11-04 2020-01-21 江南大学 Agarase with uniform degradation products and application thereof
CN110713997B (en) * 2019-11-04 2022-02-01 江南大学 Agarase with uniform degradation products and application thereof

Also Published As

Publication number Publication date
JPH0797987B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
JPH01228465A (en) Novel beta-agarase and production thereof
JP3360291B2 (en) Method for Increasing Yield of γ-Cyclodextrin
JP4110243B2 (en) Method for producing N-acetylglucosamine
JP2001069975A (en) Chitosanase
JP3820418B2 (en) Novel chitinase and method for producing the same
JP3529173B2 (en) Novel agar-degrading enzyme and method for producing neo-agarobiose using the same
JP3521950B2 (en) Novel red algal mucopolysaccharide degrading enzyme, method for producing the same, and novel microorganism therefor
JP2785323B2 (en) β-glucosidase and method for producing the same
JP3027449B2 (en) Novel cyclomaltodextrinase, method for producing the same, and microorganism producing the enzyme
JP3026312B2 (en) Production method of chitin degradation products
JPH0838172A (en) New beta-agarase and production thereof
JP3858065B2 (en) Novel N-acetylchitooligosaccharide deacetylase and method for producing the same
JPH054067B2 (en)
JP2677837B2 (en) Chitosanase and method for producing the same
JPH04211369A (en) Halophilic alkali amylase and production thereof
JPH0761264B2 (en) Novel cyclomaltodextrinase and method for producing the same
JPH0269183A (en) Beta-1,3-glucanase and production thereof
JPH08242854A (en) Production of n-acetyl-d-glucosamine deacetylase
JPS6017509B2 (en) new microorganisms
JPH03292887A (en) Production of new exo-type hydrolase and production of inulopentaose
JPH0191777A (en) Production of levan fructotransferase
JPH03130075A (en) Production of chitinase by bacterium
JPH02163082A (en) Production of chitosanase
JPH0568579A (en) Production of starch saccharide
JPH0369509B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 13