JPH01227882A - Slight flow rate pump - Google Patents

Slight flow rate pump

Info

Publication number
JPH01227882A
JPH01227882A JP5393788A JP5393788A JPH01227882A JP H01227882 A JPH01227882 A JP H01227882A JP 5393788 A JP5393788 A JP 5393788A JP 5393788 A JP5393788 A JP 5393788A JP H01227882 A JPH01227882 A JP H01227882A
Authority
JP
Japan
Prior art keywords
pump
flow rate
actuator
sensor
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5393788A
Other languages
Japanese (ja)
Inventor
Koji Nagasaka
長坂 皓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Walbro Far East Inc
Original Assignee
Walbro Far East Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walbro Far East Inc filed Critical Walbro Far East Inc
Priority to JP5393788A priority Critical patent/JPH01227882A/en
Publication of JPH01227882A publication Critical patent/JPH01227882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To offer a small and high precision pump by arithmetically operating the findings from time comparison of the detected value with the set value for pump flow rate, amplifying the findings from the arithmetical operation to control the driving of the pump, and integrating the flow rate sensor, a computing element and an amplifier. CONSTITUTION:A pump 21 driven by an actuator 29 using a bymorf diaphragm sucks fluid into a pump chamber and discharges it into the sensor chamber of a flow rate sensor 13. The detected value of the flow rate sensor 13 is sent to a computing element 17a to compute an error between the value and the set value in a flow rate setter 36. The voltage corresponding to the error is amplified by an amplifier 17b and then applied to an actuator 29. The pump 21 is driven to ensure the flow rate corresponding to the set value. Thus the flow rate of fluid may be controlled at high precise level by a pump of such simple and small constitution.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は石油ストーブ、化学機器、医療機器などの液体
や気体の供給装置において、高精度で流体流量を制御し
得る微流量ポンプに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a microflow pump that can control fluid flow rate with high precision in liquid and gas supply devices for oil stoves, chemical equipment, medical equipment, etc. be.

[従来の技術] 従来、微最な流体を高流量11!度で吐出するためには
、ポンプの構成部品を高精度化し、^1度で作動させる
必要があり、ポンプの構造が複雑で大型のものであった
。そして、従来のものは吐出流量の値を指令するのみで
、実際の吐出1fi11.11体の温度、比重、粘度な
どにより変化するので、高精度の安定した流量を得るに
は、これらの条件を一定に保つ必要があった。また、一
般工業用例えば化学プラントにおける大規模な流体供給
装置では、ポンプの吐出F&量を流量計で計測し、これ
を電気信号に変換してポンプを制御したり、制御弁を1
1110する方法があるが、これらは大型で大流量のも
のに専ら用られている。
[Conventional technology] Conventionally, the smallest fluid can be processed at a high flow rate of 11! In order to discharge at 1 degree, the components of the pump had to be highly precise and operated at 1 degree, which meant that the pump had a complex and large structure. In addition, the conventional method only commands the value of the discharge flow rate, which changes depending on the actual temperature, specific gravity, viscosity, etc. of the discharge body, so in order to obtain a highly accurate and stable flow rate, these conditions must be met. It had to be kept constant. In addition, in large-scale fluid supply equipment for general industrial use, such as in chemical plants, the discharge F & amount of the pump is measured with a flow meter, and this is converted into an electrical signal to control the pump, or the control valve is
1110, but these are used exclusively for large-scale and large-flow applications.

[発明が解決しようとする開題点] 本発明の目的は構成が簡単で高精度が要求されない部品
で構成されるが、高精度で流量をlllIDシ得る微流
lポンプを提供することにある。
[Problem to be Solved by the Invention] An object of the present invention is to provide a microflow pump that is simple in construction and is composed of parts that do not require high precision, but that can control the flow rate with high precision.

E問題を解決するための手段] 上記目的を達成するために、本発明の構成は流体を吸引
し吐出するポンプと、ポンプからの吐出流量を電気的に
検出する流量センサと、流量センサからの出力信号と流
量設定値の信号とを比較演算する演碑器と、演nBの出
力を増幅してポンプの駆動電源とする増幅器とからなり
、これらを−体に構成したものである。
Means for Solving Problem E] In order to achieve the above object, the configuration of the present invention includes a pump that suctions and discharges fluid, a flow sensor that electrically detects the discharge flow rate from the pump, and a flow rate sensor that electrically detects the discharge flow rate from the pump. It consists of a driver that compares and calculates an output signal and a signal of a flow rate setting value, and an amplifier that amplifies the output of the driver nB and uses it as a driving power source for the pump.

[作用] ポンプ21から吐出された流体の流mを流層センサ13
で検出し、流量設定器36により設定された設定値との
偏差を演算し、ポンプ21の駆動部くアクチュエータ2
9)に補正した駆動電源を供給する。つまり、ポンプ2
1の吐出流量を7クチユエータ29にフィードバックし
て吐出流−の精度を高めるものであり、ポンプ21のみ
で設定値に相当する流量を吐出する必要はないので、高
精度な部品や高精度な動作は必要とされない。
[Function] The flow m of the fluid discharged from the pump 21 is detected by the flow sensor 13.
The deviation from the set value set by the flow rate setting device 36 is calculated, and the actuator 2
9) Supply the corrected drive power. In other words, pump 2
The pump 21 feeds back the discharge flow rate of 7 to the pump 29 to improve the accuracy of the discharge flow, and it is not necessary for the pump 21 alone to discharge the flow rate corresponding to the set value, so it is not necessary to use high-precision parts or high-precision operation. is not required.

アクチュエータ29としてバイモルフ撮動板を用いるの
で、構成が簡単で小型であり、機械的な連結機構を必要
とせず、動作が安定であり、安定した流量が得られる。
Since a bimorph imaging plate is used as the actuator 29, the configuration is simple and small, no mechanical coupling mechanism is required, the operation is stable, and a stable flow rate can be obtained.

[発明の実施例] 第5図は本発明による微流量ポンプの概略構成を示す。[Embodiments of the invention] FIG. 5 shows a schematic configuration of a microflow pump according to the present invention.

アクチュエータ29により駆動されるダイヤフラム型の
ポンプ21はポンプ室の膨張時流体をポンプ室へ吸い込
み、ポンプ室の収縮時流量センサ13のセンサ室へ吐き
出す。センサ室の流出口に絞りが備えられているので、
センサ室の圧力変化が差動変圧器などからなる流量セン
サ13により検出され、この検出信号が演算器17aへ
加えられる。演篩器17aで検出値と81m設定器36
による流量設定値との偏差が求められ、増幅器17bへ
加えられる。増幅器17bで偏差に相当する電圧が増幅
されて交流としてアクチュエータ29へ加えられ、流m
設定値に相当する流量を得るようにポンプ21のアクチ
ュエータ29がIII御される。
A diaphragm type pump 21 driven by an actuator 29 sucks fluid into the pump chamber when the pump chamber is expanded, and discharges it into the sensor chamber of the flow rate sensor 13 when the pump chamber is contracted. Since the outflow port of the sensor chamber is equipped with a restriction,
A pressure change in the sensor chamber is detected by a flow rate sensor 13 consisting of a differential transformer or the like, and this detection signal is applied to a computing unit 17a. Detected value and 81m setting device 36 with sieve device 17a
The deviation from the flow rate setting value is determined and added to the amplifier 17b. The voltage corresponding to the deviation is amplified by the amplifier 17b and applied as alternating current to the actuator 29, causing a current m
The actuator 29 of the pump 21 is controlled in order to obtain a flow rate corresponding to the set value.

第1.2図は微流量ポンプの具体的構成を示す。Figure 1.2 shows the specific configuration of the microflow pump.

ポンプ21は本体33に、逆止弁25,2を切り起して
なるゴムなどの弾性板を挾んで挟持板32を重ね合せ、
この上にダイヤフラム24の周縁部を押え板19により
押し付け、さらにカップ形のカバー31を重ね合せ、複
数のボルト22により結合して構成される。カバー31
で覆われる大気室40において、アクチュエータ29が
ダイヤフラム24の上に重ね合せ結合され、中心部を挟
持板32の突起28と、カバー31の突起26に設けた
クツション27との間に挟持される。
The pump 21 has a main body 33 overlaid with a clamping plate 32 sandwiching an elastic plate made of rubber or the like, which is made by cutting out the check valves 25 and 2.
The peripheral edge of the diaphragm 24 is pressed onto this by a presser plate 19, and a cup-shaped cover 31 is further placed on top of the diaphragm 24, which is then connected with a plurality of bolts 22. cover 31
In the atmospheric chamber 40 covered by the diaphragm 24, the actuator 29 is stacked and bonded to the diaphragm 24, and its center portion is sandwiched between the protrusion 28 of the holding plate 32 and the cushion 27 provided on the protrusion 26 of the cover 31.

アクチュエータ29は導電性金属からなる円形の電極板
29aの上下両面に圧電セラミックからなる電極板29
bを重ね合せて結合したものであり(第4図)、これら
の電極板に結合した導線23.30が演碑増幅器17へ
接続される。ダイヤフラム24と挟持板32との間に区
画されたポンプ室39は、逆止弁25、通路35を経て
流入口18へ連通される。また、ポンプ室39は逆止弁
2、通路20を経てvtmセンサ13のセンサ室4へ連
通される。
The actuator 29 has electrode plates 29 made of piezoelectric ceramic on both upper and lower surfaces of a circular electrode plate 29a made of conductive metal.
conductors 23 and 30 connected to these electrode plates are connected to the amplifier 17. A pump chamber 39 defined between the diaphragm 24 and the clamping plate 32 is communicated with the inlet 18 via the check valve 25 and the passage 35 . Further, the pump chamber 39 communicates with the sensor chamber 4 of the VTM sensor 13 via the check valve 2 and the passage 20.

流層センサ13は2分割体からなるハウジング7.9の
間にダイヤフラム3を挟持して、センサ室4と大気室1
2を区画したものである。センサ室4は絞り6を経て流
出口8に連通される。ダイヤフラム3に押え板5が重ね
合され、ハウジング9と押え板5との間にばね16が介
装される。押え板5に可動鉄心14が支持され、これを
取り囲む差動変圧器15がカバー38によりハウジング
9の壁部に支持される。ハウジング7.9とカバー38
は複数のボルト10により結合され、さらに通路20の
部分にOリング34を介装して本体33に結合される。
The flow layer sensor 13 has a diaphragm 3 sandwiched between a housing 7.9 consisting of two parts, and a sensor chamber 4 and an atmospheric chamber 1.
2 is divided into sections. The sensor chamber 4 is communicated with an outlet 8 through a diaphragm 6. A presser plate 5 is superimposed on the diaphragm 3, and a spring 16 is interposed between the housing 9 and the presser plate 5. A movable core 14 is supported by the holding plate 5, and a differential transformer 15 surrounding the movable core 14 is supported by a cover 38 on the wall of the housing 9. Housing 7.9 and cover 38
are connected by a plurality of bolts 10, and further connected to the main body 33 with an O-ring 34 interposed in the passage 20.

本体33に結合される演算増幅器17は、演篩器17a
と増幅器17bを備えた一般に知られている回路構成の
ものであり、FItl設定器(つまみ)36により吐出
流量が設定される。
The operational amplifier 17 coupled to the main body 33 is a sieve 17a.
It has a generally known circuit configuration including an amplifier 17b and an FItl setting device (knob) 36 to set the discharge flow rate.

なお、流量センサ13は差圧検出方式のものを示したが
、他の流量センサでもよい。
Although the flow rate sensor 13 is of a differential pressure detection type, other flow rate sensors may be used.

次に、本発明による微流量ポンプの作動について説明す
る。第4図に示すように、アクチュエータ29を構成す
るバイモルフ振動板の中央の電極板29aと、この両側
の電極板29bとの間に交流電源を印加すると、通常は
平坦な円板状であったものが、湾曲変形する。すなわち
、バイモルフ振動板の中心が突起26.28により拘束
されているため、周縁側が上下に椀状に変形する。バイ
モルフ撮動板が上方へ椀状に変形する時ポンプ室39が
膨張するので、流入口18から通路35、逆止弁25を
経てポンプ室39へ流体が吸引される。
Next, the operation of the microflow pump according to the present invention will be explained. As shown in FIG. 4, when AC power is applied between the central electrode plate 29a of the bimorph diaphragm that constitutes the actuator 29 and the electrode plates 29b on both sides, a flat disk-like shape is normally observed. Things become curved and deformed. That is, since the center of the bimorph diaphragm is restrained by the protrusions 26 and 28, the peripheral edge deforms vertically into a bowl shape. When the bimorph imaging plate deforms upward into a bowl shape, the pump chamber 39 expands, and fluid is sucked into the pump chamber 39 from the inlet 18 through the passage 35 and the check valve 25.

一方、バイモルフ振動板が下方へ椀状に変形する時、ポ
ンプ室39が収縮するので、流体が逆止弁2を押し開き
、通路20を経てセンサ室4へ流入する。このようなポ
ンプ作用によりセンサ室4へ順次吐出された流体は、較
り6の流体抵抗に伴ってダイヤフラム3に、吐出流量に
ほぼ比例する圧力を及ぼす。この圧力はばね16の力に
抗する可11J鉄心14の変位をもたらし、可動鉄心1
4の変位は差動変圧器15の電圧変化として検出される
。この電圧がW4弾増幅器17において流量設定器36
により設定された電圧と比較され、その偏着に相当する
電圧が増幅され、交流電圧としてアクチュエータ29へ
加えられる。こうして、アクチュエータ29の振幅が流
量設定器36で設定される吐出流量を得るように制御さ
れる。
On the other hand, when the bimorph diaphragm deforms downward into a bowl shape, the pump chamber 39 contracts, so fluid pushes open the check valve 2 and flows into the sensor chamber 4 through the passage 20. The fluid sequentially discharged into the sensor chamber 4 by such a pumping action exerts a pressure on the diaphragm 3 that is approximately proportional to the discharge flow rate due to a fluid resistance of 6. This pressure causes a displacement of the movable core 14 against the force of the spring 16, causing the movable core 1
The displacement of 4 is detected as a voltage change of the differential transformer 15. This voltage is applied to the flow rate setting device 36 in the W4 bullet amplifier 17.
The voltage corresponding to the polarization is amplified and applied to the actuator 29 as an alternating current voltage. In this way, the amplitude of the actuator 29 is controlled to obtain the discharge flow rate set by the flow rate setting device 36.

電圧をilJ′wJシてアクチュエータ29の振幅を変
える代りに、電圧は一定とし、電源周波数を制御してア
クチュエータ29の振動数を変えるようにしてもよい。
Instead of varying the amplitude of the actuator 29 by changing the voltage ilJ'wJ, the voltage may be kept constant and the frequency of the actuator 29 may be varied by controlling the power supply frequency.

また、流量センサ13で計測される吐出流lの計測時間
が瞬時の場合は、ポンプ21の吐出流lにいわゆるハン
チング現象が生じることがあるので、計測時間を所定時
間(数秒)として平均流量を求め、これに基づいてアク
チュエータ29をtllllIlすることが好ましい。
Furthermore, if the measurement time of the discharge flow l measured by the flow rate sensor 13 is instantaneous, a so-called hunting phenomenon may occur in the discharge flow l of the pump 21. It is preferable to calculate this and then operate the actuator 29 based on this.

第3図に示す実施例では、アクチュエータ29を構成す
るバイモルフrjA#J板に鳳ね合ゼて接着剤などによ
り結合されるダイヤフラム24の中心に柱24aを一体
に形成し、これを挟持板32の穴へ嵌合する一方、アク
チュエータ29の上側を押えるクツション27もhバー
31の突起26に設けた穴へ嵌合支持される。これによ
りアクチュエータ29の心ずれが抑えられる。
In the embodiment shown in FIG. 3, a pillar 24a is integrally formed at the center of the diaphragm 24, which is bonded to the bimorph rjA#J plate constituting the actuator 29 by bonding with an adhesive or the like. At the same time, the cushion 27 that presses the upper side of the actuator 29 is also fitted and supported in a hole provided in the protrusion 26 of the h-bar 31. This suppresses misalignment of the actuator 29.

[発明の効果] 本発明は上述のように、流体を吸引し吐出するポンプと
、ポンプからの吐出流量を電気的に検出する[1センサ
と、流量センサからの出力信号と流量設定値の信号とを
比較演算する演痺器と、演算器の出力を増幅してポンプ
の駆動電源とする増幅器とを一体に構成したしたので、
ポンプの吐出流量の変化に基づく流体の圧力変化が、ダ
イヤスラムの機械的変位に変換され、この機械的変位を
電気的に検出して演算増幅器へ入力されるので、設定流
量との偏差に相当する電圧がポンプのアクチュエータへ
加えられ、したがって、作動が確実で、^精度でポンプ
の吐出流量が設定値に維持される。
[Effects of the Invention] As described above, the present invention includes a pump that suctions and discharges fluid, a sensor that electrically detects the discharge flow rate from the pump, and an output signal from the flow rate sensor and a signal of the flow rate setting value. Since we have integrated a compensator that performs comparison calculations between the
Changes in fluid pressure due to changes in the pump's discharge flow rate are converted to mechanical displacement of the diaphragm, and this mechanical displacement is electrically detected and input to the operational amplifier, so it corresponds to the deviation from the set flow rate. voltage is applied to the actuator of the pump, thus ensuring reliable operation and maintaining the pump delivery flow rate at the set value with precision.

ポンプのアクチュエータとしてバイモルフ振動板を用い
ているので、構成が簡単であり、流量センサと演算増幅
器とを一体に結合したことにより、全体として小型で^
精度のポンプが得られる。
Since a bimorph diaphragm is used as the pump actuator, the configuration is simple, and by combining the flow rate sensor and operational amplifier, the overall size is small.
Get a precision pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る[Eflポンプの正面断面図、第
2図は同側面図、第3図はアクチュエータの要部の他の
実施例を示す側面断面図、第4図はアクチュエータの動
作原理を示す正面図、第5図は微流量ポンプの概略構成
図である。 3.24:ダイヤフラム 4:センサ室 6:絞り 1
3:R1センサ 14:可動鉄心 17:演詐増幅器 
29:アクチュエータ 36:流量設定器 39:ポン
プ室
FIG. 1 is a front sectional view of the Efl pump according to the present invention, FIG. 2 is a side view of the same, FIG. 3 is a side sectional view showing another embodiment of the main part of the actuator, and FIG. 4 is the operation of the actuator. FIG. 5, a front view showing the principle, is a schematic configuration diagram of a microflow pump. 3.24: Diaphragm 4: Sensor chamber 6: Aperture 1
3: R1 sensor 14: Movable iron core 17: Fraud amplifier
29: Actuator 36: Flow rate setting device 39: Pump chamber

Claims (1)

【特許請求の範囲】[Claims] 流体を吸引し吐出するポンプと、ポンプからの吐出流量
を電気的に検出する流量センサと、流量センサからの出
力信号と流量設定値の信号とを比較演算する演算器と、
演算器の出力を増幅してポンプの駆動電源とする増幅器
とからなり、これらを一体に構成したことを特徴とする
微流量ポンプ。
A pump that suctions and discharges fluid, a flow sensor that electrically detects the flow rate discharged from the pump, and a calculator that compares and calculates an output signal from the flow sensor and a signal of a flow rate setting value,
A microflow pump characterized by comprising an amplifier that amplifies the output of a computing unit and uses it as a driving power source for the pump, and is configured in an integrated manner.
JP5393788A 1988-03-08 1988-03-08 Slight flow rate pump Pending JPH01227882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5393788A JPH01227882A (en) 1988-03-08 1988-03-08 Slight flow rate pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5393788A JPH01227882A (en) 1988-03-08 1988-03-08 Slight flow rate pump

Publications (1)

Publication Number Publication Date
JPH01227882A true JPH01227882A (en) 1989-09-12

Family

ID=12956652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5393788A Pending JPH01227882A (en) 1988-03-08 1988-03-08 Slight flow rate pump

Country Status (1)

Country Link
JP (1) JPH01227882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048780A1 (en) * 2002-11-28 2004-06-10 Tacmina Corporation Metered quantity transfer device
JP2013210024A (en) * 2012-03-30 2013-10-10 Nec Corp Liquid feeding device, method for predicting output amount of liquid feeding device, and method for controlling liquid feeding device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048780A1 (en) * 2002-11-28 2004-06-10 Tacmina Corporation Metered quantity transfer device
EP1574713A1 (en) * 2002-11-28 2005-09-14 Tacmina Corporation Metered quantity transfer device
EP1574713A4 (en) * 2002-11-28 2010-11-17 Tacmina Corp Metered quantity transfer device
JP2013210024A (en) * 2012-03-30 2013-10-10 Nec Corp Liquid feeding device, method for predicting output amount of liquid feeding device, and method for controlling liquid feeding device

Similar Documents

Publication Publication Date Title
Van de Pol et al. A thermopneumatic micropump based on micro-engineering techniques
US10221843B2 (en) Systems and methods for supplying reduced pressure and measuring flow using a disc pump system
Gass et al. Integrated flow-regulated silicon micropump
Maillefer et al. A high-performance silicon micropump for an implantable drug delivery system
Kuoni et al. Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor
AU609804B2 (en) Pressure sensor assembly for disposable pump cassette
US6230731B1 (en) Valve closure seating method and apparatus
CA1209481A (en) Fuel mass flow measurement and control system
JP5933936B2 (en) Flow measurement system, flow control system, and flow measurement device
CA2014235A1 (en) Micropump having a constant output
WO2020062882A1 (en) Microfluidic pump-based infusion anomaly state detection and control system
WO2006120881A1 (en) Chemical supply system and chemical supply pump
WO1993004963A1 (en) Vacuum-chuck ascertaining apparatus and vacuum-chuck ascertaining pressure level setting method
Li et al. Development of a high differential pressure piezoelectric active proportional regulation valve using a bending transducer
US20080296523A1 (en) Low-power piezoelectric micro-machined valve
JPH01227882A (en) Slight flow rate pump
US4564340A (en) Device for regulating the pressure and feed volume of a diaphragm pump
Martin et al. Strain gauge pressure and volume-flow transducers made by thermoplastic molding and membrane transfer
US20120210798A1 (en) Pressure transducer arrangement
JPH06117377A (en) Fixed displacement pump
CN214911727U (en) Wheel type piezoelectric precision infusion pump with alarm function
JP2023529992A (en) Micromembrane pumping device
JPS6158712B2 (en)
Richter et al. Batch fabrication of silicon micropumps
Chen et al. Intelligent control of Piezoelectric Micropump based on MEMS flow sensor