JPH01227423A - Laser melting and recrystallization of semiconductor thin film - Google Patents

Laser melting and recrystallization of semiconductor thin film

Info

Publication number
JPH01227423A
JPH01227423A JP5328988A JP5328988A JPH01227423A JP H01227423 A JPH01227423 A JP H01227423A JP 5328988 A JP5328988 A JP 5328988A JP 5328988 A JP5328988 A JP 5328988A JP H01227423 A JPH01227423 A JP H01227423A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor
laser beams
cooling medium
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5328988A
Other languages
Japanese (ja)
Other versions
JP2631121B2 (en
Inventor
Konen Doi
土居 功年
Susumu Nanba
難波 進
Toshibumi Asakawa
浅川 俊文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP63053289A priority Critical patent/JP2631121B2/en
Publication of JPH01227423A publication Critical patent/JPH01227423A/en
Application granted granted Critical
Publication of JP2631121B2 publication Critical patent/JP2631121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable a semiconductor thin film to be recrystallized larger in grain than the conventional one, the crystallinity of a recrystallized region being not affected by an un-molten region adjacent to the side faces, by a method wherein laser beams are radiated with a cooling medium provided on the surface of a thin structure, so that thermal diffusion to the surface provided with the cooling medium is increased. CONSTITUTION:In the case where a semiconductor thin film 13 is irradiated with laser beams to melt the semiconductor and thereafter cooling is performed to recrystallize the semiconductor, the laser beams are radiated with a cooling medium 15 being provided on the surface of the thin film structure. For example, a silicon crystal substrate 11 is thermally cured to form a silicon dioxide thin film 12. Subsequently, a polycrystalline silicon thin film 13 with a thickness of 510nm is formed by a reduced pressure CVD method, and a silicon nitride thin film 14 is then formed. After the surface of the sample is covered with a polyethylene glycol 15 used as a cooling medium, argon ion laser beams with an optical output of 3W are condensed through a lens to apply them to the surface of the sample. In this connection, the sample is moved while being irradiated with the laser beams, and thereby a laser-melted and recrystallized layer is formed in a stripe with a width of 15-20mum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体デイバイスの作製技術に係わり、半導
体薄膜にレーザー光照射を行い、この半導体薄膜を溶融
および再結晶化させる方法に関す・るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a technology for manufacturing semiconductor devices, and relates to a method for melting and recrystallizing a semiconductor thin film by irradiating a semiconductor thin film with laser light. It is something.

(従来の技術とその課題) 既に、半導体薄膜にレーザー光を照射して前記薄膜を溶
融再結晶化する技術が公知である。
(Prior Art and its Problems) A technique is already known in which a semiconductor thin film is irradiated with laser light to melt and recrystallize the thin film.

第3図は従来の半一体薄膜の溶融再結晶化の方法を示す
もので、前記薄膜の断面形状の模式図である。例えば、
第3図において、半導体薄膜42は誘電体41と誘電体
43によって挟まれており、一方の誘電体41は機械的
強度を持つ基板として、また、他方の誘電体43は半導
体の溶融時の保護膜として用い4れていた。半導体薄膜
を溶融するためのレーザー光は、保護膜としての誘電体
43、即ち気体と接する誘電体薄膜43を通して照射さ
れていた。基板としての誘電体41は、板状の誘電体も
しくは半導体基板が用いられ、その上に誘電体薄膜を形
成して利用されていた。誘電体43は、熱伝導率の悪い
気体と接し、他方の透電体41は誘電体自体が比較的厚
く形成されているために、レーザー光の照射による上記
薄膜の局所的な加熱による溶融部44は、冷却条件の悪
い状況下に置かれており、冷却が主として溶融領域の側
面45に隣接する未溶融半導体薄膜領域46側への熱放
散によって行われていた。従って、従来のレーザー溶融
再結晶化技術には、再結晶化領域の結晶性が、側面に隣
接する未溶融領域46によって影響される欠点があり、
半導体デイバイス性能を阻害するという問題があった。
FIG. 3 shows a conventional method of melting and recrystallizing a semi-integral thin film, and is a schematic diagram of the cross-sectional shape of the thin film. for example,
In FIG. 3, a semiconductor thin film 42 is sandwiched between a dielectric 41 and a dielectric 43. One dielectric 41 serves as a substrate with mechanical strength, and the other dielectric 43 protects the semiconductor when it is melted. It was used as a membrane. Laser light for melting the semiconductor thin film was irradiated through the dielectric 43 serving as a protective film, that is, the dielectric thin film 43 in contact with gas. As the dielectric material 41 serving as the substrate, a plate-shaped dielectric material or a semiconductor substrate is used, and a dielectric thin film is formed thereon. The dielectric material 43 is in contact with a gas with poor thermal conductivity, and the other conductive material 41 has a relatively thick dielectric material, so that melted portions may occur due to local heating of the thin film by laser beam irradiation. 44 was placed under poor cooling conditions, and cooling was performed mainly by heat dissipation to the side of the unmelted semiconductor thin film region 46 adjacent to the side surface 45 of the melted region. Therefore, the conventional laser melting recrystallization technique has the disadvantage that the crystallinity of the recrystallized region is influenced by the unmelted regions 46 adjacent to the sides.
There was a problem in that it inhibited semiconductor device performance.

(課題を解決するための手段) 本発明はこれらの欠点を解決するために、薄膜構造の表
面に冷却媒体を設けた状態でレーザー光を照射する。
(Means for Solving the Problems) In order to solve these drawbacks, the present invention irradiates laser light with a cooling medium provided on the surface of a thin film structure.

本発明に用いることができる冷媒とししては、一般に表
面活性剤として知られるポリエチレンエ−テ、ポリエチ
レンエーテル、ポリエチレンエステル、ポリプロピレン
オキシド等を用いることができる。
As the refrigerant that can be used in the present invention, polyethylene ether, polyethylene ether, polyethylene ester, polypropylene oxide, etc., which are generally known as surfactants, can be used.

(作 用) これにより、半導体薄膜の冷却媒体を設けた面方向への
熱放散が大きくなり、これにより再結晶化領域の結晶性
が側面に隣接する未溶融領域によって影響されない。
(Function) This increases heat dissipation in the direction of the surface of the semiconductor thin film on which the cooling medium is provided, so that the crystallinity of the recrystallized region is not affected by the unmelted region adjacent to the side surface.

また、冷媒に用いるポリエチレングリコールはレーザー
光の熱によって水のように沸騰することがなく、前記液
膜は静穏な状態で保持されるため、気泡の発生による薄
膜の割れも生じない。
Furthermore, the polyethylene glycol used as the refrigerant does not boil like water due to the heat of the laser beam, and the liquid film is maintained in a quiet state, so that the thin film does not crack due to the generation of bubbles.

(発明の効果) 本発明によって、結晶のグレインサイズは従来のレーザ
ー溶融再結晶化方法によるよりも著しく大きなグレイン
で再結晶化することが可能になり、種々の半導体薄膜素
子の高性能化が容易になった。
(Effects of the Invention) According to the present invention, it is possible to recrystallize crystal grains with a significantly larger grain size than in the conventional laser melting recrystallization method, and it is easy to improve the performance of various semiconductor thin film devices. Became.

(実施例) 以下に本発明の実施例を図面を用いて詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明を適用したシリコン薄膜のし溶融再結
晶化方法の第1の実施例を示す図である。
FIG. 1 is a diagram showing a first embodiment of a method for melting and recrystallizing a silicon thin film to which the present invention is applied.

最初にシリコン基板結晶11を熱酸化して二酸化シリコ
ン薄膜12を560nmの薄膜で形成した。
First, a silicon substrate crystal 11 was thermally oxidized to form a silicon dioxide thin film 12 with a thickness of 560 nm.

次に、減圧CVD法(Chemical Vapor 
Deposition)によりシリコン多結晶薄膜13
を510nmの薄膜で形成し、続いて窒化シリコン薄膜
14を80nmの膜厚で形成した。最後に冷却媒体とし
て用いたポリエチグリコール15でサンプルの表面を覆
った後に、光出力3ワツトのアルゴンイオンレーザ−を
レンズで集光してサンプル表面に照射した。レーザー光
を照射しながらサンプルを移動させることにより、15
−20μm幅のストライブ状に、レーザー溶融再結晶化
層を形成した。
Next, low pressure CVD method (Chemical Vapor
Silicon polycrystalline thin film 13
was formed as a thin film of 510 nm, and then a silicon nitride thin film 14 was formed with a thickness of 80 nm. Finally, after covering the surface of the sample with polyethyglycol 15 used as a cooling medium, an argon ion laser with an optical output of 3 watts was focused by a lens and irradiated onto the sample surface. By moving the sample while irradiating the laser beam, 15
A laser-melted recrystallized layer was formed in stripes with a width of −20 μm.

この様にして得られた再結晶化層においては、グレイン
ウオールが極端に少なく、グレインサイズの巨大化が起
こっていることが分かった。
It was found that in the recrystallized layer obtained in this manner, there were extremely few grain walls, and the grain size was enlarged.

本発明のレーザー溶融再結晶化方法は、レーザー光照射
により生じたシリコンの溶融領域が窒化シリコン薄膜を
介して接するポリエチレングリコールの液膜により、放
熱面積の大きい表面方向から冷却が行えるような構成に
なっているため、更にレーザー光照射による局所的な加
熱をポリエチレングリコールの液膜面に分散させ、冷却
効果が素子の全面に拡散して緩和されるので、溶融領域
の側面方向への熱放散が主となる従来法で生じる側面方
向からのグレインの成長が抑制される。
The laser melting recrystallization method of the present invention has a structure in which the molten region of silicon generated by laser beam irradiation is cooled from the surface direction where the heat radiation area is large by a polyethylene glycol liquid film in contact with the silicon nitride thin film. Furthermore, the local heating caused by laser beam irradiation is dispersed on the surface of the polyethylene glycol liquid film, and the cooling effect is diffused and alleviated over the entire surface of the element, reducing heat dissipation in the lateral direction of the molten region. Grain growth from the lateral direction, which occurs in the main conventional method, is suppressed.

第2図は、本発明を適用したシリコン薄膜のレーザー溶
融再結晶化方法の第2の実施例を示す膜の断面図である
。シリコン基板結晶21上への二酸化シリコン薄膜22
、シリコン多結晶薄膜23、窒化シリコン薄膜24の形
成方法は、第1の実施例と同じである。本実施例では窒
化シリコン薄膜24の上に、減圧CVD法により、二酸
化シリコン薄膜25を100nrnの膜厚で形成した。
FIG. 2 is a sectional view of a film showing a second embodiment of a method for laser melting and recrystallization of a silicon thin film to which the present invention is applied. Silicon dioxide thin film 22 on silicon substrate crystal 21
The methods of forming the silicon polycrystalline thin film 23 and the silicon nitride thin film 24 are the same as in the first embodiment. In this example, a silicon dioxide thin film 25 with a thickness of 100 nrn was formed on the silicon nitride thin film 24 by low pressure CVD.

更に、本実施例では、ポリエチレングリコール26でサ
ンプルの表面を覆った後に、ポリエチレングリコールの
表面に接して、光学ガラス板27を設置した。ポリエチ
レングリコールは、窒化シリコンとにより、二酸化シリ
コンとの方が濡れ性が良いこと、および光学ガラス板の
設置により二液状のポリエチレングリコール層の厚さを
均一にできたことが原因となり、第1の実施例における
効果を損なうことなく、実験の再現性を著しく改善でき
た。
Furthermore, in this example, after covering the surface of the sample with polyethylene glycol 26, an optical glass plate 27 was placed in contact with the surface of the polyethylene glycol. Polyethylene glycol has better wettability with silicon dioxide than with silicon nitride, and the thickness of the two-component polyethylene glycol layer can be made uniform by installing an optical glass plate. The reproducibility of experiments was significantly improved without impairing the effects in the examples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を適用したシリコン薄膜のレーデ−溶
融再結晶化方法の第1の実施例を示す断面図、 第2図は、本発明を適用したシリコン薄膜のレーザー溶
融再結晶化方法の第2の実施例を示す断面図、および 第3図は従来の半導体薄膜の溶融再結晶化の方法を示す
図である。 (符号の説明) 11.21・・・シリコン基板結晶、 12.22.25・・・二酸化シリコン薄膜、13・・
・シリコン多結晶薄膜、 14.24・・・窒化シリコン薄膜、 15.26・・・ポリエチレングリコール、17・・・
光学ガラス、 23・・・シリコン薄膜、 41.43・・・誘電体、 42・・・半導体薄膜、 16.28.44・・・溶融部、 45・・・溶融領域側面、 46・・・未溶融半導体薄膜領域。 レーサー光 、°、°、゛ゾ、゛イi、゛、°°゛・ ゛ パ8 二
、゛パ、°・°、°、ぐ:゛パ     ″レープ2光
FIG. 1 is a sectional view showing a first embodiment of a method for laser melting and recrystallization of a silicon thin film to which the present invention is applied. FIG. 2 is a cross-sectional view showing a method for laser melting and recrystallization of a silicon thin film to which the present invention is applied. FIG. 3 is a cross-sectional view showing the second embodiment of the present invention, and FIG. 3 is a diagram showing a conventional method of melting and recrystallizing a semiconductor thin film. (Explanation of symbols) 11.21...Silicon substrate crystal, 12.22.25...Silicon dioxide thin film, 13...
・Silicon polycrystalline thin film, 14.24...Silicon nitride thin film, 15.26...Polyethylene glycol, 17...
Optical glass, 23...Silicon thin film, 41.43...Dielectric material, 42...Semiconductor thin film, 16.28.44...Melted part, 45...Melted region side surface, 46...Not yet Molten semiconductor thin film area. Racer light, °, °, ゛zo, ゛iii, ゛, °°゛・゛ Pa 8 2, ゛pa, °・°, °, gu:゛pa ″Rep 2 light

Claims (1)

【特許請求の範囲】[Claims]  半導体薄膜にレーザー光を照射し、この半導体を溶融
させた後、冷却してこの半導体を再結晶化する方法にお
いて、薄膜構造の表面に冷却媒体を設けた状態で前記レ
ーザー光を照射することを特徴とする半導体薄膜のレー
ザー溶融再結晶化方法。
In a method of irradiating a semiconductor thin film with a laser beam, melting the semiconductor, and then cooling the semiconductor to recrystallize the semiconductor, the laser beam may be irradiated with a cooling medium provided on the surface of the thin film structure. Characteristic method for laser melting and recrystallization of semiconductor thin films.
JP63053289A 1988-03-07 1988-03-07 Laser melting recrystallization method of semiconductor thin film Expired - Lifetime JP2631121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053289A JP2631121B2 (en) 1988-03-07 1988-03-07 Laser melting recrystallization method of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053289A JP2631121B2 (en) 1988-03-07 1988-03-07 Laser melting recrystallization method of semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH01227423A true JPH01227423A (en) 1989-09-11
JP2631121B2 JP2631121B2 (en) 1997-07-16

Family

ID=12938562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053289A Expired - Lifetime JP2631121B2 (en) 1988-03-07 1988-03-07 Laser melting recrystallization method of semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2631121B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077235A (en) * 1989-01-24 1991-12-31 Ricoh Comany, Ltd. Method of manufacturing a semiconductor integrated circuit device having SOI structure
US5173446A (en) * 1988-06-28 1992-12-22 Ricoh Company, Ltd. Semiconductor substrate manufacturing by recrystallization using a cooling medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144785A (en) * 1984-08-08 1986-03-04 Sony Corp Manufacture of thin film of semiconductor single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144785A (en) * 1984-08-08 1986-03-04 Sony Corp Manufacture of thin film of semiconductor single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173446A (en) * 1988-06-28 1992-12-22 Ricoh Company, Ltd. Semiconductor substrate manufacturing by recrystallization using a cooling medium
US5077235A (en) * 1989-01-24 1991-12-31 Ricoh Comany, Ltd. Method of manufacturing a semiconductor integrated circuit device having SOI structure

Also Published As

Publication number Publication date
JP2631121B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
US6602765B2 (en) Fabrication method of thin-film semiconductor device
JP2001007045A (en) Optical system for laser thermal treatment and laser thermal treatment apparatus
US5264072A (en) Method for recrystallizing conductive films by an indirect-heating with a thermal-conduction-controlling layer
JPS62181419A (en) Recrystallization method of polycrystalline silicon
KR900002686B1 (en) Recrystalizing method for conductor film
JPH01227423A (en) Laser melting and recrystallization of semiconductor thin film
US4431900A (en) Laser induced flow Ge-O based materials
JPH027415A (en) Formation of soi thin film
JPH0556314B2 (en)
US4542037A (en) Laser induced flow of glass bonded materials
GB2194847A (en) Image converter
JPH08203822A (en) Thin film semiconductor material forming apparatus
JPH02297923A (en) Recrystallizing method for polycrystalline silicon
JPS61226916A (en) Inversion of polycrystal semiconductor material to monocrystal semiconductor material
JP2996997B2 (en) Laser melting recrystallization method for semiconductor thin film
JPS59158514A (en) Manufacture of semiconductor device
JPS5825220A (en) Manufacture of semiconductor substrate
JPH0287519A (en) Manufacture of single crystal semiconductor thin film
JPS6170713A (en) Recrystallizing method of silicon film
JPS6170714A (en) Recrystallizing method of silicon film
JPS6380521A (en) Manufacture of semiconductor thin film crystal layer
JPS61142735A (en) Manufacture of semiconductor single crystal thin film
JPS62262415A (en) Formation of semiconductor single crystal
JPH03138925A (en) Semiconductor-film crystallizing method
JPH027414A (en) Formation of soi thin film