JPH0122738B2 - - Google Patents

Info

Publication number
JPH0122738B2
JPH0122738B2 JP4293484A JP4293484A JPH0122738B2 JP H0122738 B2 JPH0122738 B2 JP H0122738B2 JP 4293484 A JP4293484 A JP 4293484A JP 4293484 A JP4293484 A JP 4293484A JP H0122738 B2 JPH0122738 B2 JP H0122738B2
Authority
JP
Japan
Prior art keywords
film
pattern
deposited
opening
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4293484A
Other languages
Japanese (ja)
Other versions
JPS60189241A (en
Inventor
Tooru Mogami
Mitsutaka Morimoto
Hidekazu Okabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4293484A priority Critical patent/JPS60189241A/en
Publication of JPS60189241A publication Critical patent/JPS60189241A/en
Publication of JPH0122738B2 publication Critical patent/JPH0122738B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、段差の被覆方法に関するもので、特
に多層配線あるいは微細な開孔部の側面など急峻
な段差を持つ表面に導体膜を形成する方法に関す
るものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for covering steps, and in particular, to forming a conductive film on a surface with a steep step such as a multilayer wiring or the side surface of a minute opening. It is about the method.

(従来技術とその欠点) 例えば半導体装置において配線を行う場合に
は、微細な開孔部を有する下地絶縁膜上に導体膜
を被着することによりなされる。この時、従来の
スパツタ法あるいは蒸着法によれば開孔部の段差
の肩部分で配線が切れたり薄くなつたりし易く、
LSIの製造歩留まりや信頼性が著しく低下してい
た。こうした欠点を防ぐため、微細な開孔部の側
面をテーパー形状として傾斜を持たせ導体膜が均
一に被着するような形状が用いられるようになつ
てきているが、微細な開孔部の側面に傾斜を持た
せることはLSIの高集積化を阻害することにな
り、好ましい改善法ではない。そのため急峻で深
い段差に対して段差被覆性の良い状態で導体膜を
被着する方法が提案されており、そのうちの1つ
としてアルミニウム減圧CVD法がある。アルミ
ニウム膜を減圧CVD法により被着することによ
り段差被覆性の良い膜が形成されることはM.J.
Cooke氏らによりソリツド・ステイト・テクノロ
ジー(Solid State Technology)誌第25巻第12
号62頁〜65頁に報告されている。しかし多層配線
構造においては段差被覆性の良い膜形成法を用い
ても、段差の累積に伴い上層ほどパターンの寸法
加工精度が悪くなるという欠点がある。
(Prior Art and Its Disadvantages) For example, in the case of wiring in a semiconductor device, a conductive film is deposited on a base insulating film having fine openings. At this time, if the conventional sputtering method or vapor deposition method is used, the wiring tends to break or become thin at the shoulder part of the step of the opening.
The manufacturing yield and reliability of LSIs had decreased significantly. In order to prevent these drawbacks, the side surfaces of minute openings are now tapered and sloped so that the conductive film can be coated uniformly. Giving a slope to the LSI impedes high integration of LSIs and is not a preferable improvement method. Therefore, methods have been proposed for depositing a conductive film with good step coverage on steep and deep steps, and one of these methods is the aluminum low pressure CVD method. MJ has shown that a film with good step coverage can be formed by depositing an aluminum film using the low pressure CVD method.
Cooke et al., Solid State Technology, Volume 25, No. 12
No. 62-65. However, in a multilayer wiring structure, even if a film forming method with good step coverage is used, there is a drawback that the pattern dimensional processing accuracy becomes worse as the steps are accumulated in the upper layers.

LSIあるいはVLSIの配線のような多層薄膜構
造での微細な開孔部上への導体膜被着において重
要なことは、1つは微細な開孔部を導体膜にマイ
クロクラツクを生じずに埋めること、もう1つは
微細な開孔部を埋めるように導体膜が被着された
後、表面が平坦になることの2つである。特に
LSIの高集積化,多層化を計り、高い信頼性を得
るためにはこの2つは極めて重要である。
When depositing a conductor film over the fine openings in a multilayer thin film structure such as LSI or VLSI wiring, one important thing is to cover the fine openings without causing microcracks in the conductor film. One is to fill the minute openings, and the other is to make the surface flat after a conductive film is deposited to fill the minute openings. especially
These two factors are extremely important for increasing the integration and multilayering of LSIs and achieving high reliability.

バイアススパツタ法は膜質の改善法としてと共
に凹凸のある下地上に被着膜にマイクロクラツク
を生じずかつ平坦に膜を被着する方法として知ら
れている。バイアススパツタ法においてはターゲ
ツト材料の基板上への被着と逆スパツタによる基
板上被着膜のエツチングとが同時進行しており、
実効的には被着とエツチングの差だけの被着速度
あるいはエツチング速度が得られる。また被着速
度とエツチング速度は基板下地膜の傾斜面の角度
に各々独立に依存し、実効的な被着速度も下地膜
の傾斜角度によつて異なり、バイアス電圧などの
条件を適当に選べば段差のある表面上に、ある程
度平坦な導体膜被着が可能である。その平坦化は
例えば第1図a〜dに示すようにして行われる。
この図は、C.Y.Ting氏らがジヤーナル・オブ・
バキユーム・サイエンス・アンド・テクノロジー
(Journal of Vacuum Science and
Technology)誌第15巻第3号1105頁〜1112頁に
おいて説明しているモデルと基本的に同じであ
る。第1図aは平坦な表面を持つシリコン基板
101上にシリコン酸化膜等の絶縁膜102を被着
した後、通常のホトレジスト工程とドライエツチ
ング工程を経て、開孔部103を形成した状態を
示す。次いで第1図bはシヤドー効果の生じない
スパツタ条件でのバイアススパツタ法で導体膜1
04を絶縁膜102の厚さとほぼ同程度の厚さに
なるまで被着した状態を示す。この時点で、絶縁
膜102上に被着される導体膜104の断面は絶
縁膜との界面を下底とし、バイアス電圧によつて
決まるテーパ角θを持つ台形となる。さらに第1
図cは同じスパツタ条件で更に導体膜104の被
着を続けた状態を示す。導体膜104の傾斜面は
前記テーパ角θの角度を維持し、かつ開孔部10
3が形成されたことによる絶縁膜段差の肩部付近
から延びる破線の延長上に形成される。従つて同
じスパツタ条件で導体膜104の被着を続ければ
台形の上底の長さは次第に減少し、最終的には第
1図dに示すように全くなくなり平坦化が達成さ
れる。この時絶縁膜上の導体膜の厚さは開孔部間
の絶縁膜幅をWとした時、W・tanθ/2で与えら
れることになる。平坦化の観点から考えるとθ=
0゜が最も望ましいが第1図a〜dのように単一の
スパツタ条件で導体膜の被着と平坦化を行おうと
すると、θの値は30゜あるいはそれ以上になるの
が普通で、例えばθの値が30゜、Wの値が20μmと
すると第1図dの平坦な表面が得られるためには
導体膜が6μm程度と厚過ぎる状態になるのが普通
であつた。このため第1図dのごとき状態まで高
周波バイアススパツタ法で導体膜を被着した後、
逆スパツタにより導体膜をエツチバツクする方法
が提案された。しかしながら逆スパツタによるエ
ツチングでは、エツチング速度が極めて遅いため
導体膜の被着時間とエツチバツク時間の和は膨大
なものとなり現実的でなかつた。このようにバイ
アススパツタ法における平坦化の欠点は開孔部の
面積が小さく、平坦化する段差上の面積が大きい
場合に、数十時間という長い時間が必要とされ、
また多層薄膜構造において必要とされる膜厚以上
の膜被着が必要とされることである。
The bias sputtering method is known as a method for improving film quality and for depositing a film flatly on an uneven substrate without causing microcracks in the deposited film. In the bias sputtering method, the deposition of the target material on the substrate and the etching of the deposited film on the substrate by reverse sputtering proceed simultaneously.
Effectively, a deposition or etching rate equal to the difference between deposition and etching can be obtained. In addition, the deposition rate and etching rate each independently depend on the angle of the slope of the substrate underlying film, and the effective deposition rate also varies depending on the slope angle of the underlying film. It is possible to deposit a somewhat flat conductor film on a surface with steps. The planarization is performed, for example, as shown in FIGS. 1a to 1d.
This figure was published by CYTing et al. in the Journal of
Journal of Vacuum Science and Technology
This model is basically the same as the model described in vol. 15, no. 3, pages 1105 to 1112 of ``Technology'' magazine. Figure 1 a shows a silicon substrate with a flat surface.
A state in which an insulating film 102 such as a silicon oxide film is deposited on 101 and an opening 103 is formed through a normal photoresist process and a dry etching process is shown. Next, in FIG. 1b, a conductor film 1 is formed using a bias sputtering method under sputtering conditions that do not cause shadow effects.
04 is deposited to a thickness approximately equal to that of the insulating film 102. At this point, the cross section of the conductive film 104 deposited on the insulating film 102 has a trapezoidal shape with the bottom base at the interface with the insulating film and a taper angle θ determined by the bias voltage. Furthermore, the first
Figure c shows a state in which the conductive film 104 was further deposited under the same sputtering conditions. The inclined surface of the conductor film 104 maintains the taper angle θ and the opening 10
3 is formed on the extension of the broken line extending from the vicinity of the shoulder of the insulating film step caused by the formation of the insulating film step. Therefore, if the conductive film 104 is continued to be deposited under the same sputtering conditions, the length of the upper base of the trapezoid will gradually decrease and eventually disappear completely as shown in FIG. 1d, achieving flattening. At this time, the thickness of the conductor film on the insulating film is given by W·tanθ/2, where W is the width of the insulating film between the openings. From the perspective of flattening, θ=
The most desirable value is 0°, but when attempting to deposit and planarize a conductor film under a single sputtering condition as shown in Figures 1a to d, the value of θ is usually 30° or more. For example, when the value of θ is 30° and the value of W is 20 μm, the conductor film is usually too thick, about 6 μm, in order to obtain the flat surface shown in FIG. 1d. For this reason, after depositing the conductor film by high frequency bias sputtering method until the state shown in Fig. 1 d,
A method of etching back a conductive film using reverse sputtering has been proposed. However, in the case of etching by reverse sputtering, the etching speed is extremely slow and the sum of the time for depositing the conductor film and the time for etching back becomes enormous, making it impractical. As described above, the disadvantage of planarization using the bias sputtering method is that the area of the opening is small and when the area on the step to be flattened is large, a long time of several tens of hours is required.
Further, it is necessary to deposit a film with a thickness greater than that required in a multilayer thin film structure.

(発明の目的) 本発明の目的は、以上述べたごとき従来の段差
の被覆方法の問題点を解決することであり、特に
微細な開孔部を被着導体膜にマイクロクラツクを
生じずかつ平坦にしかも短時間に導体膜で埋め込
む段差の被覆方法を提供することにある。
(Objective of the Invention) The object of the present invention is to solve the problems of the conventional method of covering steps as described above, and in particular, to solve the problems of the conventional method of covering steps. It is an object of the present invention to provide a method for covering steps that is flattened and filled with a conductive film in a short time.

(発明の構成) 本発明によれば、表面に絶縁膜のパターンが形
成された基板に対してバイアススパツタ法を用い
て前記絶縁膜のパターンを導体膜で埋め込む段差
の被覆方法において、被着導体膜にマイクロクラ
ツクを生じずかつ下地基板においてパターン段差
の底部に沿つて溝が生じないスパツタ条件で前記
パターンをパターンの高さの一部まで一埋め込む
第1の工程と、前記パターンにおいてまだ埋め込
まれていない部分を、被着導体膜にマイクロクラ
ツクがなくかつパターンの間の平坦面の被着導体
膜の膜厚がパターンの段差の高さとパターンの段
差上の平坦面の被着導体膜の膜厚との和にほぼ等
しくなるスパツタ条件により埋め込む第2の工程
とを含むことを特徴とする段差の被覆方法が得ら
れる。
(Structure of the Invention) According to the present invention, in a method for covering a step in which a substrate having an insulating film pattern formed on its surface is filled with a conductive film using a bias sputtering method, a first step of embedding the pattern up to part of the height of the pattern under sputtering conditions that do not cause microcracks in the conductor film and do not form grooves along the bottom of the pattern step in the underlying substrate; The unembedded portion is determined by determining whether there are no microcracks in the adhered conductor film and the thickness of the adhered conductor film on the flat surface between the patterns is equal to the height of the pattern step and the adhered conductor film on the flat surface above the pattern step. There is obtained a method for covering a step, which is characterized by including a second step of embedding using sputtering conditions that are approximately equal to the sum of the thickness of the film.

(発明の基となつた実験事実) 本発明は発明者らが高周波バイアススパツタ法
について行つた詳細な実験とその実験結果に基づ
くものである。発明者らは段差被覆材料としてア
ルミニウム,モリブデン,不純物をドープした多
結晶シリコンやシリサイドなどを用い、絶縁膜と
してシリコン酸化膜やシリコン窒化膜などを用い
て高周波バイアススパツタ法の実験を続けてきた
が、以下の事実を知るに到つた。
(Experimental facts on which the invention is based) The present invention is based on detailed experiments conducted by the inventors on the high frequency bias sputtering method and the results of the experiments. The inventors have continued to experiment with the high-frequency bias sputtering method using aluminum, molybdenum, impurity-doped polycrystalline silicon, silicide, etc. as the step covering material, and silicon oxide film, silicon nitride film, etc. as the insulating film. However, I came to know the following facts.

段差被覆材料としてモリブデンを用い絶縁膜と
してシリコン酸化膜を用いた場合で説明すると、
表面に直径2.5μm、深さ1μmで急峻な側面を有す
るシリコン酸化膜の開孔部が形成されたシリコン
基板に対して、アルゴンガス圧3mTorr、電極間
距離95mmのスパツタ条件でターゲツトのモリブデ
ン側に5.7W/cm2の電力密度を印加し基板側に印
加する高周波(13.56MHz)バイアス電圧をパラ
メータとして0Vから−700Vまで100Vおきに変化
させると、高周波バイアス電圧が−300V以下で
はシヤドー効果のため開孔部内を被着膜にマイク
ロクラツクを生じずに埋め込むことができなかつ
たが、−400V以上になると開孔部内をモリブデン
膜にマイクロクラツクを生じずに埋め込むことが
可能となる。さらに600Vになると第2図にその
模式的断面図を示すように、開孔部内にモリブデ
ン膜203がマイクロクラツクなしで被着するだ
けでなく、開孔部内の平坦面に被着したモリブデ
ン膜の膜厚がパターンの段差上の平坦面に被着し
たモリブデン膜の膜厚の約1.5倍となつた。この
現象は開孔部内の側面に被着したモリブデン膜の
逆スパツタされたものが開孔部内の平坦面に再付
着するためであると考えられる。
To explain the case where molybdenum is used as the step covering material and silicon oxide film is used as the insulating film,
A silicon substrate with a silicon oxide film opening having a steep side surface of 2.5 μm in diameter and 1 μm in depth was formed on the molybdenum side of the target under sputtering conditions with an argon gas pressure of 3 mTorr and an electrode distance of 95 mm. When applying a power density of 5.7 W/cm 2 and changing the high frequency (13.56 MHz) bias voltage applied to the substrate side as a parameter from 0 V to -700 V in 100 V increments, when the high frequency bias voltage is below -300 V, due to the shadow effect. It was not possible to fill the inside of the opening in the deposited film without causing microcracks, but when the voltage exceeds -400V, it becomes possible to fill the inside of the opening in the molybdenum film without causing microcracks. Furthermore, when the voltage is increased to 600V, as shown in the schematic cross-sectional view of FIG. The thickness of the molybdenum film was approximately 1.5 times that of the molybdenum film deposited on the flat surface of the pattern. This phenomenon is thought to be due to the reverse sputtering of the molybdenum film deposited on the side surfaces inside the opening and re-adhering to the flat surface inside the opening.

よつて開孔部内の平坦面に被着したモリブデン
膜の膜厚とパターンの段差上の平坦面に被着した
モリブデン膜の膜厚との比率を高周波バイアス電
圧あるいはその他のスパツタ条件を適当に調節す
ることにより1倍以上にすることが可能である。
例えば、高周波バイアス電圧−600Vのスパツタ
条件でパターン段差上の平坦面に1.3μmのモリブ
デン膜を被着すると、開孔部内には約2μmの膜被
着がなされ、導体膜表面の段差は0.3μmまで減少
する。しかしながら、−600Vの高周波バアス電圧
では第2図に示すように下地シリコン基板におい
て段差の底部に沿つて溝204が生じた。従つ
て、膜被着の初期においては、下地シリコン基板
の段差の底部に沿つて溝が生じない比較的低い高
周波バイアス電圧条件を用いることが必要である
ことがわかつた。
Therefore, the ratio between the thickness of the molybdenum film deposited on the flat surface inside the opening and the thickness of the molybdenum film deposited on the flat surface above the step of the pattern can be adjusted appropriately by adjusting the high frequency bias voltage or other sputtering conditions. By doing so, it is possible to increase the number by one or more times.
For example, when a 1.3 μm molybdenum film is deposited on a flat surface on a pattern step under sputtering conditions with a high frequency bias voltage of -600 V, approximately 2 μm of film is deposited inside the opening, and the step on the conductor film surface is 0.3 μm. decreases to However, at a high frequency bias voltage of -600V, a groove 204 was formed along the bottom of the step in the underlying silicon substrate as shown in FIG. Therefore, it has been found that at the initial stage of film deposition, it is necessary to use relatively low high frequency bias voltage conditions that do not cause grooves to form along the bottoms of the steps in the underlying silicon substrate.

(実施例) 以下、本発明について実施例を示す図面を参照
して説明する。第3図a〜cは一実施例を工程を
追つて順次示した模式的断面図である。
(Example) Hereinafter, the present invention will be described with reference to drawings showing examples. FIGS. 3a to 3c are schematic sectional views sequentially showing one embodiment step by step.

第3図aは平坦な表面を持つ単結晶シリコン基
板301上にシリコン酸化膜302を厚さ約1μm
だけCVD法で被着した後、通常のホトレジスト
工程と異方性ドライエツチング工程を経て直径
2.5μmの開孔部を形成した状態を示す。
Figure 3a shows a silicon oxide film 302 with a thickness of about 1 μm on a single crystal silicon substrate 301 with a flat surface.
After being deposited using the CVD method, the diameter is
A state in which a 2.5 μm opening is formed is shown.

次いで第3図bに示すように開孔部内にモリブ
デン膜がマイクロクラツクなしで被着しかつ下地
シリコン基板において、開孔部の段差の底部に沿
つて溝が生じないスパツタ条件(アルゴンガス圧
3mTorr、電極間距離95mm、ターゲツト側電力密
度5.7W/cm2、高周波バイアス電圧−400V)での
高周波バイアススパツタでモリブデン膜303を
後にバイアス電圧を−700Vにした時、下地シリ
コン基板において絶縁膜の段差の底部に沿つて溝
が生じない厚さ(約0.1μm)だけ被着する。
Next, as shown in FIG. 3b, sputtering conditions (argon gas pressure) were used so that the molybdenum film was deposited within the opening without microcracks and no grooves were formed along the bottom of the step in the underlying silicon substrate.
After the molybdenum film 303 was formed by high-frequency bias sputtering at a temperature of 3 mTorr, a distance between electrodes of 95 mm, a power density of 5.7 W/cm 2 on the target side, and a high-frequency bias voltage of -400 V, the bias voltage was set to -700 V, an insulating film was formed on the underlying silicon substrate. It is applied to a thickness (approximately 0.1 μm) that does not create a groove along the bottom of the step.

次いで第3図cに示すごとく、開孔部内の平坦
面に被着するモリブデン膜の膜被着速度が開孔部
の段差上の平坦面に被着するモリブデン膜の膜被
着速度の約2倍となるスパツタ条件(アルゴンガ
ス圧3mTorr、電極間距離95mm、ターゲツト側電
力密度5.7W/cm2、高周波バイアス電圧−700V)
での高周波バイアススパツタでモリブデン膜30
4を開孔部の段差上の平坦面に約1μm被着する。
この条件では開孔部内には約2μmのモリブデン膜
が被着し、開孔部の段差上の平坦面には約1μmの
モリブデン膜が被着し、開孔部を有するシリコン
酸化膜上のモリブデン膜は殆ど平坦になる。
Next, as shown in FIG. 3c, the film deposition speed of the molybdenum film deposited on the flat surface inside the opening is approximately 2 times the film deposition speed of the molybdenum film deposited on the flat surface above the step of the opening. Sputtering conditions that double the amount (argon gas pressure 3mTorr, distance between electrodes 95mm, target side power density 5.7W/cm 2 , high frequency bias voltage -700V)
Molybdenum film 30 was formed using high frequency bias sputtering.
4 was applied to the flat surface on the step of the opening by about 1 μm.
Under these conditions, a molybdenum film of approximately 2 μm is deposited inside the opening, a molybdenum film of approximately 1 μm is deposited on the flat surface on the step of the opening, and a molybdenum film of approximately 1 μm is deposited on the silicon oxide film with the opening. The membrane becomes almost flat.

前記実施例においてはモリブデン膜を被着した
が何もこれに限る必要はなく、アルミニウム等の
他の金属,不純物をドープした多結晶シリコン、
シリサイド等の合金も用いることができる。さら
に前記実施例においてはバイアス電圧のみをパラ
メータとしたが何もこれに限る必要はなく、ター
ゲツト側電力密度や電極間距離といつた他のスパ
ツタ条件をパラメータとしても良い。ターゲツト
側電力密度を下げるとバイアス電圧を上げたのと
同じ効果がある。電極間距離を大きくするとバイ
アス電圧を上げたのと同じ効果がある。
In the above embodiments, a molybdenum film was deposited, but there is no need to limit it to this, and other metals such as aluminum, polycrystalline silicon doped with impurities,
Alloys such as silicide can also be used. Further, in the embodiments described above, only the bias voltage was used as a parameter, but there is no need to limit it to this, and other sputtering conditions such as the target side power density and the distance between electrodes may be used as parameters. Lowering the power density on the target side has the same effect as increasing the bias voltage. Increasing the distance between the electrodes has the same effect as increasing the bias voltage.

前記実施例では高周波バイアスを用いたが、直
流バイアスでもよい。
Although a high frequency bias was used in the above embodiment, a direct current bias may also be used.

(発明の効果) 以上説明したように、本発明は開孔部の平坦面
上への導体膜の膜被着速度と開孔部の段差上の平
坦面への導体膜の膜被着速度との比率を高周波バ
イアス電圧あるいはその他のスパツタ条件を調節
して1倍以上にする高周波バイアススパツタ法に
より行うものである。その結果、高周波バイアス
スパツタ法を用いて開孔部の面積が小さく、平坦
化する段差上の面積が大きい場合にスパツタ時間
を大幅(少なくとも1桁程度)に短縮できる。ま
た同一真空系内で膜を形成できるという利点はそ
のまま維持できる。
(Effects of the Invention) As explained above, the present invention improves the deposition speed of the conductor film onto the flat surface of the opening and the deposition speed of the conductor film onto the flat surface above the step of the opening. This is carried out by a high frequency bias sputtering method in which the ratio of 1 to 1 is increased by adjusting the high frequency bias voltage or other sputtering conditions. As a result, when the area of the opening is small and the area of the step to be flattened is large using the high-frequency bias sputtering method, the sputtering time can be significantly shortened (by at least one order of magnitude). Furthermore, the advantage of being able to form a film within the same vacuum system can be maintained.

以上説明したごとく、本発明によれば急峻な側
面を持つ開孔部においても、シヤドー効果を生じ
ることなく被着導体膜にマイクロクラツクを生じ
ずに導体膜で埋め込み、絶縁膜のパターン上に表
面が平坦になるように導体膜を形成することがで
きる。その結果多層配線構造の場合、上層に形成
される配線の段切れ、接触不良、寸法加工精度の
悪化が回避でき、それをLSIに使用した場合、信
頼性、集積度を飛躍的に向上することができる。
As explained above, according to the present invention, even an opening with a steep side surface can be filled with a conductive film without producing a shadow effect or causing microcracks in the deposited conductive film, and can be filled with a conductive film on a pattern of an insulating film. The conductive film can be formed so that the surface is flat. As a result, in the case of a multilayer wiring structure, it is possible to avoid disconnections in the wiring formed in the upper layer, poor contact, and deterioration of dimensional processing accuracy, and when used in LSI, reliability and integration can be dramatically improved. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜dは従来のバイアススパツタ法によ
る平坦化の一実施例を説明するための膜式的断面
図、第2図は直径2.5μm、深さ1μmのシリコン酸
化膜の開孔部が形成された基板に対してアルゴン
ガス圧3mTorr、電極間距離95mmのスパツタ条件
でターゲツト側電力密度5.7W/cm2、バイアス電
圧−600Vでモリブデンを被着した場合の開孔部
における模式的断面図、第3図a〜cは本発明の
方法の一実施例を説明するための模式的断面図で
ある。 101,201,301……シリコン基板、1
02,302……シリコン酸化膜等の絶縁膜、2
02……シリコン酸化膜、103……開孔部、1
04,303,304……モリブデン膜等の導体
膜、203……モリブデン膜、204……段差の
底部に沿つて生じた溝。
Figures 1 a to d are film-type cross-sectional views for explaining an example of planarization using the conventional bias sputtering method, and Figure 2 shows an opening in a silicon oxide film with a diameter of 2.5 μm and a depth of 1 μm. Schematic cross section at the opening when molybdenum is deposited on a substrate with a target side power density of 5.7 W/cm 2 and a bias voltage of -600 V under sputtering conditions with an argon gas pressure of 3 mTorr and an interelectrode distance of 95 mm. Figures 3a to 3c are schematic cross-sectional views for explaining one embodiment of the method of the present invention. 101, 201, 301...Silicon substrate, 1
02,302...Insulating film such as silicon oxide film, 2
02...Silicon oxide film, 103...Opening part, 1
04, 303, 304... Conductive film such as molybdenum film, 203... Molybdenum film, 204... Groove formed along the bottom of the step.

Claims (1)

【特許請求の範囲】[Claims] 1 表面に絶縁膜のパターンが形成された基板に
対してバイアススパツタ法を用いて前記絶縁膜の
パターンを導体膜で埋め込む段差の被覆方法にお
いて、被着導体膜にマイクロクラツクを生じずか
つ下地基板においてパターン段差の底部に沿つて
溝が生じないスパツタ条件で前記パターンをパタ
ーンの高さの一部まで埋め込む第1の工程と、前
記パターンにおいてまだ埋め込まれていない部分
を、被着導体膜にマイクロクラツクがなくかつパ
ターンの間の平坦面の被着導体膜の膜厚がパター
ンの段差の高さとパターンの段差上の平坦面の被
着導体膜の膜厚との和にほぼ等しくなるスパツタ
条件により埋め込む第2の工程とを含むことを特
徴とする段差の被覆方法。
1. A step covering method in which the insulating film pattern is filled with a conductive film using a bias sputtering method on a substrate having an insulating film pattern formed on the surface, which does not cause microcracks in the deposited conductive film. A first step of embedding the pattern up to a part of the height of the pattern under sputtering conditions that does not create a groove along the bottom of the pattern step in the base substrate, and filling the unfilled portion of the pattern with an adhered conductor film. There are no microcracks, and the thickness of the conductive film on the flat surface between the patterns is approximately equal to the sum of the height of the step in the pattern and the thickness of the conductive film on the flat surface above the step of the pattern. A method for covering a step, the method comprising: a second step of embedding under sputtering conditions.
JP4293484A 1984-03-08 1984-03-08 Coating method of step difference part Granted JPS60189241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4293484A JPS60189241A (en) 1984-03-08 1984-03-08 Coating method of step difference part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4293484A JPS60189241A (en) 1984-03-08 1984-03-08 Coating method of step difference part

Publications (2)

Publication Number Publication Date
JPS60189241A JPS60189241A (en) 1985-09-26
JPH0122738B2 true JPH0122738B2 (en) 1989-04-27

Family

ID=12649838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4293484A Granted JPS60189241A (en) 1984-03-08 1984-03-08 Coating method of step difference part

Country Status (1)

Country Link
JP (1) JPS60189241A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680736B2 (en) * 1987-10-21 1994-10-12 工業技術院長 Wiring formation method
JPH01107557A (en) * 1987-10-21 1989-04-25 Agency Of Ind Science & Technol Forming method for wiring

Also Published As

Publication number Publication date
JPS60189241A (en) 1985-09-26

Similar Documents

Publication Publication Date Title
EP0191057B1 (en) Electrical contact in semiconductor devices
US4523975A (en) Integrated circuit planarizing process
JPH0680737B2 (en) Method for manufacturing semiconductor device
JPH11500272A (en) Semiconductor manufacturing method for forming electrically conductive contact plug
EP0177105A2 (en) Method for providing a semiconductor device with planarized contacts
US4486464A (en) Method of making planarizing non-conductive layers employing conductive metals
JP2618460B2 (en) Method of forming electrical connection body
US4764483A (en) Method for burying a step in a semiconductor substrate
JPH02183534A (en) Method of forming tapered hole through insulating layer in order to form contact into integrated device
JPH0122738B2 (en)
US4749663A (en) Process of fabricating a semiconductor IC involving simultaneous sputter etching and deposition
US5930671A (en) CVD titanium silicide for contract hole plugs
KR100269926B1 (en) Method of forming wirings
JPH02143527A (en) Wiring formation
US5006916A (en) Vertical-walled contacts for VLSI semiconductor devices
JP2001519097A (en) Manufacturing method of planar trench
JPS6332260B2 (en)
KR0127271B1 (en) Metulizing method of semiontuctor device
JPS6052043A (en) Manufacture of wiring structure
JP2900888B2 (en) Method for manufacturing semiconductor device
JPS61179532A (en) Formation of contact electrode
JPS60233840A (en) Coating method for stepwise difference
JPH0552057B2 (en)
JPS6360551A (en) Mim structure capacitor
JPS6146051A (en) Wiring method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term