JPH0122734B2 - - Google Patents

Info

Publication number
JPH0122734B2
JPH0122734B2 JP56158391A JP15839181A JPH0122734B2 JP H0122734 B2 JPH0122734 B2 JP H0122734B2 JP 56158391 A JP56158391 A JP 56158391A JP 15839181 A JP15839181 A JP 15839181A JP H0122734 B2 JPH0122734 B2 JP H0122734B2
Authority
JP
Japan
Prior art keywords
contact forming
input gate
wiring layer
gate wiring
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56158391A
Other languages
Japanese (ja)
Other versions
JPS5858741A (en
Inventor
Kunimitsu Fujiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15839181A priority Critical patent/JPS5858741A/en
Publication of JPS5858741A publication Critical patent/JPS5858741A/en
Publication of JPH0122734B2 publication Critical patent/JPH0122734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明はレイアウトのし易いマスタースライス
方式の集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a master slice integrated circuit device that is easy to layout.

近年、通信装置や計算機等にマスタースライス
方式の集積回路装置が利用されることが多くなつ
てきた。マスタースライス方式の集積回路装置は
いくつかのトランジスタを規則的に配置してお
き、規則的な格子上で導電膜パターンを形成する
ことにより実現する。このため、設計期間が短
く、開発費用が少ないという特徴がある。
In recent years, master slice type integrated circuit devices have been increasingly used in communication devices, computers, and the like. A master slice type integrated circuit device is realized by regularly arranging several transistors and forming a conductive film pattern on a regular grid. Therefore, the design period is short and the development cost is low.

マスタースライス方式の集積回路装置にはアル
ミニウム(Al)導電膜パターンが2層のものと
1層のものがある。2層形式のものは自由度が高
くチツプ面積が小さく、特性が良くなるという特
長に反してマスクが3枚必要となり、1層形式の
1枚に比してコストが大きくなるという欠点があ
る。
There are two types of master slice type integrated circuit devices: one with two layers of aluminum (Al) conductive film pattern and the other with one layer. Although the two-layer type has the advantage of having a high degree of freedom, a small chip area, and good characteristics, it has the disadvantage that three masks are required, which increases the cost compared to one mask of the single-layer type.

第1図は従来の1層形式のマスタースライスの
基本セルの1例の平面図である。
FIG. 1 is a plan view of an example of a basic cell of a conventional single-layer master slice.

n型シリコン基板1にpウエル2を設け、pウ
エル2内のn+ソース・ドレイン領域4を設ける。
領域4に挾まれた部分12bはnチヤンネルであ
る。基板1の他の部分にp+ソース・ドレイン領
域3とpチヤンネル12aを設ける。これらの素
子領域上を薄いゲート酸化膜で覆い、その他の部
分を厚いフイールド酸化膜で覆い、ポリシリコン
膜でゲート電極8a,8b、フイールドスルー線
8cを設ける。これによりpチヤンネルMOSト
ランジスタとnチヤンネルMOSトランジスタが
得られる。これに各ソース・ドレイン層のコンタ
クト穴9a,9b、基板電圧印加用のn+層5と
そのコンタクト穴9cと、VDD線用Al導電膜11
a、pウエル電圧印加用のp+層6とそのコンタ
クト穴9dと、VSS線用Al導電膜11b、ポリシ
リコン層へのコンタクト穴9aを設ける。これに
よりマスタースライスの基本セルが得られる。
A p-well 2 is provided in an n-type silicon substrate 1, and an n + source/drain region 4 is provided within the p-well 2.
The portion 12b sandwiched between regions 4 is an n-channel. A p + source/drain region 3 and a p channel 12a are provided in other parts of the substrate 1. These element regions are covered with a thin gate oxide film, the other parts are covered with a thick field oxide film, and gate electrodes 8a, 8b and field through line 8c are provided with a polysilicon film. As a result, a p-channel MOS transistor and an n-channel MOS transistor are obtained. In addition, there are contact holes 9a and 9b for each source/drain layer, an N + layer 5 for applying substrate voltage and its contact hole 9c, and an Al conductive film 11 for the V DD line.
a. A p+ layer 6 for applying a p-well voltage and its contact hole 9d, an Al conductive film 11b for a V SS line, and a contact hole 9a to the polysilicon layer are provided. This yields the basic cell of the master slice.

機能回路の形成は破線で示すy格子10aと破
線で示むx格子10b上のAl導電膜パターンで
形成され、Al導電膜パターンはVDD線用Al導電膜
11a、VSS線用Al導電膜11a及びソース・レ
イン領域用コンタクト穴9bの群、ポリシリコン
層上のコンタクト穴9aの群間の結線を行なう。
The functional circuit is formed by an Al conductive film pattern on the y grid 10a shown by the broken line and the x grid 10b shown by the broken line, and the Al conductive film pattern includes an Al conductive film 11a for the VDD line and an Al conductive film for the VSS line 11a, a group of source/rain region contact holes 9b, and a group of contact holes 9a on the polysilicon layer.

この場合、y格子10aを通過するAl導電膜
パターンはどのような配線の位置関係に対しても
交差することなく結線が形成されるようにコンタ
クト穴9aの配置が問題となる。従来はy格子1
0aに対してずらした位置にコンタクト穴9aを
配置するが、この配置を検討するのに多大の時間
がかかつた。この場合、配置が複雑になり全体の
面積が大きくなると共に、配線設計が複雑な配置
のためにしにくく、誤りを発生させる原因となつ
ていた。
In this case, the problem is how to arrange the contact holes 9a so that the Al conductive film pattern passing through the y-lattice 10a can be connected without intersecting any positional relationship of the wirings. Conventionally, y grid 1
Although the contact hole 9a is arranged at a position shifted from 0a, it took a lot of time to consider this arrangement. In this case, the layout becomes complicated and the overall area increases, and the wiring design is difficult due to the complicated layout, leading to errors.

第2図a,bはマスタースライスを利用して形
成する機能回路の例の回路図である。
FIGS. 2a and 2b are circuit diagrams of examples of functional circuits formed using master slices.

第1図の基本セルでは第2図aの機能回路は容
易に作成することができるが、第2図bの機能回
路は実現することができない。第2図bの回路に
おいて、入力端子はA,φA,φBの3つが必要で
ある。しかし、第1図に示す従来の基本セルでは
入力点となるコンタクト穴は8a,8bの二つし
かないから第1図に示す基本セルでは第2図bの
回路を実現することができない。
Although the functional circuit shown in FIG. 2a can be easily created using the basic cell shown in FIG. 1, the functional circuit shown in FIG. 2b cannot be realized. In the circuit of FIG. 2b, three input terminals A, φ A , and φ B are required. However, since the conventional basic cell shown in FIG. 1 has only two contact holes 8a and 8b that serve as input points, the circuit shown in FIG. 2b cannot be realized with the basic cell shown in FIG.

このように従来のマスタースライスの基本セル
では配線レイアウトが複雑となり、設計しにくい
上に、機能回路の種類によつては実現できないと
いう欠点があつた。
As described above, the conventional master slice basic cell has the disadvantage that the wiring layout is complicated and difficult to design, and that it cannot be realized depending on the type of functional circuit.

本発明は上記欠点を除去し、コンタクト穴の配
置位置を配線の自由度を大きくして規則性を保
ち、配置がし易いマスタースライス方式の集積回
路装置を提供するものである。
The present invention eliminates the above-mentioned drawbacks, and provides a master slice type integrated circuit device that increases the degree of freedom in wiring the arrangement positions of contact holes, maintains regularity, and facilitates arrangement.

本発明の集積回路装置は、シリコン基板上にソ
ース・ドレイン領域により直列となつた複数個の
MOSトランジスタと、前記シリコン基板上に絶
縁膜を介して各MOSトランジスタ毎に設けられ
た入力ゲート用配線層と、前記ソース・ドレイン
領域と前記入力ゲート配線層との各々をつなぐ導
電配線とを有する集積回路装置において、前記入
力ゲート用配線層は少くとも両端を含む3個のコ
ンタクト形成部を有し、前記一つの入力ゲート用
配線層の該少なくとも3個のコンタクト形成部の
内の隣り合う第1のコンタクト形成部と第2のコ
ンタクト形成部の各々が該一つの入力ゲート用配
線層の左右に隣り合う入力ゲート用配線層の各々
の前記第1のコンタクト形成部と前記第2のコン
タクト形成部の各々を通る直線上にあり、かつ前
記第1コンタクト形成部との間には該コンタクト
形成部を通る直線と平行な少なくとも2本の導電
配線を有している。
The integrated circuit device of the present invention includes a plurality of circuits connected in series by source and drain regions on a silicon substrate.
A MOS transistor, an input gate wiring layer provided for each MOS transistor on the silicon substrate via an insulating film, and a conductive wiring connecting each of the source/drain regions and the input gate wiring layer. In the integrated circuit device, the input gate wiring layer has at least three contact forming portions including both ends, and adjacent contacts of the at least three contact forming portions of the one input gate wiring layer Each of the first contact forming part and the second contact forming part forms the first contact forming part and the second contact forming part of each input gate wiring layer adjacent to the left and right sides of the one input gate wiring layer. At least two conductive wires are disposed on a straight line passing through each of the contact forming parts and parallel to the straight line passing through the contact forming part between the contact forming part and the first contact forming part.

次に、本発明の実施例について図面を用いて説
明する。
Next, embodiments of the present invention will be described using the drawings.

第3図は本発明の一実施例の平面図である。 FIG. 3 is a plan view of one embodiment of the present invention.

半導体基板1にpウエル2、p+ソース・ドレ
イン領域3、n+ソース・ドレイン領域4、電圧
印加用のn+層5、p+層6を設けることは従来と
同じである。従来と異なる点はポリシリコン層8
d〜8jに形成されるコンタクト穴、例えば9
h1,9h2をy格子10a1,10a4の上に形成し、
中間に2個のy格子10a2,10a3を設ける。こ
こでポリシリコン8d,8fはp+ソース・ドレ
イン領域3を有するpチヤンネルMOSトランジ
スタ(以下p―MOSTと記す)の入力ゲート電
極、ポリシリコン8h,8jはn+ソース・ドレ
イン領域4を有するnチヤンネルMOSトランジ
スタ(以下n―MOSTと記す)の入力ゲート電
極、y格子10a0が基本セルの境界としたとき、
y格子10a0上のAl導電膜パターンとの交差回
避用のチヤンネル変更ポリシリコン層8e,8i
フイードスルー線8gである。P+ソース・ドレ
イン領域のコンタクト9bはy格子10a6,10
a9上にあり、ポリシリコン層コンタクト穴9h4
は9h5との間に少なくとも1個のy格子10a5
は10a10を設ける。ポリシリコン層8d〜8j
上のコンタクト穴は中心線X―X′に対してx及
びy格子で表わされる座標について対称であり、
p―MOSTの入力ゲート用ポリシリコン層8d,
8fはy格子10a11上でコンタクト穴9h5を有
し、n―MOSTの入力ゲート用ポリシリコン層
8h,8jとは接続していない。チヤンネル変更
用ポリシリコン層8eは入力ゲート用ポリシリコ
ン層8dと8fの間にあり、ポリシリコンを有し
ないx格子10b5が存在する。
Providing a p well 2, a p + source/drain region 3, an n + source/drain region 4, an n + layer 5 for voltage application, and a p + layer 6 in the semiconductor substrate 1 is the same as in the conventional case. The difference from the conventional one is the polysilicon layer 8.
Contact holes formed in d to 8j, e.g. 9
h 1 , 9h 2 are formed on the y grids 10a 1 , 10a 4 ,
Two y-grids 10a 2 and 10a 3 are provided in the middle. Here, polysilicon 8d and 8f are input gate electrodes of a p - channel MOS transistor (hereinafter referred to as p-MOST) having a p + source/drain region 3, and polysilicon 8h and 8j are n input gate electrodes having an n + source/drain region 4. When the input gate electrode of the channel MOS transistor (hereinafter referred to as n-MOST) and the y-lattice 10a 0 are the boundaries of the basic cell,
Channel changing polysilicon layers 8e, 8i for avoiding intersection with the Al conductive film pattern on the y-lattice 10a 0
The feed through wire is 8g. The contact 9b of the P + source/drain region is the y-lattice 10a 6 , 10
At least one y-grid 10a 5 or 10a 10 is provided on a 9 and between the polysilicon layer contact holes 9h 4 or 9h 5 . Polysilicon layers 8d to 8j
The upper contact hole is symmetrical about the center line X-X' with respect to the coordinates represented by the x and y grid,
Polysilicon layer 8d for input gate of p-MOST,
8f has a contact hole 9h5 on the y-lattice 10a11 , and is not connected to the input gate polysilicon layers 8h and 8j of the n-MOST. The channel changing polysilicon layer 8e is between the input gate polysilicon layers 8d and 8f, and there is an x-lattice 10b5 having no polysilicon.

基本セルの配列は、第3図の基本セルの左右に
はx格子10b0の位置に第3図の基本セルのx格
子10b6、又x格子10b7の位置に第3図の基本
セルのx格子10b1が第3図の基本セルが平行移
動する形で配置され、同様の方法が複数ケ横方向
に並べられる。又この複数ケの横方向並びが、第
3図のy格子10a0の位置に第3図の基本セルの
y格子10a0′が、又、第3図のy格子10a0′の
位置に第3図の基本セルのy格子10a0が配列さ
れる。
The arrangement of the basic cells is as follows: on the left and right of the basic cell in Fig. 3, the x lattice 10b 6 of the basic cell in Fig. 3 is located at the position of x lattice 10b 0, and the basic cell of Fig. 3 is located at the position of x lattice 10b 7 . The x-lattice 10b 1 is arranged in such a manner that the basic cells of FIG. 3 move in parallel, and a plurality of similar cells are arranged in the horizontal direction. Also, the horizontal arrangement of these plural cells is such that the y-lattice 10a 0 ' of the basic cell in FIG. 3 is at the position of the y-lattice 10a 0 in FIG. A y-lattice 10a 0 of basic cells in FIG. 3 is arranged.

上記の配列において、第3図のx格子10b0
10b7、x格子10a0,10a0′に対して各々線
対称となるように配列してもよい。
In the above arrangement, the x-lattice 10b 0 of FIG.
10b 7 , x-lattice 10a 0 , 10a 0 ' may be arranged so as to be line symmetrical with respect to each other.

第3図において、ポリシリコン層との接続はコ
ンタクト穴9h1や9h4等によりy格子10a0〜1
0a5,10a10〜10a12上のAl導電膜パターンか
ら任意にできる。
In FIG. 3, connections with the polysilicon layer are made through contact holes 9h1 , 9h4, etc. on the y-lattice 10a0 to 10a.
Any Al conductive film pattern can be formed on 0a 5 , 10a 10 to 10a 12 .

第4図は第3図に示す一実施例のy格子を変化
させた一例の平面図である。
FIG. 4 is a plan view of an example in which the y-lattice of the embodiment shown in FIG. 3 is changed.

第4図のポリシリコン層8d〜8jの上のコン
タクト穴列10c1と10c5との間にy格子10c2
〜10c4、ソース・ドレイン領域3のコンタクト
穴列10c8と穴列10c5との間に10c6,10
c7,10c1上部のy格子を第3図の10a0でなく
て複数本設けてもよい。
A y-lattice 10c 2 is formed between the contact hole rows 10c 1 and 10c 5 on the polysilicon layers 8d to 8j in FIG .
~10c 4 , 10c 6 , 10 between contact hole row 10c 8 and hole row 10c 5 of source/drain region 3
A plurality of y gratings may be provided above c 7 and 10c 1 instead of 10a 0 in FIG. 3.

第5図は第3図に示す一実施例のy格子を変化
させた他の例の平面図である。
FIG. 5 is a plan view of another example in which the y-lattice of the embodiment shown in FIG. 3 is changed.

ポリシリコン層のコンタクト穴をy格子10
c2,10c5,10c8上に形成し、更に10c9,1
0c12上に形成してもよい。これにとどまらず更
に上又は下に同じ形状で追加してもよい。更に、
対称線X―X′にこだわらず、p―MOST部分の
コンタクト穴列(第3図のX―X′の上部)とn
―MOST部分のそれ(第3図のX―X′の下部)
とを第3図、第4図、第5図の組合せで形成して
もよい。又、第3図で2個のMOSTの直列でな
く3個以上のMOSTの直列形式にしてもよい。
Y grid 10 of contact holes in polysilicon layer
c 2 , 10c 5 , 10c 8 , and further 10c 9 , 1
It may be formed on 0c12 . It is not limited to this, and the same shape may be added above or below. Furthermore,
Regardless of the line of symmetry
- That of the MOST part (lower part of X-X' in Figure 3)
may be formed by a combination of FIGS. 3, 4, and 5. Also, instead of two MOSTs connected in series in FIG. 3, three or more MOSTs may be connected in series.

以上詳細に説明したように、本発明によれば配
線の自由度が高く、規則的なパターンになるた
め、設計し易く、配線誤りが少なくなるマスター
スライス方式の集積回路装置が得られるのでその
効果は大きい。
As explained in detail above, according to the present invention, the degree of freedom in wiring is high and the pattern is regular, so that it is possible to obtain a master slice type integrated circuit device that is easy to design and has fewer wiring errors. is big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の一層形式のマスタースライスの
基本セルの1例の平面図、第2図a,bはマスタ
ースライスを利用して形成する機能回路の例の回
路図、第3図は本発明の一実施例の平面図、第4
図は第3図に示す一実施例のy格子の一変更例の
平面図、第5図は第3図に示す一実施例のY格子
の他の変更例の平面図である。 1…n型シリコン基板、2…pウエル、3…
p+ソース・ドレイン領域、4…n+ソース・ドレ
イン領域、5…n+層、6…p+層、8a〜8b…
ゲート電極、8c…フイードスルー線、8d〜8
j…ポリシリコン層、9a〜9d,9h1〜9h5
コンタクト穴、10a,10a0〜10a12…y格
子、10b,10b1〜10b6…x格子、10c1
10c12…コンタクト穴列、11a,11b…Al
導電膜。
FIG. 1 is a plan view of an example of a basic cell of a conventional single-layer master slice, FIGS. 2a and b are circuit diagrams of an example of a functional circuit formed using the master slice, and FIG. Plan view of one embodiment of 4th
This figure is a plan view of a modified example of the Y grid of the embodiment shown in FIG. 3, and FIG. 5 is a plan view of another modified example of the Y grid of the embodiment shown in FIG. 1...n type silicon substrate, 2...p well, 3...
p + source/drain region, 4...n + source/drain region, 5...n + layer, 6...p + layer, 8a-8b...
Gate electrode, 8c...Feed through line, 8d~8
j...Polysilicon layer, 9a to 9d, 9h1 to 9h5 ...
Contact hole, 10a, 10a 0 to 10a 12 ...y lattice, 10b, 10b 1 to 10b 6 ...x lattice, 10c 1 to
10c 12 ...Contact hole row, 11a, 11b...Al
conductive film.

Claims (1)

【特許請求の範囲】[Claims] 1 シリコン基板上にソース・ドレイン領域によ
り直列となつた複数個のMOSトランジスタと、
前記シリコン基板上に絶縁膜を介して各MOSト
ランジスタ毎に設けられた入力ゲート用配線層
と、前記ソース・ドレイン領域と前記入力ゲート
配線層との各々をつなぐ導電配線とを有する集積
回路装置において、前記入力ゲート用配線層は少
くとも両端を含み3個のコンタクト形成部を有
し、前記一つの入力ゲート用配線層の該少なくと
も3個のコンタクト形成部の内の隣り合う第1の
コンタクト形成部と第2のコンタクト形成部の
各々が該一つの入力ゲート用配線層の左右に隣り
合う入力ゲート用配線層の各々の前記第1のコン
タクト形成部と前記第2のコンタクト形成部の
各々を通る直線上にあり、かつ前記第1のコンタ
クト形成部との間には該コンタクト形成部を通る
直線と平行な少なくとも2本の導電配線を有する
ことを特徴とする集積回路装置。
1. Multiple MOS transistors connected in series by source/drain regions on a silicon substrate,
An integrated circuit device having an input gate wiring layer provided for each MOS transistor on the silicon substrate via an insulating film, and conductive wiring connecting each of the source/drain regions and the input gate wiring layer. , the input gate wiring layer has at least three contact forming portions including both ends, and adjacent first contact forming portions of the at least three contact forming portions of the one input gate wiring layer and the second contact forming portion respectively correspond to the first contact forming portion and the second contact forming portion of each input gate wiring layer adjacent to the left and right sides of the one input gate wiring layer. An integrated circuit device, comprising at least two conductive wires that are on a straight line passing through the first contact forming part and parallel to the straight line passing through the first contact forming part.
JP15839181A 1981-10-05 1981-10-05 Integrated circuit device Granted JPS5858741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15839181A JPS5858741A (en) 1981-10-05 1981-10-05 Integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15839181A JPS5858741A (en) 1981-10-05 1981-10-05 Integrated circuit device

Publications (2)

Publication Number Publication Date
JPS5858741A JPS5858741A (en) 1983-04-07
JPH0122734B2 true JPH0122734B2 (en) 1989-04-27

Family

ID=15670700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15839181A Granted JPS5858741A (en) 1981-10-05 1981-10-05 Integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5858741A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057620A (en) * 1983-09-08 1985-04-03 Toshiba Corp Semiconductor device
JPH01274450A (en) * 1988-04-26 1989-11-02 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit
JP2978504B2 (en) * 1989-04-14 1999-11-15 日本電気株式会社 MOS transistor
KR970004922B1 (en) * 1993-07-27 1997-04-08 삼성전자 주식회사 Wiring structure of high integrated semiconductor
JP2006049780A (en) * 2004-08-09 2006-02-16 Elpida Memory Inc Semiconductor integrated circuit device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582450A (en) * 1978-12-15 1980-06-21 Nec Corp Semiconductor integrated circuit
JPS5582448A (en) * 1978-12-15 1980-06-21 Nec Corp Master slice semiconductor integrated circuit
JPS5582449A (en) * 1978-12-15 1980-06-21 Nec Corp Cell of master slice semiconductor integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582450A (en) * 1978-12-15 1980-06-21 Nec Corp Semiconductor integrated circuit
JPS5582448A (en) * 1978-12-15 1980-06-21 Nec Corp Master slice semiconductor integrated circuit
JPS5582449A (en) * 1978-12-15 1980-06-21 Nec Corp Cell of master slice semiconductor integrated circuit

Also Published As

Publication number Publication date
JPS5858741A (en) 1983-04-07

Similar Documents

Publication Publication Date Title
US6271548B1 (en) Master slice LSI and layout method for the same
JP3154411B2 (en) Two metal layer integrated circuit gate array laid out by CAD
JPS5925381B2 (en) Semiconductor integrated circuit device
JP3647323B2 (en) Semiconductor integrated circuit
US4999698A (en) Interconnection arrangement for a gate array
JPH0113222B2 (en)
JPH0122734B2 (en)
JPH0558582B2 (en)
JPH0243349B2 (en)
US5506428A (en) Gate array LSI
US5434436A (en) Master-slice type semiconductor integrated circuit device having multi-power supply voltage
JPH1098108A (en) Semiconductor device
US4942447A (en) Borderless master slice CMOS device
JPS586157A (en) Cmos master slice lsi
JPH0113223B2 (en)
JP2839722B2 (en) Integrated circuit device
JPS6074647A (en) Semiconductor ic device
JPH0562469B2 (en)
JPH0371788B2 (en)
JP2679034B2 (en) Semiconductor integrated device
JPS5844592Y2 (en) Semiconductor integrated circuit device
JPH0613589A (en) Master slice semiconductor device
JPH0140499B2 (en)
JPH077141A (en) Basic gate array cell containing self-aligned silicide power distribution
JPH02106966A (en) Semiconductor storage device