JPH01226794A - Molecular beam source cell - Google Patents

Molecular beam source cell

Info

Publication number
JPH01226794A
JPH01226794A JP5434988A JP5434988A JPH01226794A JP H01226794 A JPH01226794 A JP H01226794A JP 5434988 A JP5434988 A JP 5434988A JP 5434988 A JP5434988 A JP 5434988A JP H01226794 A JPH01226794 A JP H01226794A
Authority
JP
Japan
Prior art keywords
molecular beam
source cell
crucible
beam source
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5434988A
Other languages
Japanese (ja)
Inventor
Kazuhiko Ito
一彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5434988A priority Critical patent/JPH01226794A/en
Publication of JPH01226794A publication Critical patent/JPH01226794A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the change of molecular beam intensity during use and to secure the prescribed evaporation area over a long period by forming the opening of a bottomed right cylindrical crucible into a horn shape. CONSTITUTION:A molecular beam source cell 20 having a structure in which a cylindrical heater 8 of 30-35mm diameter containing a corrugated ribbon foil as a heating body and insulated and fixed by means of a support ring 7 composed of boron nitride (PBN), etc., and a crucible 21 composed of PBN and consisting of a bottomed right cylindrical part 21a and a horn-shaped part 21b connected to an opening are provided to the inside of a cylindrical heat- shielding plate 6 of about 40mm diameter and 80-90mm length round which a Ta foil of about 0.1-0.2mm thickness is wound into about ten layers is fitted to the prescribed position in a vacuum chamber 1 by means of a vacuum flange 10.

Description

【発明の詳細な説明】 〔概 要〕 分子線エピタキシャル蒸着装置の分子線源セルに関し、 使用中における分子線強度の低下を防止することをを目
的とし、 円筒状の熱シールド板の内側同芯に設けた円筒状ヒータ
の加熱によって該ヒータに内設された坩堝内の金属から
発生する蒸発分子を分子線として試料表面に照射させる
分子線源セルであって、有底直円筒状の坩堝開口部がホ
ーン形状をとって構成する。
[Detailed Description of the Invention] [Summary] Regarding a molecular beam source cell of a molecular beam epitaxial evaporation device, the inner concentricity of a cylindrical heat shield plate is aimed at preventing a decrease in molecular beam intensity during use. A molecular beam source cell that irradiates the surface of a sample with vaporized molecules generated from metal in a crucible installed in the heater as a molecular beam by heating with a cylindrical heater installed in the heater, the crucible having a bottomed right cylindrical opening. The part has a horn shape.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置等における分子線エピタキシャル蒸
着装置に係り、特に装置使用中における分子線強度の変
化をなくして生産性の向上を図った分子線源セルに関す
る。
The present invention relates to a molecular beam epitaxial deposition apparatus for use in semiconductor devices, etc., and particularly to a molecular beam source cell that improves productivity by eliminating changes in molecular beam intensity during use of the apparatus.

〔従来の技術〕[Conventional technology]

半導体デ六イスプロセスでウェハ等の試料表面にエピタ
キシャル層を形成する分子線エピタキシャル蒸着装置で
は、通常10”Torr程度の超高真空槽内でアルミニ
ウム(A/)やガリウム(Ga)等の金属元素を120
0℃位に加熱して元素を蒸発させて予め加熱した試料表
面に蒸着させている。
Molecular beam epitaxial deposition equipment, which forms an epitaxial layer on the surface of a sample such as a wafer using a semiconductor device process, typically deposits metal elements such as aluminum (A/) and gallium (Ga) in an ultra-high vacuum chamber of about 10” Torr. 120
The elements are evaporated by heating to about 0°C and deposited on the preheated sample surface.

第2図は分子線エピタキシセル蒸着装置の主要部概念図
であり、第3図は従来の分子線源セル部分を示す構成図
である。
FIG. 2 is a conceptual diagram of the main parts of a molecular beam epitaxy cell deposition apparatus, and FIG. 3 is a configuration diagram showing a conventional molecular beam source cell portion.

第2図および第3図で、真空ポンプ1aで10”T。In Figures 2 and 3, the vacuum pump 1a is 10"T.

rr程度まで減圧される真空チャンバ1の所定位置には
、破線で示す分子線源セル2が通常複数個(図では4個
)放射状に配設されており、該各分子線源セル2から矢
示A方向に射出する分子線が集中する所定位置には、基
板ホルダ3で保持されヒータ4で1200〜1300℃
程度に加熱される例えば半導体ウェハ等の試料5が配設
されている。
At a predetermined position in a vacuum chamber 1 that is depressurized to approximately A predetermined position where the molecular beam emitted in the direction of A is concentrated is held by a substrate holder 3 and heated to 1200 to 1300°C by a heater 4.
A sample 5, such as a semiconductor wafer, which is heated to a certain degree, is disposed.

また上記分子線源セル2は、厚さ0.1〜0.2mm程
度のタンタル(Ta)箔を10層程度巻き付けた径40
mm位で長さが80〜90mm程度の円筒状の熱シール
ド板6と、その内側に窒化ボロン(PBN)等で形成し
たサポートリング7で絶縁固定されたタンタル(Ta)
の線または波形リボン等を加熱体とする径30〜35m
m程度の円筒状のヒータ8および該ヒータ8の内側に保
持される窒化ボロン(PBN)よりなりホーン形状の坩
堝9で構成されており、ステンレス等よりなる真空フラ
ンジ10によって真空チャンバ1の所定位置に装着され
ている。
In addition, the molecular beam source cell 2 is made of a 40 mm diameter tube made of about 10 layers of tantalum (Ta) foil with a thickness of about 0.1 to 0.2 mm.
Tantalum (Ta) is insulated and fixed by a cylindrical heat shield plate 6 with a length of about 80 to 90 mm, and a support ring 7 made of boron nitride (PBN) or the like inside the heat shield plate 6.
Diameter 30 to 35 m using a wire or corrugated ribbon as a heating element
It consists of a cylindrical heater 8 with a diameter of about m and a horn-shaped crucible 9 made of boron nitride (PBN) held inside the heater 8, and a vacuum flange 10 made of stainless steel or the like that holds it at a predetermined position in the vacuum chamber 1. is installed on.

なお図では、分子線源セル2が鉛直線Bに対して45度
傾いて設置された状態を示している。
Note that the figure shows a state in which the molecular beam source cell 2 is installed at an angle of 45 degrees with respect to the vertical line B.

ここで上記坩堝9に固体状のアルミニウム(A/)やガ
リウム(Ga)等所要の金属元素を投入して真空チャン
バ1内を10”Torr程度まで減圧し、図示していな
い外部制御装置から真空フランジ10を介して所定の電
気的パワーをヒータ8に印加して該ヒータ8を約140
0℃程度まで加熱する。
Here, necessary metal elements such as solid aluminum (A/) and gallium (Ga) are introduced into the crucible 9, the pressure inside the vacuum chamber 1 is reduced to about 10" Torr, and a vacuum is controlled by an external control device (not shown). A predetermined electrical power is applied to the heater 8 through the flange 10 to power the heater 8 to about 140
Heat to around 0℃.

そこでヒータ8からの輻射熱で坩堝9が1200℃程度
まで加熱されると、固体状の投入金属元素は溶解して溶
融金属11となり更に表面から分子が蒸発して所定位置
に配設された上記試料5の表面に蒸着して該面に所要の
エピタキシャル層を形成している。
Then, when the crucible 9 is heated to about 1200° C. by radiant heat from the heater 8, the solid introduced metal element melts and becomes molten metal 11. Further, molecules evaporate from the surface and the above-mentioned sample disposed at a predetermined position. 5 to form a required epitaxial layer on the surface.

この際、蒸着作業の進行につれてホーン形状をなす坩堝
9内の溶融金属11の体積が減少するため、液面が降下
して溶融金属液面の蒸発面積が減少する。
At this time, as the vapor deposition process progresses, the volume of the molten metal 11 in the horn-shaped crucible 9 decreases, so the liquid level falls and the evaporation area of the molten metal liquid level decreases.

例えば溶融金属11の液面が図で、A−B−Cと低下す
るに伴ってその蒸発面積はA’−B’−C“と減少する
For example, as the liquid level of the molten metal 11 decreases from A-B-C in the figure, its evaporation area decreases from A'-B'-C.

従ってヒータ8を一定の温度に保っていても、蒸発面積
の減少によって蒸発分子数が減少することから試料表面
の蒸着膜質に変化を生じ、常時均質な蒸着膜を形成する
ことができない。
Therefore, even if the heater 8 is kept at a constant temperature, the number of evaporated molecules decreases due to the reduction in the evaporation area, causing a change in the quality of the deposited film on the sample surface, making it impossible to form a uniform deposited film at all times.

なお、上記液面が図示の0点に到達した時点で坩堝内の
金属元素を入れ換えている。
Note that the metal elements in the crucible were replaced when the liquid level reached the zero point shown in the figure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の構成になる分子線源セルでは、長期間の使用途中
において試料表面の蒸着膜質が徐々に変化して不安定に
なると云う問題があった。
A conventional molecular beam source cell has a problem in that the quality of the deposited film on the sample surface gradually changes and becomes unstable during long-term use.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、円筒状の熱シールド板の内側回忌に設け
た円筒状ヒータの加熱によって該ヒータに内設された坩
堝内の金属から発生する蒸発分子を分子線として試料表
面に照射させる分子線源セルであって、 有底直円筒状の坩堝開口部がホーン形状をとる分子線源
セルによって解決される。
The above problem is caused by the heating of a cylindrical heater installed on the inner side of a cylindrical heat shield plate, which irradiates the sample surface with evaporated molecules generated from metal in a crucible installed inside the heater as molecular beams. The problem is solved by a molecular beam source cell in which the crucible opening is a right cylinder with a bottom and has a horn shape.

〔作 用〕[For production]

直円筒状容器に注入された液体の露出表面積は、該液体
の量に関係なく一定である。
The exposed surface area of liquid poured into a right cylindrical container is constant regardless of the amount of liquid.

そこで本発明になる分子線源セルでは、坩堝形状を底の
ある直円筒状部分とその開口部に繋がるホーン状部分と
を有する形状に形成している。
Therefore, in the molecular beam source cell according to the present invention, the crucible is formed into a shape having a right cylindrical portion with a bottom and a horn-shaped portion connected to the opening of the crucible.

従って該坩堝の直円筒状部分の長さを、直円筒部の内径
と投入する金属元素の体積および分子線源セルの傾きか
ら得られる溶融金属の最大濡れ深さに等しくすることに
よって、長期間に亙たる一定した蒸発面積の確保を可能
としている。
Therefore, by making the length of the right cylindrical part of the crucible equal to the maximum wetting depth of the molten metal obtained from the inner diameter of the right cylindrical part, the volume of the metal element introduced, and the inclination of the molecular beam source cell, it is possible to This makes it possible to secure a constant evaporation area over the entire range.

〔実施例〕〔Example〕

第1図は本発明になる分子線源セルの構造例を示す図で
ある。
FIG. 1 is a diagram showing an example of the structure of a molecular beam source cell according to the present invention.

図で分子線源セル20は、第3図同様に厚さ0.1〜0
.2mn+程度のタンタル(Ta)箔を1ON程度巻き
付けた径40mm位で長さが80〜90mm程度の円筒
状の熱シールド板6と、その内側に窒化ボロン(PBN
)等で形成したサポートリング7で絶縁固定されたタン
タル(Ta)の線または波形リボン箔を加熱体とする径
30〜35mm程度の円筒状のヒータ8および該ヒータ
8の内側に保持される窒化ボロン(PBN)よりなる坩
堝21で構成されており、ステンレス等よりなる真空フ
ランジ10によって真空チャンバ1の所 。
In the figure, the molecular beam source cell 20 has a thickness of 0.1 to 0 as in Figure 3.
.. A cylindrical heat shield plate 6 with a diameter of about 40 mm and a length of about 80 to 90 mm is wrapped with about 1 ON of tantalum (Ta) foil of about 2 mm+, and inside it is made of boron nitride (PBN).
), etc. A cylindrical heater 8 with a diameter of about 30 to 35 mm uses a tantalum (Ta) wire or corrugated ribbon foil as a heating element and is insulated and fixed with a support ring 7 formed of It is composed of a crucible 21 made of boron (PBN), and is connected to the vacuum chamber 1 by a vacuum flange 10 made of stainless steel or the like.

定位置に装着されている。It is mounted in place.

なお上記坩堝21には、底を持つ直円筒状部分21aと
その開口部に繋がるホーン状部分21bが設けられてい
る。
The crucible 21 is provided with a right cylindrical portion 21a having a bottom and a horn-shaped portion 21b connected to the opening thereof.

そこで上記坩堝21に固体状のアルミニウム(A/)や
ガリウム(Ga)等所要の金属元素11を投入した後真
空チャンバ1内を10”Torr程度まで減圧し、更に
図示していない外部制御装置から真空フランジ10を介
して所定の電気的パワーをヒータ8に印加して坩堝21
を約1200℃程度まで加熱すると、第3図で説明した
如く固体状の投入金属元素が溶解して溶融金属11とな
りその表面から分子が蒸発して所定位置に配設された試
料表面に所要のエピタキシャル層を形成する。
Therefore, after introducing the necessary metal elements 11 such as solid aluminum (A/) and gallium (Ga) into the crucible 21, the pressure inside the vacuum chamber 1 is reduced to about 10" Torr, and further, an external control device (not shown) is applied. A predetermined electrical power is applied to the heater 8 via the vacuum flange 10 to heat the crucible 21.
When heated to about 1,200°C, the solid metal element melts and becomes molten metal 11 as explained in Fig. 3. Molecules evaporate from the surface of the molten metal 11, and the required amount is deposited on the surface of the sample placed at a predetermined position. Form an epitaxial layer.

この場合、溶融金属11は時間と共にその体積が減少し
液面は徐々に降下するが、21aに示す直円筒状部分で
降下するため溶融金属11の蒸発面積は変化することが
ない。
In this case, the volume of the molten metal 11 decreases over time and the liquid level gradually falls, but the evaporation area of the molten metal 11 does not change because it falls at the right cylindrical portion shown at 21a.

従って、長期間に亙って溶融金属11の蒸発面から一定
の分子が蒸発し、試料表面に均質のエピタキシャル層を
形成させることができる。
Therefore, certain molecules evaporate from the evaporation surface of the molten metal 11 over a long period of time, and a homogeneous epitaxial layer can be formed on the sample surface.

なお、溶融金属の液面が図示のD点に到達した時点で金
属元素を入れ換えることは従来の場合と同様である。
Note that, as in the conventional case, the metal elements are replaced when the liquid level of the molten metal reaches the illustrated point D.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明を実施することにより、長期間に亙っ
て安定したエピタキシャル層が形成できる分子線源セル
を提供することができる。
By carrying out the present invention as described above, it is possible to provide a molecular beam source cell in which a stable epitaxial layer can be formed over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる分子線源セルの構造例を示す図、 第2図は分子線エピタキシャル蒸着装置の主要部概念図
、あり、 第3図は従来の分子線源セル部分を示す構成図、である
。図において、 1は真空チャンバ、  6は熱シールド板、7はサポー
トリング、8はヒータ、 10は真空フランジ、 11は溶融金属、20は分子線
源セル、 21は坩堝、 21aは直円筒状部分、21bはホーン状部分、をそれ
ぞれ表わす。 介啄5何にIj4分づ1要謁に1L4J拘鯉1死計1す
福a卆 1 2
Fig. 1 is a diagram showing an example of the structure of a molecular beam source cell according to the present invention, Fig. 2 is a conceptual diagram of the main parts of a molecular beam epitaxial deposition apparatus, and Fig. 3 is a configuration showing a conventional molecular beam source cell part. Figure. In the figure, 1 is a vacuum chamber, 6 is a heat shield plate, 7 is a support ring, 8 is a heater, 10 is a vacuum flange, 11 is a molten metal, 20 is a molecular beam source cell, 21 is a crucible, and 21a is a right cylindrical part , 21b represent horn-shaped portions, respectively. Kakaku 5 What is Ij 4 minutes 1 audience 1 L 4 J restraint 1 death plan 1 Fuku a book 1 2

Claims (1)

【特許請求の範囲】[Claims]  円筒状の熱シールド板の内側同芯に設けた円筒状ヒー
タの加熱によって該ヒータに内設された坩堝内の金属か
ら発生する蒸発分子を分子線として試料表面に照射させ
る分子線源セルであって、有底直円筒状の坩堝開口部が
ホーン形状をとることを特徴とする分子線源セル。
This is a molecular beam source cell that irradiates the surface of a sample with evaporated molecules generated from a metal in a crucible installed in the heater as molecular beams by heating a cylindrical heater installed concentrically inside a cylindrical heat shield plate. A molecular beam source cell characterized in that a bottomed right cylindrical crucible opening has a horn shape.
JP5434988A 1988-03-08 1988-03-08 Molecular beam source cell Pending JPH01226794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5434988A JPH01226794A (en) 1988-03-08 1988-03-08 Molecular beam source cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5434988A JPH01226794A (en) 1988-03-08 1988-03-08 Molecular beam source cell

Publications (1)

Publication Number Publication Date
JPH01226794A true JPH01226794A (en) 1989-09-11

Family

ID=12968152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5434988A Pending JPH01226794A (en) 1988-03-08 1988-03-08 Molecular beam source cell

Country Status (1)

Country Link
JP (1) JPH01226794A (en)

Similar Documents

Publication Publication Date Title
EP0581496A2 (en) Molecular beam epitaxy (MBE) effusion source utilizing heaters to achieve temperature gradients
JP3483719B2 (en) Evaporation source for organic material and organic thin film forming apparatus using the same
US20040200416A1 (en) Effusion cell with improved temperature control of the crucible
JPH01226794A (en) Molecular beam source cell
US2762722A (en) Method and apparatus for coating by thermal evaporation
JP3616586B2 (en) Molecular beam source cell for thin film deposition
GB2156231A (en) Evaporation cell for a liquid compound suitable for epitaxy by molecular jets
KR20190130794A (en) Filament heater for thermal evaporator
JPH10214787A (en) Molecular beam cell for si and molecular beam epitaxy system
JP2005082872A (en) Vapor deposition system and vapor deposition method
JP7223632B2 (en) Evaporation source for vacuum deposition equipment
JPH01226792A (en) Molecular beam source cell
JPS61220414A (en) Apparatus for generating molecular beam
JPH01226793A (en) Molecular beam source cell
JPS6043913B2 (en) Crucible for evaporation source
JPH1088322A (en) Evaporation source for lithium
JPH06280004A (en) Electron beam evaporation source
JPH01226795A (en) Molecular beam source cell
JP5536816B2 (en) K-cell crucible, K-cell, and MBE device
JPS63293158A (en) Vacuum deposition device
JPS6210298B2 (en)
JPS60116767A (en) Molecular beam vapor deposition device
JPH0210225B2 (en)
JPH072617Y2 (en) Uniform heating mechanism for PBN crucible
JPH0619569Y2 (en) Molecular beam cell PBN crucible