JPH01225694A - Process for purifying low-boiling cracking oil fraction - Google Patents

Process for purifying low-boiling cracking oil fraction

Info

Publication number
JPH01225694A
JPH01225694A JP4947188A JP4947188A JPH01225694A JP H01225694 A JPH01225694 A JP H01225694A JP 4947188 A JP4947188 A JP 4947188A JP 4947188 A JP4947188 A JP 4947188A JP H01225694 A JPH01225694 A JP H01225694A
Authority
JP
Japan
Prior art keywords
oil fraction
silica gel
cracking oil
adsorbent
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4947188A
Other languages
Japanese (ja)
Other versions
JPH0670222B2 (en
Inventor
Takayuki No
野 隆之
Koji Omoto
大元 好治
Toshiyuki Okihiro
沖広 敏行
Nobuyuki Kubota
窪田 信行
Kozo Imura
晃三 井村
Koichi Fujie
藤江 宏一
Itaru Kimura
格 木村
Hideyuki Matsumoto
英之 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Utilization of Light Oil
Original Assignee
Research Association for Utilization of Light Oil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Utilization of Light Oil filed Critical Research Association for Utilization of Light Oil
Priority to JP4947188A priority Critical patent/JPH0670222B2/en
Publication of JPH01225694A publication Critical patent/JPH01225694A/en
Publication of JPH0670222B2 publication Critical patent/JPH0670222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To efficiently perform simultaneous removal of nitrogen and oxygen compds. from low-boiling cracking oil fraction, by providing a silica gel having particular properties for use as an adsorbent and alternately performing the step of impurity adsorption in which the cracking oil fraction is brought into contact with the gel and the step of regeneration. CONSTITUTION:This process for purifying low-biling cracking oil fraction comprises a combination of the following steps (A) and (B). In step (A), low- biling cracking oil fraction is brought into with an adsorbent comprising a silica gel having a surface area of 100-800m<2>/g and an average pore diameter of 10-150Angstrom so as to effect simultaneous adsorption of impurities comprising nitrogen and oxygen compds. contained in the cracking oil fraction. In the step (B), the adsorbent contg. the impurities adsorbed thereto is regenerated by passing a regenerating gas at 100-600 deg.C. Of the above-mentioned silica gels, a silica gel having an SiO2 purity of at least 99wt.%, an Na2 content of up to 0.1wt.%, and an Fe2O3 content of up to 0.05wt.% is pref., because it is excellent in the simultaneous adsorption/removal capability of the impurities.

Description

【発明の詳細な説明】 イ9発明の目的 U・の1 ノ 本51 ’yJは5重質油を原料とする接触分解軽質1
n分や熱分解軽質留分から、貯蔵安定性を悪くしたり、
月見の根源となったり、また後段の触媒反応の触媒毒と
なる窒素化合物や酸素化合物を除去するプロセスに関す
るものである。
Detailed Description of the Invention A9 Objective of the Invention
From n-min and pyrolysis light fractions, storage stability may be deteriorated,
It is related to the process of removing nitrogen and oxygen compounds, which are the source of moon viewing and act as catalyst poisons in subsequent catalytic reactions.

【えL韮3 重質油を分解して得られる軽fiF77分中には、不純
物として窒素化合物や酸素化合物か10〜11000p
p含まれているが、これらの不純物は軽質留分をガソリ
ン、溶剤、化学用原料等として利用する場合に種々の問
題を生しる。
[EL-3] The light fiF77 obtained by decomposing heavy oil contains 10 to 11,000 p of nitrogen compounds and oxygen compounds as impurities.
However, these impurities cause various problems when the light distillate is used as gasoline, solvents, raw materials for chemicals, etc.

例えばこれら原料の貯蔵安定性を悪くしたり、悪臭の根
源となることである。
For example, they may impair the storage stability of these raw materials or become the source of bad odors.

さらに、大きな問題の一つは、これらの軽質留分を処理
する触媒にとって触媒毒となることで。
Furthermore, one of the major problems is that it becomes a catalyst poison for the catalysts that process these light fractions.

イj効な前処理技術か待望されていた。This was a long-awaited, effective pretreatment technology.

水素化精製は一般によく知られている前処理技術である
か、分解軽質留分中には有効利用か回部なオレフィンか
20〜50%含まれており、これか水素化精製によって
同時に水素化されてしまうこと、そのため水素化用水素
を余分に必要とすることなとの問題かあるために、分解
軽′!i留分中のWW J、化合物や酸素化合物の除去
法としては好ましい方法てはない。
Hydrorefining is a generally well-known pretreatment technique, and the cracked light fraction contains 20 to 50% of olefins that can be effectively used or recycled, and this can be simultaneously hydrogenated by hydrorefining. However, there is a problem that the decomposition process is easy, as there is a problem that the hydrogen is removed and therefore extra hydrogen is required for hydrogenation. There is no preferred method for removing WWJ compounds and oxygen compounds in the i fraction.

従って適当な吸着剤を使用する吸着法か種々提案されて
いる。
Therefore, various adsorption methods using suitable adsorbents have been proposed.

通常、触奴にとって特に有害なものは塩ノ1(性の窒素
化合物であると考えられていたために、酸化チタン/シ
リカ(特開昭60−40195号)、シリカアルミナ、
アルミナ等の酸性質をもった吸着剤かこの[」的のため
に利用されている。さらに、塩基性化合物との親和性を
向上する]」的てシリカ、ゼオライトX及びY、アルミ
ナ、シリカアルミナなどに無水酸性ガスを吸着させたも
の(特開昭55−471f]3号)か提案されている。
Usually, the substances that are particularly harmful to the tentacles are salt chloride (which was thought to be a chemical nitrogen compound), titanium oxide/silica (Japanese Patent Application Laid-Open No. 60-40195), silica alumina,
Adsorbents with acidic properties such as alumina are used for this purpose. In addition, it is proposed that acidic anhydride gas be adsorbed onto silica, zeolite has been done.

又酸素化合物に対しては、エーテル類にはシリカゲル(
特公昭55−44049号)、フェノール異性体間の分
淳には醸化チタン(↑1+j開閉55−5752!1号
)、クレゾール類間の分離にはY型ゼオライト(特公昭
6 [1−23095号)などが各々吸着剤として提案
されている。
In addition, for oxygen compounds, ethers include silica gel (
Special Publication No. 55-44049), fermented titanium (↑1+j opening/closing No. 55-5752!1) for separating phenol isomers, and Y-type zeolite (Special Publication No. 6 [1-23095] for separating cresols). ) have been proposed as adsorbents.

上記のように、従来提案されている吸着剤は窒素化合物
、酸素化合物に対してそれぞれ巾独に作用するものてあ
り、両者を同時に除去する処理方法は今のところ見当ら
ない。
As mentioned above, the adsorbents that have been proposed so far act independently on nitrogen compounds and oxygen compounds, and there is currently no treatment method that can remove both at the same time.

■か ・しよ−と るムし 本発明は、分解軽質留分から窒素化合物及び酸素化合物
を同時に効率よく除去できるプロセスを提供するもので
ある。
(2) The present invention provides a process that can simultaneously and efficiently remove nitrogen compounds and oxygen compounds from cracked light fractions.

口8発明の構成 μII占t 、L−るた の。8. Structure of the invention μII chart, L-ruta.

本発明に係る分解軽質留分の精製プロセスは。The process for purifying cracked light fractions according to the present invention is as follows.

分解軽質留分を表面積100〜800 m 2/ g、
F均細孔径10〜150人のシリカゲルよりなる吸着剤
と接触させて分解軽質留分中に含まれる窒素化合物及び
酸素化合物からなる不純物を同時吸着する工程及び」二
足不純物を吸着した吸着剤を100〜600℃て再生用
ガスを流して再生する工程の組み合わせからなることを
特徴とする。
The cracked light fraction has a surface area of 100 to 800 m2/g,
A process of simultaneously adsorbing impurities consisting of nitrogen compounds and oxygen compounds contained in the decomposed light fraction by contacting with an adsorbent made of silica gel having an average pore size of 10 to 150 people; It is characterized by a combination of steps for regeneration by flowing a regeneration gas at 100 to 600°C.

なお、表面積はBET表面8&測定法、平均細孔径は水
銀圧入法及び窒素吸着法により求めた値である。
Note that the surface area is a value determined by the BET surface 8 & measurement method, and the average pore diameter is a value determined by a mercury intrusion method and a nitrogen adsorption method.

分解軽質留分中に含まれる窒素化合物には、アミン類や
ピリジン類のような塩基性のものと、ベンゾニトリル等
のニトリル類やアルキルビロールのような非塩基性のも
のとかあり、酸素化合物もフェノール類、クレゾール類
、エーテル類といった酸性又は中性のものが混入してい
るために、これらの化合物か混入している原料から同時
に窒素化合物及び酸素化合物を除去する目的には、酸・
塩ノ、(的な考え方て吸着剤を選ぶことはてきない。
The nitrogen compounds contained in cracked light fractions include basic ones such as amines and pyridines, and non-basic ones such as nitriles such as benzonitrile and alkylvirols. However, since acidic or neutral substances such as phenols, cresols, and ethers are mixed in, it is difficult to remove nitrogen and oxygen compounds from raw materials containing these compounds at the same time.
Shiono, you can't choose an adsorbent based on that mindset.

従って酸性物質も112基性物質も同時に吸着するため
には、酩ても塩基てもない両性物質であることか必要で
ある。さらに、このような被吸着物質を吸着するには十
分な表面積と適当な細孔径をイアすることか必要である
Therefore, in order to adsorb both acidic substances and 112-based substances at the same time, it is necessary that the substance be an amphoteric substance that is neither drunk nor basic. Furthermore, in order to adsorb such substances to be adsorbed, it is necessary to have sufficient surface area and appropriate pore diameter.

このような観点から鋭意研究の結果、表面積100〜8
00m2/g、平均細孔径10〜150人のシリカゲル
は、分解軽質留分に含まれる窒素化合物及び酸素化合物
の両方を同時に吸着除去する効果かあることを見出した
。シリカゲルの表1m積は大きいほど良いか、通常人手
てきるものとしては800m2/gか上限である。
As a result of intensive research from this point of view, the surface area of 100~8
It has been found that silica gel with a diameter of 00 m2/g and an average pore diameter of 10 to 150 has the effect of simultaneously adsorbing and removing both nitrogen compounds and oxygen compounds contained in the decomposed light fraction. The larger the surface area per meter of silica gel is, the better, and the upper limit is usually 800 m2/g for what can be done manually.

上記のシリカゲルの中でも、純度99重量%以上で、N
az O含有390.1重量%以下、Fe2O3含有埴
0.05重量%以下のものは、特に量れた窒素化合物及
び酸素化合物の同時吸着除去俺力を有する。
Among the above silica gels, N
Those containing 390.1% by weight or less of az O and 0.05% by weight or less of Fe2O3 have a particularly high ability to simultaneously adsorb and remove nitrogen compounds and oxygen compounds.

また、L記のシリカゲルに吸着された窒素化合物及び酸
素化合物は、100〜600°Cの温度て容易に脱着す
るため、再生用ガスを流しながら温度を上げることて再
生か可能であることも見出した。
It was also discovered that the nitrogen compounds and oxygen compounds adsorbed on the silica gel described in L are easily desorbed at temperatures of 100 to 600°C, so it is possible to regenerate them by raising the temperature while flowing a regeneration gas. Ta.

従来の酸・塩基的な考え方て選ばれた吸着剤では、窒素
化合物又は酸素化合物と吸着剤との結合か強いために、
再生する場合には通常高温て空気を波しながら被吸着物
を燃焼するために、窒素化合物はNOxとなるので、公
害防止上、再生工程の排気ガスの処理か必要となる。
With adsorbents selected based on the conventional acid/base concept, the bond between the nitrogen compound or oxygen compound and the adsorbent is strong, so
In the case of regeneration, the adsorbed substances are usually burned at high temperatures while waving the air, and the nitrogen compounds turn into NOx. Therefore, in order to prevent pollution, it is necessary to treat the exhaust gas of the regeneration process.

これに対しで、本発明の吸着剤の再生においては、被吸
着物を燃焼させずにそのまま脱着させる条件を選ぶこと
により、窒素化合物はNOxとならず、再生工程の排気
ガスの処理か不問てあり。
On the other hand, in the regeneration of the adsorbent of the present invention, by selecting conditions in which the adsorbed substances are directly desorbed without being burned, the nitrogen compounds do not become NOx, and can be used regardless of whether the exhaust gas of the regeneration process is treated or not. can be.

?J化合物のまま回収して心安に応してこれを利H1す
ることもIlf能である。
? It is also possible to recover the J compound as it is and use it for H1 use if it is safe.

吸着剤の再生に用いるガスとしては、空気、窒素、水蒸
気、水素ガス又はこれらの混合ガスか用いられる。
The gas used to regenerate the adsorbent may be air, nitrogen, water vapor, hydrogen gas, or a mixture thereof.

吸着剤の再生温度は、吸着された窒素化合物や酸素化合
物の種類などにもよるか、100 ’C以上か好ましく
、特に再生に使用するガスに応して100〜600℃の
範囲て選定すればよい。再生に用いるガスとして空気を
用いる場合には、NOxの生成を抑制する為に500°
C以下か好ましい。
The regeneration temperature of the adsorbent depends on the types of nitrogen compounds and oxygen compounds adsorbed, but it is preferably 100'C or higher, and in particular, it can be selected in the range of 100 to 600C depending on the gas used for regeneration. good. When using air as the gas for regeneration, the temperature should be set at 500° to suppress the generation of NOx.
C or lower is preferable.

また水蒸気を用いる場合には150°C以上か好ましい
Further, when using water vapor, the temperature is preferably 150°C or higher.

再生時間は、再生温度や目的とする再生度合に応して適
宜選定すればよい。
The regeneration time may be appropriately selected depending on the regeneration temperature and the desired degree of regeneration.

本発明はL記の性状のシリカゲルを吸着剤として使用し
、吸着工程と再生工程を交47二に行うことにより分解
軽質留分の精製を行うプロセスであるか、吸着塔を2塔
設け、交互に切り換えて吸着と再生を行うことにより、
連続操業を行うことかてきる。
The present invention is a process for purifying cracked light fractions by using silica gel having the properties listed in L as an adsorbent and performing an adsorption step and a regeneration step alternately. By switching to and performing adsorption and regeneration,
It is possible to perform continuous operation.

木発IJIJにおける分解軽質留分としては、窒;に化
合物及び酸素化合物を不純物として含有する軽質留分な
らばいずれてもよく、特に石油系、石炭系虫質油を分解
して得られる軽質留分か適する。
The light distillate cracked in Kiba IJIJ may be any light distillate containing nitrogen compounds and oxygen compounds as impurities, and in particular light distillates obtained by cracking petroleum-based and coal-based insect oils. Suitable for a while.

以下実施例によって本発明に使用されるシリカゲルと他
の吸着剤の性能比較及びシリカケルの再生について具体
的に説明する。
The performance comparison of the silica gel used in the present invention and other adsorbents and the regeneration of the silica gel will be specifically explained below using Examples.

実施例1及び比較例 第  1  表 第1表に示す性状の分解軽質留分300m1に各種吸着
剤0.5gを加え、常温て30分間振盪後、全N及び全
0の含有穢を測定し、その除去率を求めた結果を第2表
に示す。
Example 1 and Comparative Example 1 0.5 g of various adsorbents were added to 300 ml of the cracked light fraction having the properties shown in Table 1, and after shaking at room temperature for 30 minutes, the total N and total 0 content was measured. Table 2 shows the results of determining the removal rate.

第2表 またシリカケルの表面積とN除去率及びO除去率との関
係、ならびにシリカゲルの平均細孔径とN除去率及びO
除去率との関係を第1図及び第21Aに示す。
Table 2 also shows the relationship between the surface area of silica gel, N removal rate, and O removal rate, and the relationship between the average pore diameter of silica gel, N removal rate, and O removal rate.
The relationship with removal rate is shown in FIG. 1 and FIG. 21A.

第1図においで、横軸はシリカゲルの表面積(m2/g
)、縦軸はN又は0の除去率(%)を表し、○印はO除
去率、・はN除去率を示す。
In Figure 1, the horizontal axis is the surface area of silica gel (m2/g
), the vertical axis represents the removal rate (%) of N or 0, the ◯ mark indicates the O removal rate, and the symbol . indicates the N removal rate.

第2図において横軸はシリカゲルの平均細孔径(人)1
縦軸はN又はOの除去率(%)を表し、O印はO除去率
、・はN除去率を示す。
In Figure 2, the horizontal axis is the average pore diameter of silica gel (person) 1
The vertical axis represents the removal rate (%) of N or O, the O mark indicates the O removal rate, and . indicates the N removal rate.

第2表、第1図及び第2図より、表面積100〜800
m2/g、平均細孔径10〜150人の範囲にあるシリ
カゲルA〜Eは、分解軽質留分に含まれる窒素化合物及
び酸素化合物の両方を同時に効率よく吸着除去し、その
中ても純度99重1%以上で、Na2O含有量0.1重
量%以下、FezO*含有+4o、o5重量%以下のシ
リカゲルA〜Cは、特に優れた窒素化合物及び酸素化合
物の同時吸着除去能力を口することかわかる。
From Table 2, Figures 1 and 2, the surface area is 100 to 800.
Silica gels A to E, which have an average pore diameter of 10 to 150 m2/g, can efficiently adsorb and remove both nitrogen compounds and oxygen compounds contained in the decomposed light fraction, and among them, the silica gels have a purity of 99%. It can be seen that silica gels A to C with a Na2O content of 1% or more, a Na2O content of 0.1% by weight or less, and a FezO* content of +4O, O5% by weight or less have particularly excellent ability to simultaneously adsorb and remove nitrogen compounds and oxygen compounds. .

実施例2 第2表に示したシリカゲルBの0.5gに熱分解軽質留
分中の窒素化合物及び酸素化合物を飽和吸着後乾燥し、
第3表記載の条件て再生した。
Example 2 Nitrogen compounds and oxygen compounds in the pyrolysis light fraction were saturated and adsorbed onto 0.5 g of silica gel B shown in Table 2, and then dried.
It was reproduced under the conditions listed in Table 3.

iIT生した吸着剤を実施例1と同様な方71、て+I
r使用した結果を第3表に示す。
The adsorbent produced by iIT was used in the same manner as in Example 1, and
The results using r are shown in Table 3.

第3表 いずれの場合も、再生時の排気ガス中にNOxは検出さ
れなかフた。
In all cases in Table 3, no NOx was detected in the exhaust gas during regeneration.

ハ0発すjの効果 軽質留分中のすレフインを水素化することなく窒素化合
物及び酸素化合物を同時に効果的に除去することかてき
る。
Effect of 0 emission Nitrogen compounds and oxygen compounds can be effectively removed at the same time without hydrogenating the carbon dioxide in the light distillate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシリカゲルの表面積とN除去率及び0除去率と
の関係、第2図はシリカゲルの11均細孔径とN除去率
及びO除去率との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the surface area of silica gel and the N removal rate and O removal rate, and FIG. 2 is a diagram showing the relationship between the 11 uniform pore diameter of silica gel and the N removal rate and O removal rate.

Claims (1)

【特許請求の範囲】 1 分解軽質留分を表面積100〜800m^2/g、
平均細孔径10〜150Åのシリカゲルよりなる吸着剤
と接触させて分解軽質留分中に含まれる窒素化合物及び
酸素化合物からなる不純物を同時吸着する工程及び上記
不純物を吸着した吸着剤を100〜600℃で再生用ガ
スを流して再生する工程の組み合わせからなることを特
徴とする分解軽質留分の精製プロセス。 2 SiO_2純度99重量%以上で、Na_2O含有
量0.1重量%以下、Fe_2O_3含有量0.05重
量%以下のシリカゲルを使用する特許請求の範囲第1項
記載の分解軽質留分の精製プロセス。
[Claims] 1. The cracked light fraction has a surface area of 100 to 800 m^2/g,
A step of simultaneously adsorbing impurities consisting of nitrogen compounds and oxygen compounds contained in the decomposed light fraction by contacting with an adsorbent made of silica gel having an average pore diameter of 10 to 150 Å, and heating the adsorbent that has adsorbed the impurities to 100 to 600°C. A process for refining cracked light fractions, characterized by a combination of steps of regenerating by flowing regeneration gas through the process. 2. The process for purifying a cracked light fraction according to claim 1, which uses silica gel having a SiO_2 purity of 99% by weight or more, a Na_2O content of 0.1% by weight or less, and a Fe_2O_3 content of 0.05% by weight or less.
JP4947188A 1988-03-04 1988-03-04 Purification process of cracked light fraction Expired - Lifetime JPH0670222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4947188A JPH0670222B2 (en) 1988-03-04 1988-03-04 Purification process of cracked light fraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4947188A JPH0670222B2 (en) 1988-03-04 1988-03-04 Purification process of cracked light fraction

Publications (2)

Publication Number Publication Date
JPH01225694A true JPH01225694A (en) 1989-09-08
JPH0670222B2 JPH0670222B2 (en) 1994-09-07

Family

ID=12832061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4947188A Expired - Lifetime JPH0670222B2 (en) 1988-03-04 1988-03-04 Purification process of cracked light fraction

Country Status (1)

Country Link
JP (1) JPH0670222B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040370A (en) * 1999-06-02 2001-02-13 Haldor Topsoe As Combined process for improved hydrogen treatment of diesel fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040370A (en) * 1999-06-02 2001-02-13 Haldor Topsoe As Combined process for improved hydrogen treatment of diesel fuel

Also Published As

Publication number Publication date
JPH0670222B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
CN1277988B (en) Modifying and hydrogenation processing for diesel union method
US5919354A (en) Removal of sulfur from a hydrocarbon stream by low severity adsorption
KR950009711B1 (en) A process for regenerating a monofunctional large-pore zeolite catalyst howing high selectivity for paraffin dehydrocyclization
US4835338A (en) Process for removal of carbonyl sulfide from organic liquid by adsorption using alumina adsorbent capable of regeneration
JP4570307B2 (en) Method for producing sorbent for desulfurization and method for removing sulfur using sorbent for desulfurization using the same
JP2004504143A (en) Regeneration of hydrogen sulfide sorbent
JP2007537332A (en) Method for removing sulfur from naphtha
US5411577A (en) Method for separating gases using a particulate composite material with carbon matrix
CA2143826C (en) Method of regenerating deactivated catalyst
KR970061347A (en) New carbon monoxide adsorbent and preparation method thereof
JP4755792B2 (en) Adsorption process for producing ultra-low sulfur hydrocarbon streams
JP2004504145A (en) Regeneration of iron-based hydrogen sulfide sorbent
JP2006342349A (en) Use of cesium-exchanged faujasite type zeolite for strongly desulfurizing gasoline fraction
JPH01225694A (en) Process for purifying low-boiling cracking oil fraction
JP2022530180A (en) Adsorbents and processes for separating organochloride compounds from liquid hydrocarbons
JPH01315489A (en) Method for removing trace amount of mercuries in hydrocarbon-based oil
EP3593889A1 (en) Improved adsorption of acid gases
JP2829408B2 (en) Adsorbent for aromatic compounds
JPH0587112B2 (en)
JPH0354295A (en) Purification of light hydrocarbon and adsorbent for purification of light hydrocarbon
JPH0248597B2 (en)
RU2084281C1 (en) Method of preparing carbon-mineral adsorbents
CN118056606A (en) Volatile organic compound adsorption material and preparation method thereof
RU2171710C1 (en) Adsorbent for treating gasses to remove hydrogen sulfide and method of preparation thereof
JPH0420658B2 (en)