JPH0354295A - Purification of light hydrocarbon and adsorbent for purification of light hydrocarbon - Google Patents

Purification of light hydrocarbon and adsorbent for purification of light hydrocarbon

Info

Publication number
JPH0354295A
JPH0354295A JP18747289A JP18747289A JPH0354295A JP H0354295 A JPH0354295 A JP H0354295A JP 18747289 A JP18747289 A JP 18747289A JP 18747289 A JP18747289 A JP 18747289A JP H0354295 A JPH0354295 A JP H0354295A
Authority
JP
Japan
Prior art keywords
adsorbent
weight
alumina
light hydrocarbon
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18747289A
Other languages
Japanese (ja)
Other versions
JPH055877B2 (en
Inventor
Takayuki No
野 隆之
Koji Omoto
大元 好治
Kozo Imura
晃三 井村
Takayoshi Fujii
藤井 孝義
Koichi Fujie
藤江 宏一
Hideyuki Matsumoto
英之 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Utilization of Light Oil
Original Assignee
Research Association for Utilization of Light Oil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Utilization of Light Oil filed Critical Research Association for Utilization of Light Oil
Priority to JP18747289A priority Critical patent/JPH0354295A/en
Publication of JPH0354295A publication Critical patent/JPH0354295A/en
Publication of JPH055877B2 publication Critical patent/JPH055877B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To remove efficiently nitrogen compd. and oxygen compd. from a light hydrocarbon by using a silica/alumina carrying a rare earth metal as an absorbent. CONSTITUTION:A light hydrocarbon obtd. by cracking a petroleum or coal heavy oil, especially a 4-10C paraffin, olefin, etc., is brought into contact with an adsorbent consisting of an amorphous silica/alumina (the alumina content is pref. 10-50 wt.%) carrying 0.1-5.5 wt.%, pref. 0.1-2.0 wt.% rare earth metal (e.g. Ce, La, Y, etc.) (at ordinary temp. and usually at 10 kg/cm<2> or lower) to absorb and remove nitrogen compd. (e.g. amines, pyridines, nitriles, etc.) and/or oxygen compd. (e.g. phenols and others) contained in the hydrocarbon.

Description

【発明の詳細な説明】[Detailed description of the invention]

イ.発明の目的 監1二L二カ』し生号 本発明は軽質炭化水素中に不純物として含まれている窒
素化合物や酸素化合物を吸着除去する方法及びその吸着
剤に関する。 軽質炭化水素、特に重質油を分解して得られる炭素数4
〜10の範囲の軽質留分中には、不純物として窒素化合
物や酸素化合物が10乃至1000重量ppm含まれて
いるが、これらの不純物は軽質炭化水素をガソリン、溶
剤、化学用原料等として利用する場合に種々の問題を生
じる。 大きな問題の一つは、これらの軽質炭化水素を処理する
触媒にとって触媒毒となることで、有効な前処理技術が
待望されている。 え&立且通 fl)水素化精製法 炭化水素の精製法としては水素化精製が一般的な方法で
あるが、分解軽質留分中には有効利用が可能なオレフィ
ンが20〜50%含まれており、これらが水素化精製に
より同時に水素化されてしまうので好ましくない。 (2)吸着法 こうした軽質炭化水素の中に含まれていて触媒にとって
特に有害なのは、ビリジン等の塩基性の窒素化合物と考
えられたために、これまでは酸化チタン及び/又はシリ
カ(特開昭60−401.95) .シノカアルミナ、
アルミナといった酸性の吸着剤が提案されていた。また
、さらに塩基性窒素化合物との親和性をあげる目的で、
シリカ、ゼオライトX.Y、アルミナ、シリカアルミナ
等に無水酸性ガスを吸着させた吸着剤(特開昭55−4
7103)などが提案されていた。 しかし軽質炭化水素中に含まれる窒素化合物には、アミ
ン類やビリジン類のような塩基性のものとベンゾニトリ
ルのようなニトリル類やアルキルビロールのような非塩
基性のものとがあり、酸素化合物もフェノール類、クレ
ゾール類、そしてエーテル類といった酸性乃至は中性の
ものが混入しているために、酸、塩基的な考え方だけで
吸着剤を選定することは出来ない。従って酸性物質も塩
基性物質を6吸着させるには酸でも塩基でもない両性物
質が必要となる。 酸素化合物に関しては、エーテル類の除去用としてシリ
カゲル(特公昭55−44049)が提案されている。 また特願昭63−49471には表面積100〜800
m”/g、平均細孔径10〜150入のシリカゲルによ
って窒素化合物および酸素化合物を同時吸着除去する方
法が提案されているが、シリカゲルは吸着性能的には優
れているが、再生性が悪く、繰り返し使用すると大幅に
性能が低下する。 が ゛しよ と る 本発明は、吸着性能の面からも再生性の面からも優れて
いる窒素化合物や酸素化合物の吸着削、及びそれを使用
する軽質炭化水素の精製法を提供することを目的とする
。 口.発明の構成 を  するための 本発明に係る軽質炭化水素の精製法は、軽質炭化水素を
、希土類金属を0.1〜5.5重量%担持したシリカア
ルミナからなる吸着剤に接触さぜて炭化水素中に含まれ
ている窒素化合物及び/又は酸素化合物を吸着除去する
ことを特徴とする。 本発明の適用対象は窒素化合物及び/又は酸素化合物を
含有する軽質炭化水素、特に炭素数4〜10の範囲にあ
るバラフィン、オレフィンなどの炭化水素であり、単一
成分でち、2種以上の炭化水素混合物であっても良い. 吸着除去の対象とする窒素化合物、酸素化合物の例とし
ては上記各種のものが挙げられ、特に石油系、石炭系の
重質油を分解して得られる軽質留分中に含まれる窒素化
合物、酸素化合物の除去に有効である. 本発明の吸着剤のベースとなるものは非品質のジリカア
ルミナであり、前記のような被吸着物質が吸着するに十
分な細孔径を有していることが必要で、シリカアルミナ
中のアルミナ含量が10〜50重量%のものが好ましい
。 またシリカアルミナへの希土類金属の担持量は0.1〜
5.5重量%、好ましくは0.1〜2.0重量%とする
。 下記の実施例1および第1図から明らかなように、希土
類金属の担持量が0.1重量%未漢の場合はちとより、
5.5重量%を越えてち、吸着性能の向上効果は認めら
れなくなる。すなわち希土類金属の担持量が0.1〜5
.5重量%の範囲にある場合に限って吸着性能及び再生
性の向上効果が認められる。 希土類金属としてはセリウム、ランタン、イットリウム
等が挙げられるが、純品である必要はなく、市場で容易
に入手できる混合希土類を使用すれば良い。 吸着剤と炭化水素との接触は炭化水素に吸着剤を添加し
て回分的に行うこともできるが,吸着剤を充填した塔に
炭化水素を送大して連続的に処理することが好ましい。 吸着剤を塔に充填して用いる際の吸着剤の形状としては
、球状、押出品、錠剤などのいずれでもよいが、1mm
以上、好ましくは1〜5mm程度の大きさを持つことが
望ましい。 さらに、吸着剤を充填した塔を複数個、例えば2塔設け
て、吸着と再生を交互に行うようにしてもよい。 吸着条件は常温、圧力は適宜選定すれば良く、高圧法規
の適用対象とならない範囲とするのが良い。通常10k
g/cm”以下とする。 再生条件は温度400〜600℃、圧力は任意であるが
、通常は常圧〜10kg/cm”の範囲で酸素含有ガス
を流しながら被吸着物を燃焼処理する. 以下実施例により具体的に説明するが,本発明はこれら
の実施例に限定されるものではない。 [実施例1] Aβgozを28重量%含有するシリカアルミナ(1、
8〜3mm押出或型品)に水に溶解した市販の混合希土
試薬(セリウム,ランタン主体)を所定量含浸させた後
に乾燥し、空気中500℃で焼或し、第1表に示す組成
の吸着剤を得た。 炭化水素原料としては下記性状の重質油熱分解軽質留分
(炭素数4〜10の炭化水素)を使用した。 比重(1 5/4℃):  0.705全N分    
  = 33重量ppm全S分      :310重
量ppmフェノール分   二670重量ppmオレフ
ィン分   : 31重量ppm蒸留性状  IBP:
  33℃ E P : 1 6 1.’C 内径16.1mmのステンレス製反応器に第1表に示し
た吸着剤40mlを充填し、200℃で3時間、窒素気
流中で乾燥後、原料を8 0 m l. /hrでアッ
プフローで流通させた.吸着条件は5kg/cm”G、
常温、LHSV2.Ohr−’とした。 出口の精製油のN分を分析し、油中のN分が0重量pp
mになる吸着剤1mβ当りの油処理量を求めた。結果を
第1表及び第1図に示す。 (以下余白) 第 1 表 第1図はシリカアルミナへの希土類金属の担持率(重量
%)[横軸に示す]と、炭化水素油中のN分がO重量p
pmになる吸着剤lm12当りの油処理量(mβ)
stomach. OBJECTS OF THE INVENTION The present invention relates to a method for adsorbing and removing nitrogen compounds and oxygen compounds contained as impurities in light hydrocarbons, and an adsorbent for the same. Carbon number 4 obtained by cracking light hydrocarbons, especially heavy oil
The light fraction in the range of ~10 contains 10 to 1000 ppm by weight of nitrogen compounds and oxygen compounds as impurities, but these impurities are used when light hydrocarbons are used as gasoline, solvents, raw materials for chemicals, etc. In some cases, various problems arise. One of the major problems is that these light hydrocarbons act as catalyst poisons for the catalysts that process them, and effective pretreatment techniques are long-awaited. E&TSU fl) Hydrorefining method Hydrorefining is a common method for refining hydrocarbons, but the cracked light fraction contains 20 to 50% of olefins that can be used effectively. This is not preferable since these are hydrogenated at the same time during hydrorefining. (2) Adsorption method Because it was thought that basic nitrogen compounds such as pyridine were contained in these light hydrocarbons and were particularly harmful to catalysts, titanium oxide and/or silica (Japanese Patent Laid-Open No. 60-1989) -401.95). Shinoka alumina,
Acidic adsorbents such as alumina have been proposed. In addition, for the purpose of further increasing the affinity with basic nitrogen compounds,
Silica, zeolite X. An adsorbent in which anhydrous acidic gas is adsorbed on Y, alumina, silica alumina, etc.
7103) etc. were proposed. However, the nitrogen compounds contained in light hydrocarbons include basic ones such as amines and pyridines, and non-basic ones such as nitriles such as benzonitrile and alkylvirols, and oxygen Since the adsorbent contains acidic or neutral compounds such as phenols, cresols, and ethers, it is not possible to select an adsorbent based only on acid and base considerations. Therefore, in order to adsorb both acidic and basic substances, an amphoteric substance that is neither an acid nor a base is required. Regarding oxygen compounds, silica gel (Japanese Patent Publication No. 55-44049) has been proposed for removing ethers. Furthermore, in Japanese Patent Application No. 63-49471, surface areas of 100 to 800
A method has been proposed in which nitrogen compounds and oxygen compounds are simultaneously adsorbed and removed using silica gel with an average pore size of 10 to 150 m"/g, but although silica gel has excellent adsorption performance, it has poor regeneration properties. Repeated use will significantly degrade performance.The present invention aims to adsorb and remove nitrogen compounds and oxygen compounds, which are excellent in terms of both adsorption performance and regeneration, and to reduce It is an object of the present invention to provide a method for refining hydrocarbons. It is characterized in that it adsorbs and removes nitrogen compounds and/or oxygen compounds contained in hydrocarbons by contacting with an adsorbent made of silica alumina supported by weight%. Alternatively, it is a light hydrocarbon containing an oxygen compound, particularly a hydrocarbon such as paraffin or olefin having a carbon number of 4 to 10, and may be a single component or a mixture of two or more types of hydrocarbons.Adsorption Examples of nitrogen compounds and oxygen compounds to be removed include the various ones listed above, especially nitrogen compounds and oxygen compounds contained in light distillates obtained by cracking petroleum-based and coal-based heavy oils. The base of the adsorbent of the present invention is non-quality Zirica alumina, and it is necessary that it has a pore size sufficient to adsorb the above-mentioned substances to be adsorbed. It is preferable that the alumina content in the silica alumina is 10 to 50% by weight.The amount of rare earth metal supported on the silica alumina is 0.1 to 50% by weight.
The amount is 5.5% by weight, preferably 0.1 to 2.0% by weight. As is clear from Example 1 and FIG. 1 below, especially when the amount of rare earth metal supported is 0.1% by weight,
After exceeding 5.5% by weight, no improvement in adsorption performance is observed. That is, the amount of rare earth metal supported is 0.1 to 5.
.. The effect of improving adsorption performance and regeneration performance is observed only when the content is within the range of 5% by weight. Rare earth metals include cerium, lanthanum, yttrium, etc., but they do not need to be pure metals, and mixed rare earth metals that are easily available on the market may be used. Although the contact between the adsorbent and the hydrocarbon can be carried out batchwise by adding the adsorbent to the hydrocarbon, it is preferable to continuously treat the hydrocarbon by sending the hydrocarbon to a tower filled with the adsorbent. When used by filling a tower with adsorbent, the shape of the adsorbent may be spherical, extruded, tablet, etc., but 1 mm
As mentioned above, it is desirable to have a size of preferably about 1 to 5 mm. Furthermore, a plurality of columns, for example two columns, filled with adsorbent may be provided to perform adsorption and regeneration alternately. The adsorption conditions may be room temperature and the pressure may be selected appropriately, preferably within a range that is not subject to high pressure regulations. Usually 10k
The regeneration conditions are a temperature of 400 to 600°C and a pressure of any value, but usually the adsorbed material is burned while flowing an oxygen-containing gas in the range of normal pressure to 10 kg/cm. The present invention will be explained in detail below using Examples, but the present invention is not limited to these Examples. [Example 1] Silica alumina (1,
A predetermined amount of a commercially available mixed rare earth reagent (mainly cerium and lanthanum) dissolved in water was impregnated into a 8-3 mm extrusion molded product, dried, and calcined at 500°C in air to obtain the composition shown in Table 1. of adsorbent was obtained. As a hydrocarbon raw material, a heavy oil pyrolysis light fraction (hydrocarbon having 4 to 10 carbon atoms) having the following properties was used. Specific gravity (1 5/4℃): 0.705 total N min
= 33 ppm by weight Total S content: 310 ppm by weight Phenol content 2670 ppm by weight Olefin content: 31 ppm by weight Distillation properties IBP:
33℃ EP: 1 6 1. 'C A stainless steel reactor with an inner diameter of 16.1 mm was filled with 40 ml of the adsorbent shown in Table 1, and after drying in a nitrogen stream at 200°C for 3 hours, the raw material was mixed into 80 ml. /hr and distributed through upflow. Adsorption conditions are 5kg/cm”G,
Room temperature, LHSV2. Ohr-'. Analyze the N content of the refined oil at the outlet and find that the N content in the oil is 0 pp by weight.
The amount of oil processed per 1 mβ of adsorbent was determined. The results are shown in Table 1 and Figure 1. (Margins below) 1 Table 1 shows the loading rate (wt%) of rare earth metals on silica alumina [shown on the horizontal axis] and the N content in hydrocarbon oil (O weight %).
Oil processing amount per lm12 of adsorbent (mβ)

〔実施例2〜5及び比較例1〜4〕[Examples 2 to 5 and Comparative Examples 1 to 4]

吸着・再生の繰返し試験を行った。実施例1と同様な方
法で吸着飽和した吸着剤を、Ntガスを流しながら40
0℃まで昇4し、その後空気を入れて徐々に温度を上げ
て再生した.再生条件は常圧.500’C,GHSV7
5hr−’とした。その後吸着剤を冷却し、再び実施例
lと同様な方法で吸着性能を調べた.そのときの1回目
(初期)吸着・再生を繰返した後の2回目、3回目、1
0回目の吸着性能の測定結果を第2表に示す。 (以下余白) 第 2 表 希土類金11f(RE)を0.5〜2.0重量%担持し
た吸着剤は、担持しないもの或は8.0重里%担持した
ちのより吸着性能及び再生性の面で優れていることがわ
かる。 [実施例6] 1インチのステンレス製反応管に吸着剤(REを0.5
重量%担持した28重量%An20.含有シリカアルミ
ナ)800mlを充填し、常温、常圧、LHSV2.O
hr−’で原料を処理した。 吸着剤が飽和した段階で空気再生を行い、吸着再生を繰
返した。そのときの1回目、10回目のN分及びO分の
分析値を第3表に示す。 第3表 本発明における吸着剤は、吸着・再生を繰返してもN分
及びO分(フェノール)の吸着性能が変化しないことが
わかる。 [参考実験1 ?着斉l1のベースとなるシリカアノレミナ中のアルミ
ナ(Aj2■O,)含量と炭化水素油中のN分が0重1
ppmになる吸着剤1mε当りの油処理量(mff)と
の関係を実施例lに準じて求めた結果を第2図に示す。 第2図において横軸はシリカアルミナ中のアルミナ含量
(重量%)、縦軸は炭化水素油中のN分がO重量ppm
になる吸着削1mff当りの油処理潰(mC)を示す。 アルミナ含量が少なくシリカ含量が高いほど表面積が大
きく吸着性能は優れているが、しかし、シリカ含量が高
いと、再生ができないことと、反応器に充填するための
成形が困難になるため、実際に利用できる範囲としては
アルミナ含量10〜50重量%である. [発明の効果] 本発明における吸着剤は吸着性能及び再生性の面で優れ
ているので軽質炭化水素中から窒素化合物及び酸素化合
物を効率的に除去できる。
Repeated adsorption and regeneration tests were conducted. An adsorbent saturated with adsorption in the same manner as in Example 1 was heated for 40 hours while flowing Nt gas.
The temperature was raised to 0°C (4°C), and then air was introduced to gradually raise the temperature and regenerate. The regeneration conditions are normal pressure. 500'C, GHSV7
It was set as 5hr-'. Thereafter, the adsorbent was cooled and its adsorption performance was examined again in the same manner as in Example 1. After repeating the first (initial) adsorption and regeneration, the second, third, and first
Table 2 shows the measurement results of the adsorption performance at the 0th time. (Leaving space below) Table 2 Adsorbents carrying 0.5 to 2.0% by weight of rare earth gold 11f (RE) have better adsorption performance and regeneration properties than those without it or those carrying 8.0% by weight. It can be seen that it is superior in terms of [Example 6] An adsorbent (RE of 0.5
28 wt% An20. Filled with 800 ml of silica alumina containing silica alumina, and heated at room temperature and pressure, LHSV2. O
The raw material was treated with hr-'. Air regeneration was performed when the adsorbent was saturated, and adsorption regeneration was repeated. Table 3 shows the analysis values for N and O at the first and tenth times. Table 3 shows that the adsorbent of the present invention does not change its adsorption performance for N and O (phenol) even after repeated adsorption and regeneration. [Reference experiment 1? The alumina (Aj2■O,) content in the silica anolemina, which is the base of the landing l1, and the N content in the hydrocarbon oil are 0 weight 1
The relationship between the amount of oil processed (mff) per mε of adsorbent and the amount of ppm obtained was determined in accordance with Example 1, and the results are shown in FIG. In Figure 2, the horizontal axis is the alumina content (wt%) in silica alumina, and the vertical axis is the N content in the hydrocarbon oil (ppm by weight).
This shows the oil treatment crushing (mC) per 1 mff of suction cutting. The lower the alumina content and the higher the silica content, the larger the surface area and the better the adsorption performance. The usable range is alumina content of 10 to 50% by weight. [Effects of the Invention] Since the adsorbent of the present invention is excellent in adsorption performance and regeneration performance, nitrogen compounds and oxygen compounds can be efficiently removed from light hydrocarbons.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、シリカアルミナへの希土類金属の担持率(重
量%)[横軸に示す]と、炭化水素油中のN分がO重量
ppmになる吸着剤1mg当りの油処理量(mI2)[
縦軸に示す]との関係を示す図、第2図は吸着剤のベー
スとなるシリカアルミナ中のアルミナ含量(重量%)[
横軸に示す]と炭化水素油中のN分がO重量ppmにな
る吸@削1mj2当りの油処理量(mn)[縦軸に示す
]との関係を示す図である。
Figure 1 shows the loading rate (wt%) of rare earth metals on silica alumina [shown on the horizontal axis] and the amount of oil processed per 1 mg of adsorbent (mI2) where the N content in the hydrocarbon oil becomes O ppm by weight. [
Figure 2 shows the alumina content (wt%) in silica alumina, which is the base of the adsorbent.
[shown on the horizontal axis] and the oil throughput (mn) per 1 m2 of suction/cutting where the N content in the hydrocarbon oil becomes O ppm by weight [shown on the vertical axis].

Claims (1)

【特許請求の範囲】 1、軽質炭化水素を、希土類金属を0.1〜5.5重量
%担持したシリカアルミナからなる吸着剤に接触させて
炭化水素中に含まれている窒素化合物及び/又は酸素化
合物を吸着除去することを特徴とする軽質炭化水素の精
製法。 2、軽質炭化水素が重質油を分解して得られる軽質留分
である請求項第1項記載の軽質炭化水素の精製法。 3、希土類金属を0.1〜5.5重量%担持したシリカ
アルミナからなることを特徴とする軽質炭化水素精製用
吸着剤。 4、シリカアルミナ中のアルミナ含量が10〜50重量
%である請求項第3項記載の軽質炭化水素精製用吸着剤
[Claims] 1. Light hydrocarbons are brought into contact with an adsorbent made of silica alumina carrying 0.1 to 5.5% by weight of rare earth metals to remove nitrogen compounds and/or A light hydrocarbon purification method characterized by adsorption and removal of oxygen compounds. 2. The method for refining light hydrocarbons according to claim 1, wherein the light hydrocarbons are light fractions obtained by cracking heavy oil. 3. An adsorbent for refining light hydrocarbons, characterized by being made of silica alumina carrying 0.1 to 5.5% by weight of rare earth metals. 4. The adsorbent for light hydrocarbon purification according to claim 3, wherein the alumina content in the silica alumina is 10 to 50% by weight.
JP18747289A 1989-07-21 1989-07-21 Purification of light hydrocarbon and adsorbent for purification of light hydrocarbon Granted JPH0354295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18747289A JPH0354295A (en) 1989-07-21 1989-07-21 Purification of light hydrocarbon and adsorbent for purification of light hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18747289A JPH0354295A (en) 1989-07-21 1989-07-21 Purification of light hydrocarbon and adsorbent for purification of light hydrocarbon

Publications (2)

Publication Number Publication Date
JPH0354295A true JPH0354295A (en) 1991-03-08
JPH055877B2 JPH055877B2 (en) 1993-01-25

Family

ID=16206681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18747289A Granted JPH0354295A (en) 1989-07-21 1989-07-21 Purification of light hydrocarbon and adsorbent for purification of light hydrocarbon

Country Status (1)

Country Link
JP (1) JPH0354295A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8213632B2 (en) 2006-02-01 2012-07-03 Sony Corporation Electroacoustic transducer and ear speaker device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8213632B2 (en) 2006-02-01 2012-07-03 Sony Corporation Electroacoustic transducer and ear speaker device

Also Published As

Publication number Publication date
JPH055877B2 (en) 1993-01-25

Similar Documents

Publication Publication Date Title
EP0794240B1 (en) Mercury adsorbent
KR100608474B1 (en) Olefin purification by adsorption of acethylenics and regeneration of adsorbent
JP2003513772A (en) Desulfurization and new sorbents therefor
JPS6358612B2 (en)
PT1222023E (en) Sorbent composition, process for producing same and use in desulfurization
CN1277988A (en) Modifying and hydrogenation processing for diesel union method
JPH0328295A (en) Removal of mercury from liquid hydrocarbon compound
JPS63200804A (en) Removal of basic nitrogen compound from extracted oil using acidic polarity adsorbent and regeneration of said adsorbent
EP0755994A2 (en) Method of eliminating mercury from liquid hydrocarbons
CA2252521A1 (en) Process for removing nitrogenated and sulfurated contaminants from hydrocarbon streams
CN1261533C (en) Process for adsorption desulfurization of gasoline
CN1511629A (en) Molecular sieve adsorbent for deep sulfide removing and preparation and use
US4600502A (en) Adsorbent processing to reduce basestock foaming
CN113710359A (en) Adsorbent for separating organic chlorine compound from liquid hydrocarbon and method thereof
US10689583B2 (en) Process for removing sulfur compounds from hydrocarbon streams
JPH0354295A (en) Purification of light hydrocarbon and adsorbent for purification of light hydrocarbon
CN109486508B (en) FCC gasoline adsorption desulfurization method
US6911569B1 (en) Sulfur resistant adsorbents
CN109486509B (en) Adsorption desulfurization catalyst and preparation method thereof
RU2691071C1 (en) Method of preparing sorption catalyst for removing chlorine and method of removing organochloride compounds
CN109486523B (en) FCC gasoline desulfurization modification method
CN109370646B (en) Catalytic cracking gasoline desulfurization modification method
CN109370645B (en) Catalytic cracking gasoline modification method
JP4429423B2 (en) Chlorine compound removing agent and method for removing chlorine compounds from hydrocarbon fluids using the same
CN109504425B (en) Gasoline adsorption desulfurization method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 17