JPH01225486A - Production of d-glyceric acid - Google Patents

Production of d-glyceric acid

Info

Publication number
JPH01225486A
JPH01225486A JP5237088A JP5237088A JPH01225486A JP H01225486 A JPH01225486 A JP H01225486A JP 5237088 A JP5237088 A JP 5237088A JP 5237088 A JP5237088 A JP 5237088A JP H01225486 A JPH01225486 A JP H01225486A
Authority
JP
Japan
Prior art keywords
acid
glyceric acid
negative
reaction
glyceric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5237088A
Other languages
Japanese (ja)
Inventor
Kenji Soda
健次 左右田
Hidehiko Tanaka
英彦 田中
Setsuo Furukichi
古吉 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5237088A priority Critical patent/JPH01225486A/en
Publication of JPH01225486A publication Critical patent/JPH01225486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain the subject compound useful as a raw material for optical isomers from L-tartaric acid readily available as a by-product in producing wine at a low cost, by utilizing a biological L-tartaric acid metabolic system without passing through oxaloglycolic acid. CONSTITUTION:A biological L-tartaric metabolic system without passing through oxaloglycolic acid is utilized to afford D-glyceric acid from L-tartaric acid. A microorganism of the genus Pseudomonas, such as 51D1A strain (FERM P-9889), or microorganism of the genus Aerobacter, such as Aerobacter aerogenes ICR B00280, is preferably used.

Description

【発明の詳細な説明】 〔利用分野〕 医薬、農薬分野において、光学異性体が注目されている
が、D−グリセリン酸は種々の光学異性体の有機合成原
料として利用される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] Optical isomers are attracting attention in the fields of medicine and agrochemicals, and D-glyceric acid is used as a raw material for organic synthesis of various optical isomers.

〔従来技術〕[Prior art]

一般にD−グリセリン酸の製造法としては、α。 In general, the method for producing D-glyceric acid is α.

β−ジブロモプロピオン酸を酸化し、加水分解して得ら
れるり、L−グリセリン酸のラセミ体を化学的手段又は
微生物学的手段によってラセミ分割してD−グリセリン
酸を得ている。
D-glyceric acid is obtained by oxidizing and hydrolyzing β-dibromopropionic acid, or by racemic resolution of L-glyceric acid by chemical means or microbiological means.

L−酒石酸からD−グリセリン酸への変換酵素について
はダグレイ等がシュードモナス属の粗酵素抽出液中に見
い出して(バイオケミカル・ジャーナル(Bioche
m、 J、 ) 89巻、22頁、 1963年〕後、
コーン等によって更に詳しく研究され、シュードモナス
・プチダ(Pseudomonas putida)及
びシュードモナス・アシトポランス(Pseudomo
nasacidovorans)中にNAD”を補酵素
とするL−酒石酸脱水素酵素(L−酒石酸からオキザロ
グリコール酸への酸化を触媒する酵素)とオキザログリ
コール酸レダクターゼ(オキザログリコール酸からD−
グリセリン酸への変換を触媒する酵素でこの反応の際に
NADHはNAD+に再生される)を見い出し、L−酒
石酸はオキザログリコール酸を経てD−グリセリン酸に
上記の2つの酵素が共役反応して変換されることを明ら
かにした〔ジャーナル・オブ・バイオロジカル・ケミス
トリー(J、Biol、Chem、) 243巻、 2
465頁、 1968年〕。
The enzyme that converts L-tartaric acid to D-glyceric acid was discovered by Dougray et al. in the crude enzyme extract of Pseudomonas (Biochemical Journal).
m, J, ) vol. 89, p. 22, 1963],
Further studied in detail by Cohn et al., Pseudomonas putida and Pseudomonas acitoporans
L-tartrate dehydrogenase (an enzyme that catalyzes the oxidation of L-tartaric acid to oxaloglycolic acid) and oxaloglycolate reductase (an enzyme that catalyzes the oxidation of oxaloglycolic acid to D-
They discovered an enzyme that catalyzes the conversion to glyceric acid (NADH is regenerated to NAD+ during this reaction), and L-tartaric acid is converted to D-glyceric acid via oxaloglycolic acid through a coupled reaction between the two enzymes. [Journal of Biological Chemistry (J, Biol, Chem,) Vol. 243, 2]
465 pages, 1968].

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

光学異性体を得る方法としては、ラセミ体を合成した後
、化学的手段又は生物学的手段によりラセミ分割して目
的とする光学異性体を得る方法あるいは目的とする光学
異性体の合成原料を対応する光学異性体に変換したのち
、光学活性を維持しながら合成してい(方法があるが、
現在はほとんどの場合で前者の方法が採用されている。
Optical isomers can be obtained by synthesizing a racemate and then separating the racemates by chemical or biological means to obtain the desired optical isomer, or by using raw materials for the synthesis of the desired optical isomer. After converting it into an optical isomer, it is synthesized while maintaining optical activity (there are methods, but
Currently, the former method is used in most cases.

後者が採用されにくい原因としては、合成原料とする光
学異性体が一般的に高価であるという欠点を有している
ためである。特に数々の光学異性体の製造原料として有
用なり一グリセリン酸は、現在の製造法においては非常
に高価であり、それ故に合成原料として利用される範囲
はごく限られたものであった0本発明は従来よりも安価
にD−グリセリン酸の製造を可能ならしめるものである
The reason why the latter is difficult to adopt is that optical isomers used as synthetic raw materials generally have the disadvantage of being expensive. In particular, monoglyceric acid, which is useful as a raw material for producing a number of optical isomers, is very expensive in current production methods, and therefore its use as a raw material for synthesis is extremely limited. This makes it possible to produce D-glyceric acid at a lower cost than conventional methods.

〔問題点を解決するための手段及びその作用〕本発明者
等は、光学異性体の合成原料としてのD−グリセリン酸
を安価に供給すべく検討を重ね、微生物におけるL−酒
石酸からD−グリセリン酸に至る代謝系路に着目し、L
−酒石酸からD−グリセリン酸への変換を触媒する酵素
系を生産する微生物を単離、同定し、種々の酵素反応条
件の検討を行うことによって効率よくL−酒石酸をD−
グリセリン酸に生物学的に変換することに成功したもの
である。この反応系は従来より知られた代謝系とは異な
ったものであり、その変換効率は非常に良好であった。
[Means for Solving the Problems and Their Effects] The present inventors have made repeated studies to supply D-glyceric acid as a raw material for the synthesis of optical isomers at low cost, and have developed a method for producing D-glycerin from L-tartaric acid in microorganisms. Focusing on the metabolic pathway leading to acid, L
- By isolating and identifying a microorganism that produces an enzyme system that catalyzes the conversion of tartaric acid to D-glyceric acid, and investigating various enzyme reaction conditions, L-tartaric acid can be efficiently converted to D-glyceric acid.
It was successfully converted biologically into glyceric acid. This reaction system was different from previously known metabolic systems, and its conversion efficiency was very good.

なお、この反応の原料として使用するL−酒石酸はワイ
ン製造工業の副産物として多量に得られる為、更に実用
性が高いものである。以下に本発明について詳述する。
It should be noted that L-tartaric acid used as a raw material for this reaction is obtained in large quantities as a by-product of the wine manufacturing industry, making it even more practical. The present invention will be explained in detail below.

L−酒石酸からD−グリセリン酸を効率よく生産するた
めに、L−酒石酸をD−グリセリン酸に変換する活性を
有する微生物のスクリーニングを行った。スクリーニン
グ方法としては下記に述べる方法を採用した。
In order to efficiently produce D-glyceric acid from L-tartaric acid, microorganisms having the activity of converting L-tartaric acid to D-glyceric acid were screened. As the screening method, the method described below was adopted.

L−酒石酸カリウムを1.0%、硫酸アンモニウムを0
.3%、リン酸2カリウムを0.3%、硫酸マグネシウ
ムをo、oi%及び酵母エキスを0.02%含有する培
地を使用し、3N塩酸を用いてpH7,5に調製する(
以下、標準培地と言う)。本培地5戚で各微生物を25
°Cで2〜3日間振盪培養し、得られた微生物はL−酒
石酸を含む2%寒天培地に植え換える。得られた微生物
細胞を5001dのフラスコを用い、上記の培地200
Jd中で25℃、振盪条件のもとで細胞の成長が視覚的
に確認されるまで好気的に培養する。その後細胞を遠心
分離して0.85%塩化ナトリウム液で2回洗浄する。
Potassium L-tartrate 1.0%, ammonium sulfate 0
.. Use a medium containing 3% dipotassium phosphate, 0.3% magnesium sulfate, O.I.% magnesium sulfate, and 0.02% yeast extract, and adjust the pH to 7.5 using 3N hydrochloric acid (
(hereinafter referred to as standard medium). 25 of each microorganism in this medium 5 relatives
The microorganisms obtained by shaking culture at °C for 2 to 3 days are transplanted to a 2% agar medium containing L-tartaric acid. Using a 5001d flask, the obtained microbial cells were mixed with the above medium 200ml.
Culture aerobically in Jd at 25° C. under shaking conditions until visual confirmation of cell growth. The cells are then centrifuged and washed twice with 0.85% sodium chloride solution.

洗浄細胞の約Ig(湿重量)を0.1M )リス−塩酸
緩衝液(pH7,5) 1 mに懸濁し、セイコー社製
モデル7040を使用して4°Cで2分間超音波破砕を
行なう。更に40.000x gで20分間遠心分離し
たのち、上澄液を用いてL−酒石酸脱水素酵素活性を測
定し、さらにL−酒石酸脱水素酵素活性を生成する細胞
のD−グリセリン酸生成活性を測定した。なお、各酵素
活性の測定は以下に示す方法に従った。
Approximately Ig (wet weight) of the washed cells was suspended in 1 m of 0.1 M) Lis-HCl buffer (pH 7,5) and sonicated for 2 minutes at 4°C using Seiko Model 7040. . After further centrifugation at 40,000 x g for 20 minutes, L-tartrate dehydrogenase activity was measured using the supernatant, and D-glycerate production activity of cells that produce L-tartrate dehydrogenase activity was determined. It was measured. In addition, each enzyme activity was measured according to the method shown below.

(1)L−酒石酸脱水素酵素活性の測定100 umo
lのトリス−塩酸緩衝液(pH7,5)、1μmolの
塩化マグネシウム、1μmolのNAD”及び50μm
olのL−酒石酸カリウムを11111に含有する反応
液を使用し、試料溶液を添加したときを反応開始として
30°Cで波長340nmの吸光度を測定する。測定に
は島津製作所■製の分光光度計UV−3000を使用し
、吸光度変化は少なくとも1〜2分間直線性を保つ範囲
で測定する。
(1) Measurement of L-tartrate dehydrogenase activity 100 umo
l Tris-HCl buffer (pH 7,5), 1 μmol magnesium chloride, 1 μmol NAD” and 50 μmol
Using a reaction solution containing potassium L-tartrate in 11111, the absorbance at a wavelength of 340 nm is measured at 30°C with the reaction starting when the sample solution is added. For measurement, a spectrophotometer UV-3000 manufactured by Shimadzu Corp. is used, and changes in absorbance are measured within a range that maintains linearity for at least 1 to 2 minutes.

(2)D−グリセリン酸生成活性の測定100 μmo
lのトリス−塩酸緩衝液(pH7,5)、Iμmolの
塩化マグネシウム、1μII+01のNAD”及び50
μmolのL−酒石酸カリウムをII+!1!に含有す
る反応液に試料溶液を30°Cで1時間作用させたのち
、3N塩酸0.2威を添加して反応を停止する。
(2) Measurement of D-glyceric acid production activity 100 μmo
1 of Tris-HCl buffer (pH 7,5), 1 μmol of magnesium chloride, 1 μmol of NAD” and 50
μmol of potassium L-tartrate II+! 1! After the sample solution was allowed to act on the reaction solution contained in the solution at 30°C for 1 hour, 0.2 parts of 3N hydrochloric acid was added to stop the reaction.

残留するL−酒石酸の量及び生成したD−グリセリン酸
の量は東洋ソーダ■製HLC8030にULTRONP
S−80H(0,8X30aa、商品名 信相化工■製
)を使用した高速液体クロマトグラフィーで定量した。
The amount of residual L-tartaric acid and the amount of D-glyceric acid produced were determined by adding HLC8030 manufactured by Toyo Soda to ULTRONP.
It was quantified by high performance liquid chromatography using S-80H (0.8X30aa, trade name, manufactured by Shinso Kako ■).

溶離液としてQ、126%の過塩素酸を0.8 rai
l/mfの流速で流した。L−酒石酸及びD−グリセリ
ン酸の溶出時間はそれぞれ9.2分及び11.1分であ
る。
Q, 126% perchloric acid as eluent, 0.8 rai
The flow rate was 1/mf. The elution times of L-tartaric acid and D-glyceric acid are 9.2 minutes and 11.1 minutes, respectively.

また生成するCO2は島津製作所■製ガスクロマトグラ
フィー(CR−6A型)で測定し、その条件は60/8
0メツシユの活性炭(西尾工業■製)を充填したステン
レス製カラム(0,03X 100 cm )を使用し
、キャリアーガス(ヘリウム)を39II11;/mi
n、温度160°Cで行った。CO□の保持時間は1分
である。
In addition, the generated CO2 was measured using a gas chromatograph (CR-6A model) manufactured by Shimadzu Corporation, and the conditions were 60/8.
A stainless steel column (0.03 x 100 cm) packed with 0 mesh activated carbon (manufactured by Nishio Kogyo ■) was used, and the carrier gas (helium) was heated at 39II11;/mi.
n, at a temperature of 160°C. The retention time of CO□ is 1 minute.

酵素活性の単位は1分間に生成物を1μmol生成する
ときを1単位とした。また比活性は蛋白1■あたりの活
性で表示し、蛋白量は牛血清アルブミンを標準品として
ローリ−等の方法〔ジャーナル・オプ・バイオロジカル
・ケミストリー(J、Biol、Chem、) 193
巻、265頁、 1968年〕に従って測定した。
The unit of enzyme activity was defined as 1 unit when 1 μmol of the product was produced per minute. In addition, specific activity is expressed as activity per unit of protein, and protein amount is determined by the method of Lowry et al. using bovine serum albumin as a standard [Journal of Biological Chemistry (J, Biol, Chem, ) 193].
Vol., p. 265, 1968].

数々の菌株をスクリーニングした結果、L−酒石酸脱水
素酵素を生産する微生物が13株得られ、更に表−1に
示すように、そのうちの8株にD−グリセリン酸生産活
性の存在が認められた。
As a result of screening a number of bacterial strains, 13 strains of microorganisms that produced L-tartrate dehydrogenase were obtained, and as shown in Table 1, the presence of D-glyceric acid production activity was observed in 8 of these strains. .

以下余白 表−1 このなかでD−グリセリン酸生産活性が高い5DIA株
に関してはマニュアル・オブ・クリニカル・マイクロバ
イオロジー((Manual ofClinical 
Microbiology)、第4版、 1985年〕
に従って同定した。
Margin table below - 1 Among these, the 5DIA strain with high D-glyceric acid production activity is described in the Manual of Clinical Microbiology ((Manual of Clinical Microbiology).
Microbiology), 4th edition, 1985]
Identified according to.

細胞の形態           桿菌細胞の大きさ(
幅)        0.8−1.2u餉細胞の大きさ
(長さ)       2.0−3.2um運動性  
           有り鞭毛の有無及び着生状態 
    極単鞭毛グラム染色           陰
性3%のKOHに対する溶解性    陽性アミノペプ
チダーゼ       陽性胞子形成        
    陰性オキシダーゼ生成        陰性カ
タラーゼ生成         陽性嫌気的条件下での
生育      陰性37°Cでの生育       
   陽性41°Cでの生育          陰性
マツコンキー・寒天培地     陽性SS−寒天培地
         陰性セトリマイド寒天培地    
  陽性色素形成 非水溶性色素生成      黄橙 水溶性色素生成       陰性 蛍光色素生成        陰性 ビオシアニン生成      陰性 OFテスト グルコース(好気的)    陽性 グルコース(嫌気的)    陰性 グルコースからのガス生成    陰性酸の生成(As
s) グルコース         陽性 フラクトース        陽性 キシロース         陽性 0NPC試験          陰性アルギニンジハ
イドロラーゼ   陰性リジンデカルボキシラーゼ  
  陰性インドール生成         陰性硝酸塩
の還元性         陰性脱窒反応      
      陰性フェニールアラニンデアミナーゼ 陽
性シュクロースからのレバンの生成 陰性レシチナーゼ
          陰性ウレアーゼ        
   陰性加水分解能 澱粉            陽性 ゼラチン          陰性 カゼイン          陰性 DNA            陰性 ツイーン80          陰性エスクリン  
       陰性 チロシンの分解         陰性栄養要求性  
         陰性資化性 アセチイト         陽性 アジベイト         陰性 カブレイト         陽性 シトレイト          陽性 グリコレイト         陰性 レブリネイト         陰性 マレイド           陽性 マロネイト         陽性 フェニールアセチイト    陰性 L−アラビノース      陽性 フラクトース        陽性 グルコース         陽性 マンノース         陽性 キシロース         陽性 マンニトール        陽性 グルコン酸         陽性 2−ケトグルコン酸      陽性 N−アセチルグルコサミン   陰性 L−セリン          陽性 尚、2−ヒドロキシ及び3−ヒドロキシ脂肪酸は確認さ
れたが、シクロプロパン脂肪酸は確認されなかった。
Cell morphology Bacillus cell size (
Width) 0.8-1.2u Cell size (length) 2.0-3.2um Motility
Presence or absence of flagella and epiphytic status
Polar monoflagellate Gram stain Negative Solubility in 3% KOH Positive Aminopeptidase Positive Sporulation
Negative oxidase production Negative catalase production Positive growth under anaerobic conditions Negative growth at 37°C
Positive Growth at 41°C Negative Pine Conchi Agar Medium Positive SS-Agar Medium Negative Cetrimide Agar Medium
Positive pigment formation Water-insoluble pigment production Yellow-orange water-soluble pigment production Negative fluorescent pigment production Negative biocyanin production Negative OF test glucose (aerobic) Positive glucose (anaerobic) Gas production from negative glucose Negative acid production (As
s) Glucose Positive fructose Positive xylose Positive 0NPC test Negative arginine dihydrolase Negative lysine decarboxylase
Negative indole formation Negative nitrate reduction Negative denitrification reaction
Negative phenylalanine deaminase Positive production of levan from sucrose Negative lecithinase Negative urease
Negative hydrolyzable starch Positive gelatin Negative casein Negative DNA Negative Tween 80 Negative Aesculin
Degradation of negative tyrosine Negative auxotrophy
Negative assimilable acetite Positive adivate Negative caprate Positive citrate Positive glycolate Negative levulinate Negative maleide Positive malonate Positive phenylacetite Negative L-arabinose Positive fructose Positive glucose Positive mannose Positive xylose Positive mannitol Positive gluconic acid Positive 2-ketogluconic acid Positive N-acetyl Glucosamine Negative L-serine Positive In addition, 2-hydroxy and 3-hydroxy fatty acids were confirmed, but cyclopropane fatty acids were not confirmed.

以上の結果より、本菌株はシュードモナス属と同定され
た。この5DIA株は工業技術院微生物工業技術研究所
に寄託され、その寄託番号は微工研菌寄第9889号で
ある。以後の実験例には本菌株を使用した。
Based on the above results, this bacterial strain was identified as a Pseudomonas genus. This 5DIA strain has been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology, and its deposit number is FAIKEN BACKGROUND No. 9889. This strain was used in subsequent experimental examples.

実験例1 炭素源の比較 標準培地(但し、炭素源としてL−酒石酸、D−酒石酸
、メソ−酒石酸またはグリセロールを使用)を用いてD
−グリセリン酸生成活性の生産に及ぼす炭素源の影響を
調べた0表−2に示すようにL−酒石酸を炭素源とした
時に5DIA株の菌体収量は最も多く、又最も多量にD
−グリセリン酸生成活性が得られた。
Experimental Example 1 Comparison of carbon source D
- The effect of carbon source on the production of glyceric acid production activity was investigated.0 As shown in Table 2, when L-tartaric acid was used as the carbon source, the bacterial cell yield of strain 5DIA was highest, and the highest amount of D
- Glyceric acid producing activity was obtained.

表−2 実験例2 最適反応条件の測定 ■至適piiの測定 り一酒石酸からD−グリセリン酸を生産する際の至適p
Hは7.5付近であった(図−1)。反応条件は実施例
1で述べる反応液組成で30℃、1時間反応した。但し
、緩衝液は酢酸緩衝液、トリス−塩酸緩衝液及びリン酸
緩衝液を使用し、反応液中の粗酵素抽出液の蛋白含量は
3.15■/dでおこなった。
Table 2 Experimental Example 2 Measurement of optimum reaction conditions ■ Measurement of optimum pii Optimal p when producing D-glyceric acid from monotartaric acid
H was around 7.5 (Figure 1). The reaction conditions were as described in Example 1, and the reaction was carried out at 30° C. for 1 hour. However, the buffer solutions used were acetate buffer, Tris-HCl buffer, and phosphate buffer, and the protein content of the crude enzyme extract in the reaction solution was 3.15 μ/d.

■至適温度の測定 り一酒石酸からD−グリセリン酸を生産する際の至適温
度は3時間の反応で30℃であった(図−2)。反応条
件は実施例1で述べる反応液組成で各温度(20,30
,40,50及び60°C)で1〜3時間反応した。但
し、反応液中の粗酵素液の含量は1.37■/dでおこ
なった。
(2) Measurement of optimal temperature The optimal temperature for producing D-glyceric acid from monotartaric acid was 30°C for 3 hours of reaction (Figure 2). The reaction conditions were the reaction solution composition described in Example 1 at various temperatures (20, 30
, 40, 50 and 60°C) for 1 to 3 hours. However, the content of the crude enzyme solution in the reaction solution was 1.37 μ/d.

■金属塩の影響 粗酵素液(蛋白として3.2■含有)と100μ+1I
olのトリス−塩酸緩衝液(pi47.5 )及び5μ
molのエチレンジアミン四酢酸2ナトリウムを総容量
IFdに含む液を30°Cで1時間インキュベートする
ことによってD−グリセリン酸生成活性は完全に失活し
、M g ”、 M n ”、 Co ”によって再活
性化された(表−3)、また、M g t−は0 、2
mM以上の濃度では、D−グリセリン酸生産に与える効
果はほぼ一定であった。  ゛ 表−3 ■NAD+の影響 り一酒石酸からD−グリセリン酸を生産する際のNAD
”の濃度の影響を調べた。(図−3)。
■Influence of metal salts Crude enzyme solution (contains 3.2■ as protein) and 100μ+1I
ol of Tris-HCl buffer (pi47.5) and 5μ
By incubating a solution containing mol of disodium ethylenediaminetetraacetate in a total volume of IFd at 30°C for 1 hour, the D-glyceric acid production activity was completely inactivated, and it was reactivated by M g '', M n '', and Co ''. activated (Table 3), and M g t- is 0, 2
At concentrations above mM, the effect on D-glyceric acid production was almost constant.゛Table-3 ■Influence of NAD+ NAD when producing D-glyceric acid from monotartaric acid
(Figure 3).

反応条件は実施例1で述べる反応液組成で30℃で1.
2.3及び5時間反応した。但し、反応液中の粗酵素抽
出液の蛋白含量は1.37■/dでおこなった。
The reaction conditions were as follows with the reaction solution composition described in Example 1 at 30°C.
Reacted for 2.3 and 5 hours. However, the protein content of the crude enzyme extract in the reaction solution was 1.37 μ/d.

■基質特異性 5DIA株の粗酵素抽出液の基質特異性を調べた(表−
4)、反応条件はジヒドロキシフマル酸  “を基質に
したときはNADHを10mM含有し、その他の場合は
NADHを1mM含有した系テ30″C11時間の反応
で行った。
■Substrate specificity The substrate specificity of the crude enzyme extract of the 5DIA strain was investigated (Table-
4) The reaction conditions were a system containing 10 mM NADH when dihydroxyfumaric acid was used as a substrate, and a system containing 1 mM NADH in other cases.

表−4 以上に示すように、この本菌株から得られる粗酵素液は
、L−及びメソ−酒石酸には作用するが、L−酒石酸か
らD−グリセリン酸への代謝経路の中間体とされている
オキザログリコレートの互変異性体であるジヒドロキシ
フマル酸には全く作用しなかった。このことは従来ジャ
コピー等にょって見出された酵素系とは全く異なる新規
な酵素系によるL−酒石酸からD−グリセリン酸への代
謝が行われていることを示すものである。このような基
質特異性は5DIA株以外の表−1に示した全ての菌株
にも確認された。
Table 4 As shown above, the crude enzyme solution obtained from this strain acts on L- and meso-tartaric acid, but is considered an intermediate in the metabolic pathway from L-tartaric acid to D-glyceric acid. It had no effect on dihydroxyfumaric acid, a tautomer of oxaloglycolate. This indicates that L-tartaric acid is metabolized to D-glyceric acid by a novel enzyme system that is completely different from the enzyme system previously discovered by Jacopy et al. Such substrate specificity was confirmed in all strains shown in Table 1 other than the 5DIA strain.

以下に実施例を挙げるが本発明はこれらに限定されるも
のではない。
Examples are given below, but the present invention is not limited thereto.

実施例1 5DIA株の粗酵素抽出液の作用によってL−酒石酸か
ら生じる生成物の同定 り一酒石酸−2カリウム100 mmol、 )リス−
塩酸緩衝液(pH7,5) 20關o1.塩化マグネシ
ウム0.2 mmol、 NAD” 2mmol及び5
DIA株粗酵素抽出液50d (938■蛋白質)を1
乏中に含んだ液を30°Cで24時間インキュベートを
行った。反応後、反応液をアンバーライトIRA400
 (商品名) (OH−型)(5X21cm、容量が4
18 yd)のカラムにかけ、11、の水で洗浄した後
、1fのIN−塩酸で溶出した。塩酸の両分はエバポレ
ーターで充分に濃縮した後、ベアー等の方法〔ジャーナ
ル・オプ・アメリカン・ケミカル・ソサイアティ(J、
 A+w、 Chem。
Example 1 Identification of the product generated from L-tartaric acid by the action of the crude enzyme extract of the 5DIA strain 100 mmol of dipotassium monotartrate;
Hydrochloric acid buffer (pH 7,5) 20 o1. Magnesium chloride 0.2 mmol, NAD” 2 mmol and 5
DIA strain crude enzyme extract 50d (938■ protein) 1
The solution contained in the suspension was incubated at 30°C for 24 hours. After the reaction, transfer the reaction solution to Amberlite IRA400.
(Product name) (OH-type) (5 x 21 cm, capacity 4
It was applied to a column of 18 yd), washed with water of 11, and eluted with IN-hydrochloric acid of 1f. After sufficiently concentrating both portions of hydrochloric acid in an evaporator, the method of Baer et al. [Journal of the American Chemical Society (J.
A+w, Chem.

Soc、)61巻、 2607頁、 1939年〕に従
ってグリセリン酸カルシウムを得た。得られたグリセリ
ン酸カルシウムは市販のDL−グリセリン酸カルシウム
と同じパターンのNMR及びIRスペクトルを与えた。
Soc, Vol. 61, p. 2607, 1939], calcium glycerate was obtained. The obtained calcium glycerate gave NMR and IR spectra with the same pattern as commercially available DL-calcium glycerate.

得られたグリセリン酸カルシウムの旋光度〔α〕20は
+13.3であった(D−グリセリン酸の旋光度文献値
は+12.9〜+15.5)。生成物はグリオキシル酸
リダクターゼとジアホラーゼを用いたカップリング反応
によって酸化され、89nmolのグリセリン酸カルシ
ウムから87nmolのホルマザン色素を与えた。以上
の結果がら生成物はD−グリセリン酸と同定された。ま
たこの条件での光学収率は96%であった。
The optical rotation [α]20 of the obtained calcium glycerate was +13.3 (the literature value of the optical rotation of D-glyceric acid is +12.9 to +15.5). The product was oxidized by a coupling reaction using glyoxylate reductase and diaphorase to give 87 nmol of formazan dye from 89 nmol of calcium glycerate. Based on the above results, the product was identified as D-glyceric acid. The optical yield under these conditions was 96%.

実施例2 アエロバクタ−アエロジェネスICRBOO280を培
養して得られた粗酵素抽出液50dを使用して実施例1
と同様にして操作した結果、生成物はD−グリセリン酸
と同定され、その光学収率は86%であった。
Example 2 Example 1 using 50d of crude enzyme extract obtained by culturing Aerobacter aerogenes ICRBOO280
As a result of operating in the same manner as above, the product was identified as D-glyceric acid, and the optical yield was 86%.

実施例3 50mHのL−酒石酸からD−グリセリン酸が生成する
時の反応過程を測定した。(図−4)0.1M)リス−
塩酸緩衝液(pH7,5)、 0.2mM塩化マグネシ
ウム、1mMNAD”の存在下で30℃、1.4■/戚
の蛋白を含む5DIA株の粗酵素抽出液によってほぼ1
00%の収率でL−酒石酸はD−グリセリン酸に変換さ
れた。
Example 3 The reaction process when D-glyceric acid was produced from 50 mH L-tartaric acid was measured. (Figure-4) 0.1M) Squirrel-
Approximately 1
L-tartaric acid was converted to D-glyceric acid with a yield of 0.00%.

図−4において25.4μmolのD−グリセリン酸が
生成した時、23.3μmolのCO□の発生が認めら
れ、反応が化学量論的に進行することが示された。
In Figure 4, when 25.4 μmol of D-glyceric acid was produced, 23.3 μmol of CO□ was observed to be generated, indicating that the reaction proceeded stoichiometrically.

〔発明の効果] 本発明者らは、L−酒石酸をD−グリセリン酸に変換す
る新規な酵素系を生産する菌株を天然界からスクリーニ
ングした。特に5DIA株の酵素系を用いて反応条件を
検討することにより、L−酒石酸をほぼ100%の収率
でD−グリセリン酸に変換することができ、その光学純
度も96%であった。
[Effects of the Invention] The present inventors screened a strain from nature that produces a novel enzyme system that converts L-tartaric acid to D-glyceric acid. In particular, by examining the reaction conditions using the 5DIA strain enzyme system, L-tartaric acid could be converted to D-glyceric acid with a yield of almost 100%, and its optical purity was also 96%.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1はD−グリセリン酸生成に及ぼすpHの影響を示
し、図−2はD−グリセリン酸生成に及ぼす温度の影響
を示すものであり、−〇−は1時間の反応結果、−ロー
は2時間の反応結果及び−Δ−は3時間の反応結果であ
る。図−3はD−グリセリン酸生成に及ぼすNAD”の
影響を示すものであり、−〇−は1時間の反応結果、−
麿一は2時間の反応結果、−ローは3時間の反応結果及
び−・−は5時間の反応結果である。図−4はL−酒石
酸からD−グリセリン酸が生成する時の反応過程を示す
ものであり、−0−はL−酒石酸の減少過程を示し、−
ローはD−グリセリン酸の生成過程を示す。
Figure-1 shows the influence of pH on the production of D-glyceric acid, and Figure-2 shows the influence of temperature on the production of D-glyceric acid. The reaction results for 2 hours and -Δ- are the reaction results for 3 hours. Figure 3 shows the influence of NAD on D-glyceric acid production, -〇- is the reaction result for 1 hour, -
Maroichi is the reaction result for 2 hours, -Rho is the reaction result for 3 hours, and -.- is the reaction result for 5 hours. Figure-4 shows the reaction process when D-glyceric acid is produced from L-tartaric acid, -0- indicates the reduction process of L-tartaric acid, -
The row indicates the production process of D-glyceric acid.

Claims (2)

【特許請求の範囲】[Claims] (1)オキザログリコール酸を経由しない生物学的なL
−酒石酸代謝系を利用したL−酒石酸よりD−グリセリ
ン酸を得るD−グリセリン酸の製造法。
(1) Biological L that does not go through oxaloglycolic acid
- A method for producing D-glyceric acid in which D-glyceric acid is obtained from L-tartaric acid using a tartaric acid metabolic system.
(2)アエロバクター属あるいはシュードモナス属に属
する微生物を使用する特許請求の範囲第(1)項記載の
D−グリセリン酸の製造法。
(2) The method for producing D-glyceric acid according to claim (1), which uses a microorganism belonging to the genus Aerobacter or Pseudomonas.
JP5237088A 1988-03-04 1988-03-04 Production of d-glyceric acid Pending JPH01225486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5237088A JPH01225486A (en) 1988-03-04 1988-03-04 Production of d-glyceric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5237088A JPH01225486A (en) 1988-03-04 1988-03-04 Production of d-glyceric acid

Publications (1)

Publication Number Publication Date
JPH01225486A true JPH01225486A (en) 1989-09-08

Family

ID=12912921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5237088A Pending JPH01225486A (en) 1988-03-04 1988-03-04 Production of d-glyceric acid

Country Status (1)

Country Link
JP (1) JPH01225486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130908A (en) * 2008-12-02 2010-06-17 National Institute Of Advanced Industrial Science & Technology Method for producing glycerate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130908A (en) * 2008-12-02 2010-06-17 National Institute Of Advanced Industrial Science & Technology Method for producing glycerate

Similar Documents

Publication Publication Date Title
US4994382A (en) Process for production of pyrrolo-quinoline quinone
JPH0284198A (en) Production of optically active alpha-substituted organic acid and organism and enzyme to be used therefor
US5714357A (en) Process for producing optically active α-hydroxycarboxylic acid having phenyl group
US5283193A (en) Process for producing optically active α-substituted organic acid and microorganism and enzyme used therefor
JPH0595795A (en) Production of r(-)-mandelic acid and its derivative
JP3698742B2 (en) Process for producing optically active 4-hydroxy-2-ketoglutaric acid
JPS60224488A (en) Production of l-calnitine by microbiological means
AU2008249370B2 (en) Method for producing glucuronic acid by glucuronic acid fermentation
JPH02303495A (en) Production of aromatic amino acid
JPS59113896A (en) Preparation of pyrroloquinolinequinone
US4943528A (en) Process for the production of optically active (R)-(-)-3-halo-1,2-propanediol
US3830696A (en) Process for the preparation of 5-hydroxy-l-tryptophan
US5783428A (en) Method of producing fumaric acid
JP2696424B2 (en) Method for producing R (-)-mandelic acid
JPH0576391A (en) Biological engineering method for preparing s-(+)-2,2-dimethylcyclopropanecarboxamide
US4492757A (en) Process for preparing L-threonine
JPH01225486A (en) Production of d-glyceric acid
US4918012A (en) Method for producing carnitine, L-carnitinamide hydrolase and method for producing same
US5496715A (en) Process for preparing indigo
US4496655A (en) Process for the production of tyramine oxidase
Furuyoshi et al. Enzymatic production of D-glycerate from L-tartrate
US4699883A (en) Process for producing N-acylneuraminate aldolase
JP4269416B2 (en) Process for producing α-halo-α, β-saturated carbonyl compound
EP0567642A1 (en) Process for producing (r)-malic acid, microbial maleate hydratase, and process for producing said hydratase
EP0295622B1 (en) Process for producing l-tryptophan