JPH012252A - thin wall magnesium battery - Google Patents

thin wall magnesium battery

Info

Publication number
JPH012252A
JPH012252A JP62-155277A JP15527787A JPH012252A JP H012252 A JPH012252 A JP H012252A JP 15527787 A JP15527787 A JP 15527787A JP H012252 A JPH012252 A JP H012252A
Authority
JP
Japan
Prior art keywords
magnesium
battery
thin
foil
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-155277A
Other languages
Japanese (ja)
Other versions
JPS642252A (en
Inventor
大野 篤美
Original Assignee
株式会社 オ−・シ−・シ−
Filing date
Publication date
Application filed by 株式会社 オ−・シ−・シ− filed Critical 株式会社 オ−・シ−・シ−
Priority to JP15527787A priority Critical patent/JPS642252A/en
Priority claimed from JP15527787A external-priority patent/JPS642252A/en
Publication of JPH012252A publication Critical patent/JPH012252A/en
Publication of JPS642252A publication Critical patent/JPS642252A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 電子技術の発展につれて電子計算機やラジオの如き電子
機器が超小型化、超薄肉化の傾向を示すようになり、そ
れにつれて(厚さ0.5mm以下のような超薄肉の電池
の需要が急速に高まってきた。
[Detailed Description of the Invention] As electronic technology develops, electronic devices such as computers and radios tend to become ultra-small and ultra-thin. Demand for thin-walled batteries has been rapidly increasing.

本発明は、バンクカード、クレジットカードなどのよう
な薄肉のICカードに内蔵できる超薄肉のマグネシウム
電池に関するものである。
The present invention relates to an ultra-thin magnesium battery that can be built into a thin IC card such as a bank card or credit card.

高純なマグネシウムは加工性が悪く、電極に成形するこ
とが困難なために、電池の電極材としては用いら5れて
いないが、マグネシウム基合金は電襖の陽極材料として
、しばしば用いられてきた。
Highly pure magnesium has poor workability and is difficult to form into electrodes, so it is not used as a battery electrode material5, but magnesium-based alloys are often used as anode materials for electric sliding doors. Ta.

たとえば、電池の負極にマグネシウムにアルミニウムと
亜鉛を少量添加した合金を用いたマグネシウム乾電池が
あり、端子電圧に’2 V以上の値が得られることが知
られている。しかもマグネシウム合金を負極に用いた乾
電池は電圧が高いだけでなく、−50℃のような低温の
重負荷放電特性がよく、とくに塩化銅と組み合わせた電
池は、海難時のSOSランプ、SO3発信機、ソーナー
ブイなどの他に模型飛行機、ラジオゾンデ、釣具などに
用いられてきた。
For example, it is known that there is a magnesium dry battery that uses an alloy of magnesium with a small amount of aluminum and zinc added to the negative electrode of the battery, and that it is possible to obtain a terminal voltage of 2 V or more. Furthermore, dry batteries that use magnesium alloy as the negative electrode not only have high voltage, but also have good heavy load discharge characteristics at low temperatures such as -50℃.Batteries that are combined with copper chloride are especially suitable for use in SOS lamps and SO3 transmitters during maritime disasters. In addition to sonar buoys, it has been used in model airplanes, radiosondes, fishing gear, etc.

少量のアルミニウム及び亜鉛を含むマグネシウム合金を
負極、二酸化マンガンを正極としたマグネシウム乾電池
は、容量が亜鉛負極を用いた場合の約3倍、放電持続時
間は普通の亜鉛負極電池に比して2.5倍長いといわれ
ている。このことは、マグネシウムが電池の負極材とし
て、きわめてすぐれていることを示すものである。
A magnesium dry battery with a negative electrode made of a magnesium alloy containing small amounts of aluminum and zinc and a positive electrode made of manganese dioxide has a capacity that is approximately three times that of a battery that uses a zinc negative electrode, and a discharge duration that is 2.5 times longer than that of a normal zinc negative electrode battery. It is said to be five times longer. This shows that magnesium is extremely suitable as a negative electrode material for batteries.

しかしながら、電池の薄肉化の時代の要求に、マグネシ
ウムは答えることができず、0.51以下のような超薄
肉電池は、もっばらO,1mm程度の厚さのリチウム箔
を負極とするリチウム電池が使われてきた。
However, magnesium cannot meet the demands of the era of thinner batteries, and ultra-thin batteries with a thickness of 0.51 or less are made using lithium oxide, which uses lithium foil with a thickness of about 1 mm as the negative electrode. Batteries have been used.

その原因は、マグネシウムやマグネシウム合金の塑性加
工による箔の製造がきわめて難しく、加工歩留まりが悪
く、工業的な生産の対象になりにくいことにあった。
The reason for this is that it is extremely difficult to produce foil by plastic processing of magnesium or magnesium alloys, and the processing yield is low, making it difficult to make it a target for industrial production.

一般に、稠密六方格子からなる結晶構造を有する金属は
、体心立方格子や面心立方格子型の金属に比べて塑性加
工が難しいことが知られており、マグネシウムはそのよ
うな難加工性材料の代表的なものとして良(知られた金
属である。
In general, it is known that metals with a crystal structure consisting of a close-packed hexagonal lattice are more difficult to plastically work than metals with a body-centered cubic lattice or a face-centered cubic lattice, and magnesium is suitable for such difficult-to-work materials. A typical example is good (a well-known metal).

マグネシウムを従来の冷却鋳型を用いた鋳造法で鋳造す
ると、鋳塊は等輪島を含む多結晶体からなる。そのよう
な鋳塊には、外周に柱状晶が表面に対してほぼ垂直に並
んで成長し柱状晶帯を形成する。鋳塊の内部には、不純
物の偏析、鋳巣、気泡などの鋳造欠陥が生ずる。このよ
うな鋳塊は冷間で圧延加工することは不可能である。
When magnesium is cast by a conventional casting method using a cooling mold, the ingot consists of a polycrystalline body containing isocycle islands. In such an ingot, columnar crystals grow on the outer periphery in a line substantially perpendicular to the surface, forming a columnar crystal zone. Casting defects such as segregation of impurities, cavities, and air bubbles occur inside the ingot. Such an ingot cannot be cold rolled.

マグネシウムに少量のマンガンや亜鉛を添加すると、熱
間加工が可能なことが知られている。しかし、その場合
でも結晶粒界の存在に入(囚する板や箔の耳割れが発生
するため、歩留まりがきわめて悪く、マグネシウム箔の
工業的生産手段として用いることが難しく、薄肉のマグ
ネシウム電池をつくることができなかった。
It is known that hot working is possible when small amounts of manganese and zinc are added to magnesium. However, even in this case, the presence of grain boundaries (crackling of edges of the entrained plate or foil occurs), resulting in extremely low yields and difficulty in using it as an industrial means of producing magnesium foil, making it difficult to produce thin-walled magnesium batteries. I couldn't do that.

超薄肉マグネシウム電池を製造するためには、0.1−
醜以下の如き薄いマグネシウム箔を製造する方法を見出
さなければならない、そのためには、鋳造時に薄肉の板
状鋳塊をつくり、それを僅かに圧延加工して、箔に仕上
げる方法が考えられる。
In order to manufacture ultra-thin magnesium batteries, 0.1-
It is necessary to find a method for producing thin magnesium foil that is no better than ugly.To do this, one possible method is to create a thin plate-shaped ingot during casting, then slightly roll it to finish it into foil.

薄肉の金属帯を鋳造するには、冷却した回転ロールの表
面に金属溶湯を供給し、急冷凝固させる方法が存在する
が、電極用マグネシウム箔の製造にこれを応用すること
はできない、なんとなれば、金属帯は多結晶体からなり
、このような金属帯を圧延加工するときは、無数の微細
な孔が生成するし、加工中に容易に破断が起こり、健全
な薄肉の箔を得ることはできない。
To cast thin metal strips, there is a method of supplying molten metal onto the surface of a cooled rotating roll and rapidly solidifying it, but this cannot be applied to manufacturing magnesium foil for electrodes. , the metal strip is made of polycrystalline material, and when such a metal strip is rolled, countless minute holes are generated, and breakage easily occurs during processing, making it impossible to obtain a sound and thin foil. Can not.

本発明者は、鋳型を鋳造金属の凝固温度以上に加熱し、
鋳造金属の冷却は、鋳型の抜熱によるのでなくて、凝固
した鋳塊に直接冷却材を接触させて行うという加熱鋳型
式連続鋳造法によって鋳造したマグネシウム鋳塊を圧延
した場合には、亀裂やピンホールのない、しかも、凝固
粒界の全くないマグネシウム箔がきわめて容易に得られ
、このようにして得られたマグネシウム箔が薄肉電池の
負極としてきわめてすぐれていることを実験的に見出し
本発明を完成した。
The present inventor heated the mold to a temperature higher than the solidification temperature of the cast metal,
When rolling a magnesium ingot cast by the heated mold continuous casting method, in which the cooling of the cast metal is not done by removing heat from the mold, but by bringing a coolant into direct contact with the solidified ingot, cracks and We have experimentally discovered that a magnesium foil without pinholes and without any coagulation grain boundaries is extremely easy to obtain, and that the magnesium foil thus obtained is excellent as a negative electrode for thin batteries. completed.

マグネシウムは資源が豊富であり、従来の超薄肉電池に
用いられたリチウムに比して材料が安いので今後は、マ
グネシウム負極を有する超薄肉電池が、広く使用され、
電子産業の発展に大きく貢献するものと考えられる。
Magnesium is an abundant resource and the material is cheaper than lithium used in conventional ultra-thin batteries, so ultra-thin batteries with magnesium negative electrodes will be widely used in the future.
It is believed that this will greatly contribute to the development of the electronic industry.

実施例 出口の中空断面がlsmx30−請の黒鉛製加熱鋳型を
用い、鋳型の内壁温度を651’C以上に保持し、鋳塊
の冷却は鋳型の開口端の外でのみ行うという方法により
、厚さ11幅30mmの帯状鋳塊を連続的に鋳造した。
Example A graphite heating mold with a hollow cross section of lsm x 30 mm at the outlet was used, the temperature of the inner wall of the mold was maintained at 651'C or higher, and the ingot was cooled only outside the open end of the mold. A strip-shaped ingot with a width of 30 mm was continuously cast.

得られた帯状鋳塊は凝固開始端付近は多くの柱状晶から
なっていたが、凝固開始端から約500s+mにおいて
は完全な単結晶であった。この単結晶鋳塊を圧延加工す
ることによって0.1mmの厚さのピンホールのない健
全な箔を耳割れなしに容易に加工することができた。
The obtained band-shaped ingot consisted of many columnar crystals near the solidification start end, but was a complete single crystal at about 500 s+m from the solidification start end. By rolling this single-crystal ingot, it was possible to easily form a sound foil with no pinholes and a thickness of 0.1 mm without any edge cracking.

この箔を電池の負極とし、M、O!を正極とする第1図
の如き断面を存する厚さ0.511111の電池を作製
した。
This foil was used as the negative electrode of the battery, and M, O! A battery with a thickness of 0.511111 mm and having a cross section as shown in FIG.

すなわち第1図において■はマグネシウム箔からなる負
極(アノード)で■のM、O□正極(カソード)との間
に、M、B、、を主成分とする電解液を含むセパレータ
ー■を間にはさんでいる。■■はステンレス鋼からなる
電池のカバーでそれぞれ魚種端子及び正極端子を構成す
る。■■は絶縁材シールである。
That is, in Fig. 1, ■ is a negative electrode (anode) made of magnesium foil, and a separator ■ containing an electrolyte containing M, B, etc. as main components is placed between it and the positive electrode (cathode) of M, O□. It's in between. ■■ is a battery cover made of stainless steel, which constitutes a fish species terminal and a positive terminal, respectively. ■■ is an insulating material seal.

この超薄肉電池で2.1vという高電圧が得られた。そ
して凝固粒界を有しないマグネシウムは腐食を起こさず
表面が均一に反応し消耗するために、自然放電による電
池の容量減少が少なく、20℃で1年間の保存で、電池
容量の減少は僅か1%にすぎなかった。
A high voltage of 2.1V was obtained with this ultra-thin battery. Magnesium, which does not have coagulation grain boundaries, does not cause corrosion and the surface reacts uniformly and is consumed, so there is little loss of battery capacity due to natural discharge, and after storage for one year at 20°C, the battery capacity decreases by only 1. It was only %.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、マグネシウム箔を使用した超薄肉電池の一例
を示す縦断面である。 1、 マグネシウム負極 2、 M −Oを正極 3、 セパレーター 4、 負極端子 5、 正極端子 6、 絶縁材シール オl  In
FIG. 1 is a longitudinal section showing an example of an ultra-thin battery using magnesium foil. 1. Magnesium negative electrode 2, M-O as positive electrode 3, Separator 4, Negative electrode terminal 5, Positive electrode terminal 6, Insulating material seal

Claims (1)

【特許請求の範囲】 マグネシウム箔を負極とする乾電池におい て、該マグネシウム箔が、加熱鋳型式連続鋳造法で得ら
れた鋳塊を加工してつくられたものであることを特徴と
する、薄肉マグネシウム電池。
[Scope of Claims] A dry battery using a magnesium foil as a negative electrode, characterized in that the magnesium foil is made by processing an ingot obtained by a hot mold continuous casting method. battery.
JP15527787A 1987-06-24 1987-06-24 Magnesium battery with small wall thickness Pending JPS642252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15527787A JPS642252A (en) 1987-06-24 1987-06-24 Magnesium battery with small wall thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15527787A JPS642252A (en) 1987-06-24 1987-06-24 Magnesium battery with small wall thickness

Publications (2)

Publication Number Publication Date
JPH012252A true JPH012252A (en) 1989-01-06
JPS642252A JPS642252A (en) 1989-01-06

Family

ID=15602382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15527787A Pending JPS642252A (en) 1987-06-24 1987-06-24 Magnesium battery with small wall thickness

Country Status (1)

Country Link
JP (1) JPS642252A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411230C (en) * 2006-06-08 2008-08-13 上海交通大学 Application of organic sulfide in positive electrode material of secondary Mg battery
JP2011249287A (en) * 2010-05-31 2011-12-08 Sumitomo Electric Ind Ltd Negative electrode for battery, manufacturing method thereof, and primary battery

Similar Documents

Publication Publication Date Title
JPH01211858A (en) Rechargeable cell
KR100929283B1 (en) Manganese Battery Cathode Zinc Material Manufacturing Method
JP2001512788A (en) Metallurgical process for producing electrowinned lead and lead alloy electrodes
CN102747251A (en) Aluminium alloy foil used for current collector of positive electrode of lithium ion battery, and manufacturing method thereof
CN110484788A (en) Aluminium-air cell anode material and preparation method thereof and aluminium-air cell
CN110125201A (en) A kind of magnesium alloy anode thin plate and preparation method thereof
CN108277403A (en) A kind of mirror-like anodized aluminum alloy calendering plate and preparation method thereof
Ma et al. The study on microstructure and electrochemical properties of Al–Mg–Sn–Ga–Pb alloy anode material for Al/AgO battery
US4233376A (en) Magnesium-lithium alloy
Tsukeda et al. Effect of Fabrication Parameter on Microstructure of Mg–5.3 mass% Al–3 mass% Ca for Development of Mg Rechargeable Batteries
JPH012252A (en) thin wall magnesium battery
CN111468554B (en) Magnesium alloy sheet forming process
JPH1027616A (en) Lead-acid battery with erosion resistant electrode structure and its manufacture
KR100497769B1 (en) Manufacturing method of lead acid battery alloy plate with improved corrosion resistance and deformation resistance
JP2014192009A (en) Negative pole for secondary battery using magnesium alloy and manufacturing method thereof
CN111740094A (en) Aluminum air battery aluminum anode plate material and preparation method thereof, aluminum air battery aluminum anode plate and preparation method and application thereof
CN101792875A (en) Aluminum foil and production method thereof
US5102475A (en) Process for obtaining lithium-based thin sheets and its application to the production of negative plates for accumulators
JP3308456B2 (en) Manufacturing method of aluminum foil for electrode of electrolytic capacitor
CN110931812A (en) Alloy anode material for aluminum-air battery, preparation method of alloy anode material and aluminum-air battery
CN113481414A (en) Preparation method of 1-series aluminum alloy foil for positive electrode of soft-package lithium battery tab
JPS63500481A (en) Porous electrode and its manufacturing method
JPS634050A (en) Manufacture of aluminum-alloy substrate for magnetic disk
WO2002071513A3 (en) Aluminum anodes and method of manufacture thereof
US6156135A (en) Aluminum substrate for lithographic printing plate and process for producing the same