JPH01225178A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPH01225178A
JPH01225178A JP63051018A JP5101888A JPH01225178A JP H01225178 A JPH01225178 A JP H01225178A JP 63051018 A JP63051018 A JP 63051018A JP 5101888 A JP5101888 A JP 5101888A JP H01225178 A JPH01225178 A JP H01225178A
Authority
JP
Japan
Prior art keywords
layer
light emitting
emitting diode
compound semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63051018A
Other languages
Japanese (ja)
Inventor
Toshio Murotani
室谷 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63051018A priority Critical patent/JPH01225178A/en
Publication of JPH01225178A publication Critical patent/JPH01225178A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a compound semiconductor light emitting diode having a low cost and a high efficiency by forming on an Si substrate a transparent conductive film through a semiconductor layer having a smaller band gap than that of a compound semiconductor in the diode. CONSTITUTION:A P-type indium gallium arsenide (P-type InGaAs) layer 11 formed on a P-type Al0.35Ga0.65As layer 4 and having a smaller band gap than that of the layer 4, and a transparent conductive film 12 formed on the layer 11, such as an indium tin oxide ITO (SiO2+In2O3) are provided. Thus, since the film 12 is formed through the layer 11 haivng the small band gap, the contact resistance of the film 12 with the layer 4 can be reduced, the sheet resistance of the whole layer 4 can be decreased, and a current concentration does not occur. Thus, a light emitting diode having a low cost and a high efficiency can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はシリコン(Si )基板上に形成された発光
ダイオードに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a light emitting diode formed on a silicon (Si 2 ) substrate.

〔従来の技術〕[Conventional technology]

第2図は例えば文献Applied Physics 
Letter48巻23号ページ1617−1619(
1986)に示された従来のSi基板上の発光ダイオー
ドを示す断面図であり、図において(1)はn−8i基
板、(2)はこのn−8i基板(1)の主面上に形成さ
れたn形ガリウムヒ素(n−GaAs)バッファ層、(
3)はこのn−GaAsバッファ層(2)上に形成され
たn形アルミニウムガリウムヒ素(n−AgO−4Ga
o−s As )層、(41はこのn−IJ6.s G
a(1,6As層(3)上に形成され、これとp−n接
合を形成するp形アルミニウムガリウムヒ素(p−A4
1o、5sGao、55As )層である。
Figure 2 is based on the literature Applied Physics, for example.
Letter Volume 48 No. 23 Pages 1617-1619 (
1986) is a cross-sectional view showing a conventional light emitting diode on a Si substrate, in which (1) is an n-8i substrate and (2) is a light emitting diode formed on the main surface of this n-8i substrate (1). n-type gallium arsenide (n-GaAs) buffer layer, (
3) is an n-type aluminum gallium arsenide (n-AgO-4Ga) layer formed on this n-GaAs buffer layer (2).
o-s As ) layer, (41 is this n-IJ6.s G
a (p-type aluminum gallium arsenide (p-A4) formed on the 1,6As layer (3) and forming a p-n junction with it
1o, 5sGao, 55As) layer.

また(5)はこのp−Alo−asGao45As層(
4)上の一部に形成されたp形ガリウムヒ素(p−Ga
As) 領域、(6)はこのp−GaAs領域(5)上
に形成されたp電極、(7)は上記n−8i基板(1)
の裏面1こ形成されたn電極である。
In addition, (5) is this p-Alo-asGao45As layer (
4) P-type gallium arsenide (p-Ga
As) region, (6) is the p electrode formed on this p-GaAs region (5), and (7) is the above n-8i substrate (1).
An n-electrode is formed on the back surface of the .

従来の発光ダイオードは上記のように構成され、この発
光ダイオードに順バイアスして電流を流すと、n −A
g3.4 Ga6.@ As 層(3)から1)−Ag
o−ssGao、5sAs層(4)に電子が注入される
。この注入された電子とp−Ago、asGao−ss
As層(4)内の正孔とが再結合し発光スル。
A conventional light emitting diode is constructed as described above, and when forward biased current flows through this light emitting diode, n - A
g3.4 Ga6. @As layer (3) to 1)-Ag
Electrons are injected into the o-ssGao, 5sAs layer (4). This injected electron and p-Ago, asGao-ss
The holes in the As layer (4) recombine and emit light.

従って発光波長はp−AIto−ssGao、5BAs
層(4)のバンドギャップのエネルギーで決まる。
Therefore, the emission wavelength is p-AIto-ssGao, 5BAs
It is determined by the energy of the band gap of layer (4).

ところが、St基板上に化合物半導体層を形成する場合
に、S+と化合物半導体の熱膨張係数が異なリ、化合物
半導体の方が約2倍大きい。従って化合物半導体の結晶
成長温度(600℃〜SOO℃)から室温に戻した時バ
イメタル効果でウェーハは反り、ウェーハ表面は凹面と
なる。すなわち化合物半導体層には引張り応力が働く。
However, when forming a compound semiconductor layer on an St substrate, the coefficient of thermal expansion of S+ and the compound semiconductor is different, and the coefficient of thermal expansion of the compound semiconductor is about twice as large. Therefore, when the crystal growth temperature of a compound semiconductor (600° C. to SOO° C.) is returned to room temperature, the wafer warps due to the bimetallic effect and the wafer surface becomes concave. That is, tensile stress acts on the compound semiconductor layer.

さらに化合物半導体は剪開性が強いためこの引張り応力
でこの層にクラックが発生しやすい。このクラックの問
題のため、Si基板上に形成できる化合物半導体層の厚
みに制限があり、この厚みが5μmを越えると非常にク
ラックが発生しやす(なる。
Furthermore, since compound semiconductors have strong shearability, cracks are likely to occur in this layer due to this tensile stress. Because of this problem of cracking, there is a limit to the thickness of a compound semiconductor layer that can be formed on a Si substrate, and if this thickness exceeds 5 μm, cracks are extremely likely to occur.

この厚みの制限のため第2図に示す発光ダイオードの構
造における各層の厚みは、n−GaAsバッファ層+2
1は0.2目m 、 n−A41o、4Gao、aAs
  M(31は1μm1p−Ago、asGao、as
As )@ (41は3μmであり全体として4.2μ
mである。
Due to this thickness limitation, the thickness of each layer in the structure of the light emitting diode shown in FIG.
1 is 0.2 m, n-A41o, 4Gao, aAs
M (31 is 1 μm 1p-Ago, asGao, as
As) @ (41 is 3μm and the total is 4.2μ
It is m.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の発光ダイオードでは、p−A11o
、3sGao−A5KS 層(4) (7)厚みを充分
ニ大キくトルコトができないため、この層のシート抵抗
を充分に低くすることができず、電流はp−電極(6)
の近傍のみを流れるいわゆる電流集中現象が起り、発光
は主としてp−電極(6]の真下で起り、発光領域は電
極の下に隠れてしまう。その結果、入力パワーに対する
外部に取り出す光出力の割合、すなわち外部に子効率が
低くなる問題があった。
In the conventional light emitting diode as mentioned above, p-A11o
, 3sGao-A5KS layer (4) (7) Since the thickness cannot be made large enough, the sheet resistance of this layer cannot be made low enough, and the current flows through the p-electrode (6).
A so-called current concentration phenomenon occurs that flows only in the vicinity of the p-electrode (6), and light emission mainly occurs directly under the p-electrode (6), and the light-emitting region is hidden under the electrode.As a result, the ratio of the optical output extracted to the outside relative to the input power decreases. In other words, there was a problem that the external child efficiency was low.

この発明は、かかる問題点を解決するためになされたも
ので、電流集中現象をなくして、外部量子効率の高い発
光ダイオードをSi基板上に形成できるようにし、安価
で高効率のSi基板上の発光ダイオードを得ることを目
的としている。
This invention was made in order to solve such problems, and it eliminates the current concentration phenomenon, makes it possible to form a light emitting diode with high external quantum efficiency on a Si substrate, and makes it possible to form a light emitting diode with high external quantum efficiency on a Si substrate. The aim is to obtain light emitting diodes.

〔課組を解決するための手段〕[Means for resolving division issues]

この発明に係る発光ダイオードは、Si基板上のpn化
合物半導体層上に、この化合物半導体よりバンドギャッ
プの小さい半導体層を介して透明導電膜を形成したもの
である。
In the light emitting diode according to the present invention, a transparent conductive film is formed on a pn compound semiconductor layer on a Si substrate via a semiconductor layer having a smaller band gap than the compound semiconductor.

〔作用〕[Effect]

この発明においては、Si基板上のpn化合物半導体発
光ダイオードは、この化合物半導体よりバンドギャップ
の小さい半導体層を介して透明導電膜が形成されている
ので、透明導電膜とp形化合物半導体層との接触抵抗を
下げることができ、さらにp層全体のシート抵抗を下−
gfることができるため、電流集中現象が生じず、効率
の高い発光ダイオードが得られる。
In this invention, in a pn compound semiconductor light emitting diode on a Si substrate, a transparent conductive film is formed through a semiconductor layer having a smaller band gap than the compound semiconductor, so that the transparent conductive film and the p-type compound semiconductor layer are connected to each other. The contact resistance can be lowered, and the sheet resistance of the entire p layer can also be lowered.
gf, the current concentration phenomenon does not occur and a highly efficient light emitting diode can be obtained.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は上記実施例による発光ダイオードを示す断面図
であり、図において、(υ乃至(4)は前記従来の発光
ダイオードと同一のものであるため説明を省略する。東
は前記p−Ago−a 5Gao、m llAs層(4
)上に形成され、これよりバンドギャップの小さいp形
インジウムガリウムヒ素(p−1nGaAs) D、σ
νはこのp−1nGaAs層上に形成された透明導電膜
であり、例えばインジウムスズ酸化物(Indium 
Tin 0xide)ITO(5n02+In103 
)である。また(6目よ前記透明導電股上に形成された
pfi極、(7)は前記n−8t基板(1]の裏面に形
成されたn電極である、前記電流集中現象を避けるため
には9層のシート抵抗値としてlΩ7口以下にする必要
がある。
FIG. 1 is a cross-sectional view showing the light emitting diode according to the above embodiment. -a 5Gao, m llAs layer (4
) with a smaller band gap than p-type indium gallium arsenide (p-1nGaAs) D, σ
ν is a transparent conductive film formed on this p-1nGaAs layer, and is made of, for example, indium tin oxide (Indium Tin oxide).
Tin Oxide) ITO (5n02+In103
). In addition, (6) is the PFI electrode formed on the transparent conductive crotch, and (7) is the N electrode formed on the back surface of the N-8T substrate (1). It is necessary to set the sheet resistance value to 1Ω or less.

p−Aeo4@Gan、asAa %(41の厚さを3
μmとしてこの低いシート抵抗値を実現するためにはこ
のp鳩のキャリア餉度を10 ”/cm”以上と高濃度
にする6装がある。しかし通常の結晶成長や拡散によっ
てこれを達成することは極めて困難である。
p-Aeo4@Gan, asAa% (thickness of 41 is 3
In order to achieve this low sheet resistance value in terms of μm, there are six methods that increase the carrier concentration of this p pigeon to a high concentration of 10"/cm" or more. However, it is extremely difficult to achieve this through normal crystal growth or diffusion.

一方n形のAtGaAsの移動度はp形に比べ1桁以上
間いので、pnを反転した構造すなわちp−81基板上
に順次p−AlGaAs、 n−AtGaAsを形成し
てn on p 形の発光ダイオードを作ればn形のド
ーピング濃度として10”/cm”でよく電流集中現象
は避けらするように考えられるが、実線はp−5i基板
とp−AtGaAs”J’iL面近傍lζおいてS蓋基
板より化合物半導体A#GaAsにStが自然にドープ
されn形の鳩が形成されるためこの構造は実現困難であ
る。
On the other hand, the mobility of n-type AtGaAs is more than an order of magnitude higher than that of p-type, so p-AlGaAs and n-AtGaAs are successively formed on a p-81 substrate, which is an inverted p-n structure, to achieve n-on-p type light emission. If a diode is made, the n-type doping concentration of 10"/cm" seems to be enough to avoid the current concentration phenomenon, but the solid line shows the S This structure is difficult to realize because St is naturally doped into the compound semiconductor A#GaAs from the lid substrate, forming an n-type dove.

従ってSi&板上に化合物半導体の発光ダイオードを形
成するためには、例えばITOI 5n01+In20
3)のような透明導電膜を上側に形成してpmのシート
抵抗を下げるのが有効である。なぜかと云えば、ITO
の抵抗率は通常p−10−’Ω・cmであるので、IP
Oの厚みが1μmの場合、シート抵抗はlΩ/口となり
、この値は′LU流集中現象を避けるのに充分低い値で
あるからである。ところが、バンドギャップの大きいp
−AjGaAsのような半導体に直接ITOを形成して
も接触抵抗が高く、ITOからp−AtlGaAs層α
Dを形成すればこの接触抵抗を下げることがでため、外
部鍵子効率を下げてしまう。しかし、このI−の厚さを
100Å以下と極めで薄くすれば約90%の光は透過し
実際に使用する上で何ら同Enはなも1゜ また、Si基板は邸伝導率が化合物半導体基板より高い
ため、放熱がよく、より縄出力の発光ダイオードが得ら
1やすい。
Therefore, in order to form a compound semiconductor light emitting diode on a Si&plate, for example, ITOI 5n01+In20
3) It is effective to form a transparent conductive film on the upper side to lower the pm sheet resistance. The reason is that ITO
Since the resistivity of is usually p-10-'Ω・cm, IP
When the thickness of O is 1 .mu.m, the sheet resistance is 1.OMEGA./hole, which is a sufficiently low value to avoid the LU flow concentration phenomenon. However, p with a large bandgap
- Even if ITO is formed directly on a semiconductor such as AjGaAs, the contact resistance is high, and the p-AtlGaAs layer α from ITO is
If D is formed, this contact resistance can be lowered, and the efficiency of the external key element will be lowered. However, if the thickness of this I- is made extremely thin to 100 Å or less, about 90% of the light will pass through, and in actual use, the same En will be 1°. Since it is higher than the substrate, heat dissipation is good and it is easier to obtain a light emitting diode with higher output power.

なお、上記実施例ではn−5i基板上のpnn化合物半
体体してA6GaAsを用いた場合を示したが、A#G
a1nPやGaAsPであ咳てもよく、上記実施例と同
様の効果がある。
In addition, in the above example, a case was shown in which A6GaAs was used as a pnn compound half body on an n-5i substrate, but A#G
A1nP or GaAsP may also be used, and the same effect as in the above embodiment can be obtained.

また、上記実施例ではバンドギャップのエネルギーが小
さい半導体層として1nGaAs 層συを設けた場合
についてホしたが、別やGeさら1こはInAsSbな
どITOとの接触抵抗が低いいかなる半導体材料でもよ
く、上記実施例と同様の効果がある。
Further, in the above embodiment, a case was described in which a 1nGaAs layer συ was provided as a semiconductor layer with a small bandgap energy, but in other cases, the Ge layer 1 may be any semiconductor material that has a low contact resistance with ITO, such as InAsSb. There are effects similar to those of the embodiment.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、Si基板上の化合物半
導体発光ダイオードにこの化合物半導体よりバンドギャ
ップの小さい半導体層を介して透明導電膜を形成したの
で電流集中現象がなく高効率の発光ダイオードを化合物
半導体より安価なSi基板上に形成することができる。
As explained above, in this invention, a transparent conductive film is formed on a compound semiconductor light emitting diode on a Si substrate via a semiconductor layer with a smaller band gap than the compound semiconductor, so that there is no current concentration phenomenon and a highly efficient light emitting diode is made using a compound semiconductor. It can be formed on a cheaper Si substrate.

また、Si基板は熱伝導率が化合物半導体より高いため
放熱がよく、まり高出力の発光ダイオードが得られる効
果がある。
Furthermore, since the Si substrate has a higher thermal conductivity than a compound semiconductor, it has good heat dissipation and has the effect of providing a light emitting diode with a higher output.

【図面の簡単な説明】 第1図はこの発明の一実施例によるSi基板上の発光ダ
イオードを示す断面図、第2図は従来のSi基板上の発
光ダイオードを示す断面図である。 図1こおいて(υはn−8i基板、(3)はn形化合物
半導体層、(4)はp形化合物半導体層、0はバンドギ
ャップの小さい半導体層、時は透明導電膜である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a light emitting diode on a Si substrate according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional light emitting diode on a Si substrate. In FIG. 1, (υ is an n-8i substrate, (3) is an n-type compound semiconductor layer, (4) is a p-type compound semiconductor layer, 0 is a semiconductor layer with a small band gap, and sometimes is a transparent conductive film.

Claims (1)

【特許請求の範囲】[Claims]  n形シリコン基板、この基板上に設けられたn形化合
物半導体層、このn形化合物半導体層上に設けられこれ
とpn接合を形成するp形化合物半導体層、このp形化
合物半導体層上に設けられこのp形化合物半導体よりバ
ンドギャップの小さい半導体層、およびこのバンドギャ
ップの小さい半導体層上に設けられた透明導電膜を備え
た発光ダイオード。
an n-type silicon substrate, an n-type compound semiconductor layer provided on this substrate, a p-type compound semiconductor layer provided on this n-type compound semiconductor layer and forming a pn junction therewith, and a p-type compound semiconductor layer provided on this p-type compound semiconductor layer. A light emitting diode comprising a semiconductor layer having a smaller bandgap than that of the p-type compound semiconductor, and a transparent conductive film provided on the semiconductor layer having the smaller bandgap.
JP63051018A 1988-03-03 1988-03-03 Light emitting diode Pending JPH01225178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051018A JPH01225178A (en) 1988-03-03 1988-03-03 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051018A JPH01225178A (en) 1988-03-03 1988-03-03 Light emitting diode

Publications (1)

Publication Number Publication Date
JPH01225178A true JPH01225178A (en) 1989-09-08

Family

ID=12875051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051018A Pending JPH01225178A (en) 1988-03-03 1988-03-03 Light emitting diode

Country Status (1)

Country Link
JP (1) JPH01225178A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256602A (en) * 1997-03-12 1998-09-25 Sharp Corp Semiconductor light emitting device
JP2003174197A (en) * 2001-09-27 2003-06-20 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
JP2004071896A (en) * 2002-08-07 2004-03-04 Shin Etsu Handotai Co Ltd Manufacturing method of light emitting device, and light emitting device
JP2004146539A (en) * 2002-10-23 2004-05-20 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
US6995401B2 (en) 2002-10-23 2006-02-07 Shin-Etsu Handotai Co., Ltd. Light emitting device and method of fabricating the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256602A (en) * 1997-03-12 1998-09-25 Sharp Corp Semiconductor light emitting device
JP2003174197A (en) * 2001-09-27 2003-06-20 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
US6787383B2 (en) 2001-09-27 2004-09-07 Shin-Etsu Hanotai Co., Ltd. Light-emitting device and method for manufacturing the same
JP2004071896A (en) * 2002-08-07 2004-03-04 Shin Etsu Handotai Co Ltd Manufacturing method of light emitting device, and light emitting device
US7553685B2 (en) 2002-08-07 2009-06-30 Shin-Etsu Handotai Co., Ltd. Method of fabricating light-emitting device and light-emitting device
JP2004146539A (en) * 2002-10-23 2004-05-20 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
US6995401B2 (en) 2002-10-23 2006-02-07 Shin-Etsu Handotai Co., Ltd. Light emitting device and method of fabricating the same

Similar Documents

Publication Publication Date Title
TW577178B (en) High efficient reflective metal layer of light emitting diode
US7015054B2 (en) Semiconductor light emitting device and method
JP3636970B2 (en) Unipolar light emitting device based on group III nitride semiconductor superlattice
US7993943B2 (en) GaN based LED with improved light extraction efficiency and method for making the same
KR101344512B1 (en) Interdigitated multi-pixel arrays for the fabrication of light-emitting devices with very low series-resistances and improved heat-sinking
US7737451B2 (en) High efficiency LED with tunnel junction layer
TWI403002B (en) Semiconductor light-emitting device
JP2828187B2 (en) Gallium nitride based compound semiconductor light emitting device
JP7228176B2 (en) Group III nitride semiconductor light emitting device
JP2001345480A (en) Iii nitride compound semiconductor element
JP2009502043A (en) Blue light-emitting diode with uneven high refractive index surface for improved light extraction efficiency
JP7432024B2 (en) infrared light emitting diode
JPH02135786A (en) Solar battery cell
JP2007043151A (en) Radiation-emitting semiconductor chip
US20140346552A1 (en) Three-Terminal Light Emitting Device (LED)
JP2020506536A (en) Optoelectronic semiconductor chip
US11538962B2 (en) Light-emitting element and method for manufacturing light-emitting element
JPH01225178A (en) Light emitting diode
JP2004304090A (en) Light emitting diode
TWI803785B (en) Light emitting element and manufacturing method thereof
JPH0327577A (en) Light emitting diode array
JP7373435B2 (en) semiconductor light emitting device
US20040113225A1 (en) Semiconductor epitaxial structure and semiconductor light-emitting device
JP2000174341A (en) Gallium nitride based compound semiconductor light- emitting element
JP7413599B1 (en) III-V group compound semiconductor light emitting device and method for manufacturing the III-V group compound semiconductor light emitting device