JPH01225098A - Discharge lamp lighting system, magnetic field generating source layout and discharge lamp device - Google Patents

Discharge lamp lighting system, magnetic field generating source layout and discharge lamp device

Info

Publication number
JPH01225098A
JPH01225098A JP4987288A JP4987288A JPH01225098A JP H01225098 A JPH01225098 A JP H01225098A JP 4987288 A JP4987288 A JP 4987288A JP 4987288 A JP4987288 A JP 4987288A JP H01225098 A JPH01225098 A JP H01225098A
Authority
JP
Japan
Prior art keywords
lamp
magnetic field
discharge lamp
discharge
fluorescent lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4987288A
Other languages
Japanese (ja)
Inventor
Katsuhide Misono
御園 勝秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4987288A priority Critical patent/JPH01225098A/en
Publication of JPH01225098A publication Critical patent/JPH01225098A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the diffusion loss or plasma in a discharge lamp, suppress the rise of the lamp voltage within a small range, and prevent the quenching of the discharge lamp by arranging a magnetic field generating source and the discharge lamp of a discharge lamp device so that the direction of the magnetic field and the lamp axis are made parallel with each other. CONSTITUTION:The discharge lamp 4a of a discharge lamp device and a magnetic field generating source 1 are arranged respectively so that the lamp axis and the direction of the magnetic field are made parallel. The magnetic field is applied to the discharge lamp in parallel with the lamp axis, the component in the tube radial direction of the electric field generating the EXB drift in the plasma in the discharge lamp is made smaller than the component in the lamp axial direction. The diffusion loss of the plasma in the discharge lamp is thereby reduced, the rise of the lamp voltage is suppressed within a small range, the quenching of the discharge lamp being lighted is prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は核磁気共鳴診断装置等磁場発生源により発生J
−る強力な磁場に放電灯装置を設置する場合の放電灯装
置および磁場発生源の配置方法と放電ランプを改良した
放電灯照明システム、磁場発生源配置方法および放電灯
装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to the field of magnetic field generated by a magnetic field generation source such as a nuclear magnetic resonance diagnostic apparatus.
The present invention relates to a discharge lamp device and a method for arranging a magnetic field source when the discharge lamp device is installed in a strong magnetic field, a discharge lamp illumination system with an improved discharge lamp, a method for arranging a magnetic field source, and a discharge lamp device.

(従来の技術) 従来より、磁場が放電プラズマに影響を及ぼすことは知
られており、例えば放電灯の蛍光ランプでは一対の電極
がそれぞれ封止されている管端部に磁場を加えると、点
灯時のチラッキを防止したり、蛍光ランプのほぼ全体に
磁場を与えることにより蛍光ランプの発光効率を向上せ
しめること等が知られている。
(Prior art) It has long been known that a magnetic field affects discharge plasma. For example, in a fluorescent lamp, when a magnetic field is applied to the end of the tube where a pair of electrodes are each sealed, the lamp lights up. It is known to prevent time flickering and to improve the luminous efficiency of a fluorescent lamp by applying a magnetic field to almost the entire fluorescent lamp.

しかし、これらは磁場が蛍光ランプに与える好影響を主
に積極的に利用したものであり、磁場が蛍光ランプに与
える悪Litについては従来では十分な検問がなされて
おらず、その対策も不十分であった。
However, these systems mainly take advantage of the positive effects that magnetic fields have on fluorescent lamps, and the negative effects that magnetic fields have on fluorescent lamps have not been sufficiently examined in the past, and countermeasures have also been insufficient. Met.

づなわら、近年で(ま核磁気共鳴診断装置行が悪法に普
及しているが、これは例えば5000〜200Q Q 
caussの高磁場を発生する磁場発生源C′あり、し
かも、その構造上人込/、に漏れ磁場を生じ、核磁気共
鳴診断装置を設置する部屋の天井等に設りた複数の蛍光
灯装置の周辺には例えば数白Gaussの磁場を生ずる
場合があり、この磁場は地球の地磁気が高々1Gaus
s稈度であるのに比して極めで高い高磁場である。
However, in recent years (nuclear magnetic resonance diagnostic equipment) has become popular, for example, 5000 to 200 Q
There is a magnetic field source C' that generates a high magnetic field of causs, and due to its structure, it leaks a magnetic field into the crowd, and there are multiple fluorescent lamps installed on the ceiling of the room where the nuclear magnetic resonance diagnostic equipment is installed. For example, a magnetic field of several Gaussian magnitude may be generated around the earth.
The magnetic field is extremely high compared to the s-culm degree.

この高磁場のために、蛍光灯装置の始動性が悪化し、点
灯に長い時間を要したり、立ら浦えを生ずる等の不す合
を1?’! <ということについて従来では十分検問さ
れておらず、その対策す殆ど講じられていない。
Due to this high magnetic field, the starting performance of fluorescent lamp equipment deteriorates, resulting in problems such as taking a long time to turn on or causing stagnation. '! In the past, this issue has not been sufficiently investigated, and almost no countermeasures have been taken.

(発明が解決しようとJる課題) 上記したJ:うに従来の蛍光灯装置J’l(J:びぞの
配置方法では核磁気共鳴診断装置%の磁場発生源の磁場
に設置される蛍光ランプの始動性が悪化し、点灯に長い
時間を要したり、Ylら消えを/+する等の不具合を招
いている。
(Problem to be solved by the invention) The above-mentioned conventional fluorescent lamp device This results in problems such as poor starting performance, a long time required for lighting, and problems such as Yl etc. turning off.

そこで本発明tよ上記1(情を考慮してなされたもので
、その目的は磁場に設ir1される放電ランプの始動性
の向上と立ち消え防止どを図ることができる放¥i灯照
明シスデム、磁場発生源配回方法おJ:び放電灯装置を
提供することにある3、[発明の構成] (課題を解決ザるための手段) 本発明者は蛍光灯等放電灯装置の研究を艮年続りてき7
j結果、磁場が蛍光灯等放電灯装置に悪影響を与えるこ
とと、その原因および′メカニズムを究明し、本発明を
完成さぼるに至った。
Therefore, the present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to provide a discharge lamp lighting system that can improve the starting performance of discharge lamps installed in a magnetic field and prevent them from extinguishing. 3. [Structure of the invention] (Means for solving the problem) The present inventor has conducted research on discharge lamp devices such as fluorescent lamps. 7 years in a row
As a result, we have determined that magnetic fields have an adverse effect on discharge lamp devices such as fluorescent lamps, and have investigated the cause and mechanism thereof, and have completed the present invention.

すなわち、発明者の知見は蛍光ランプ等の放電ランプに
、イのランプ軸に対し垂直方向に磁場が加わると、次の
理由により放電ランプのランプ電圧を1臂ざぜるという
ことにある。
In other words, the inventor's knowledge is that when a magnetic field is applied to a discharge lamp such as a fluorescent lamp in a direction perpendicular to the lamp axis (A), the lamp voltage of the discharge lamp fluctuates by one degree for the following reason.

一般に、第5図に示すJ:うにイオンど電子を含むプラ
ズマに電場Eと磁場Bどが加わると、プラズマにはEX
Bの力が作用し、電子とイオンは共に電場Eど磁場Bに
対し垂直方向に移動り−る「×Bドリフ1〜が発生ずる
ことが知られている。
In general, when an electric field E and a magnetic field B are applied to a plasma containing electrons such as J shown in Fig. 5, the plasma will have EX
It is known that when the force B acts, electrons and ions both move in a direction perpendicular to the electric field E and the magnetic field B, resulting in the occurrence of ``xB drift 1''.

そして、発明者はス1?光ランプ等の放電ランプに磁場
が加わるど、このEXBドリフ1−が放電ランプ内に発
住して、ランプ電圧を上品させるものど考えた。
And the inventor is S1? We thought that when a magnetic field is applied to a discharge lamp such as a light lamp, this EXB drift 1- occurs within the discharge lamp and improves the lamp voltage.

すなわち、蛍光灯装置ではその点灯時の一対の電極間の
放電により、蛍光ランプ内に放電プラズマが発生するが
、このプラズマに対し第6図に示すように蛍光ランプ1
のランプ軸方向に沿って電WEが加わると、その磁場B
が蛍光ランプ1のランプ軸方向に対し垂直方向、すなわ
ち管径方向に加わる。
That is, in a fluorescent lamp device, discharge plasma is generated within the fluorescent lamp due to discharge between a pair of electrodes when the lamp is lit.
When electric WE is applied along the lamp axis direction, the magnetic field B
is applied in the direction perpendicular to the lamp axis direction of the fluorescent lamp 1, that is, in the tube diameter direction.

このために、蛍光ランプ1の管壁へ拡散するイオン、電
子の拡散損が増大し、この消滅しl〔プラズマを補充す
るために、蛍光ランプ1はその管内で一層早く電離させ
る必要があり、そのためにはランプ電圧(電位傾度)を
屏圧さけ、プラズマに投入するエネルギを増大さけ、電
子渇瓜を高める必要があり、電源電圧の制約等でランプ
電圧を昇圧できないときに、点灯が立ら浦えるものと考
えられる。
For this reason, the diffusion loss of ions and electrons that diffuse into the tube wall of the fluorescent lamp 1 increases and disappears. To achieve this, it is necessary to reduce the lamp voltage (potential gradient), avoid increasing the energy input to the plasma, and increase electron starvation.When the lamp voltage cannot be increased due to power supply voltage constraints, etc., the lighting may not turn on. It is thought that it can be used.

一方、磁場Bが蛍光ランプ1に、そのランプ軸に対して
平行に加わると、電場Eの管径方向の成分により蛍光ラ
ンプ1内のプラズマがFXBドリフトを受りるが、この
電場Eの管径方向の成分は管軸方向の成分よりも十分に
小さいので、蛍光ランプ1内のプラズマの拡散損が減少
し、ランプ電圧の上昇は小幅に抑えられる。ちイfみに
、例えばランプ軸方向の電位傾度が1.0V/c〃+で
ある場合には管径方向の電位傾度が0.2V/cmであ
る。。
On the other hand, when a magnetic field B is applied to the fluorescent lamp 1 parallel to the lamp axis, the plasma inside the fluorescent lamp 1 undergoes an FXB drift due to the radial component of the electric field E; Since the component in the radial direction is sufficiently smaller than the component in the tube axis direction, the diffusion loss of plasma within the fluorescent lamp 1 is reduced, and the increase in lamp voltage is suppressed to a small extent. For example, when the potential gradient in the lamp axis direction is 1.0 V/c+, the potential gradient in the tube radial direction is 0.2 V/cm. .

このように蛍光ランプ1に磁場Bをランプ軸に平行およ
び垂直にそれぞれ加えた場合に、蛍光ランプ1の始動性
を悪化させる磁場Bの強度を洗去に示す。なお表中、F
Lは直管型蛍光ランプを、SSは管径28mを、20お
J:び/10はW数をそまた、蛍光ランプ1の一対の電
極から負グ1コー、ファラデー暗部までの−・対の管端
部に磁場Bを加えた場合には第7図に示すように負グロ
ーのプラズマ密度が陽光柱のプラズマ密度に対し−C約
1桁程高いく例えば負グローのプラズマ密度が1012
個/c/Iであるのに対し、陽光柱のプラズマ密度が1
111個/ cnlである)ので、蛍光ランプ1の前幅
:部におりるE−Bドリフ1〜によるフ゛ラスマの損失
量が増大する。
In this way, when the magnetic field B is applied to the fluorescent lamp 1 in parallel and perpendicular to the lamp axis, the strength of the magnetic field B that deteriorates the startability of the fluorescent lamp 1 is shown in FIG. In addition, in the table, F
L is a straight tube fluorescent lamp, SS is a tube diameter of 28 m, 20 J: and /10 are W numbers, and -. When a magnetic field B is applied to the end of the tube, as shown in Fig. 7, the plasma density of the negative glow is approximately one order of magnitude higher than that of the positive column.For example, the plasma density of the negative glow is 1012
/c/I, while the plasma density of the positive column is 1
111 pieces/cnl), therefore, the amount of loss of the fissure due to the E-B drift 1 which falls on the front width portion of the fluorescent lamp 1 increases.

ざらに、第7図に示り−ように陰極降下部は陽光柱に比
して電位傾度が大きいので(例えば陰極降下電圧が11
(」で、電位傾度は1000■/c#I〜10000 
V / cmであるのに対し、陽光柱の?U位傾度が1
.OV/cmである。)、ランプ電圧v 、−が上昇づ
るものど考えられる。
Roughly speaking, as shown in Figure 7, the potential gradient of the cathode fall section is larger than that of the positive column (for example, the cathode fall voltage is 11
('', the potential gradient is 1000■/c#I~10000
V/cm, whereas the solar column? U position inclination is 1
.. OV/cm. ), the lamp voltage v, - increases.

そこで第1の発明は、磁場発生源の磁場に設置される放
電灯装置のlIl電ランプを、そのランプ軸が上記磁場
発生源の磁場の方向に対しでばぽ平行になるように配置
することを特徴とする。
Therefore, the first invention is to arrange an electric lamp of a discharge lamp device installed in the magnetic field of a magnetic field generation source so that its lamp axis is parallel to the direction of the magnetic field of the magnetic field generation source. It is characterized by

また、第2の発明は、磁場発生源を、その磁場に設置さ
れる放電灯装置の放電ランプのランプ軸に対して磁場の
方向がほぼ平行になるにうに配置することを特徴とJる
Further, the second invention is characterized in that the magnetic field generation source is arranged so that the direction of the magnetic field is substantially parallel to the lamp axis of the discharge lamp of the discharge lamp device installed in the magnetic field.

さらに、第3の発明は、放電ランプの一対の電極と各負
グ■]−から各ファラデー13部までの外周を磁気シー
ルド材にJ:り被覆したことを特徴とする。
Furthermore, the third invention is characterized in that the outer periphery of the discharge lamp from the pair of electrodes and each negative electrode to each Faraday 13 is coated with a magnetic shielding material.

(作用) 第1、第2の発明では、放電灯装置の放電ランプと磁場
発生源とが共に平行、りなわも放電ランプのランプ軸ど
磁場発生源の磁場の方向とが平行となるようにそれぞれ
配置される。
(Operation) In the first and second inventions, the discharge lamp and the magnetic field generation source of the discharge lamp device are both parallel to each other, and the lamp axis of the discharge lamp is parallel to the direction of the magnetic field of the magnetic field generation source. Each is placed.

したがって磁場が715!電ランプに、そのランプ軸に
対して平行に加わり、放電ランプ内のプラズマにEXB
ドリフトを発生Uしめる電場の管径方向の成分がランプ
軸方向の成分よりも小さくなるので、放電ランプ内のプ
ラズマの拡散種が低減され、ランプ電圧の上昇が小幅に
抑制される。その結果、点灯中の放電ランプの立ち消え
も防止される。
Therefore, the magnetic field is 715! EXB is added to the discharge lamp parallel to the lamp axis, and EXB is added to the plasma inside the discharge lamp.
Since the component in the tube diameter direction of the electric field that causes drift is smaller than the component in the lamp axis direction, the number of diffused species of plasma within the discharge lamp is reduced, and the increase in lamp voltage is suppressed to a small extent. As a result, the discharge lamp that is being lit is also prevented from going out.

また、第3の発明で【よプラズマ密度が高く、しかも電
位傾度が大きい放電ランプの一対の電極と各負グローか
ら各ファラデー暗部までの外周を磁気シールド材により
磁気シールドしているので、蛍光ランプの管端部にお【
ノる磁場の影響を殆ど■止することができ、放電ランプ
のランプ電圧の1譬と、立ち消えとを防止することがで
きる。
In addition, in the third invention, a pair of electrodes of a discharge lamp with a high plasma density and a large potential gradient and the outer periphery from each negative glow to each Faraday dark area are magnetically shielded by a magnetic shielding material, so a fluorescent lamp At the end of the tube
It is possible to almost eliminate the influence of the magnetic field, and it is possible to prevent the lamp voltage from decreasing and turning off the discharge lamp.

したがって、第1、第2、第3の各発明によれば放電ラ
ンプのランプ電圧の1臂ど立ち消えとを防止することが
できる。
Therefore, according to the first, second, and third inventions, it is possible to prevent the lamp voltage of the discharge lamp from extinguishing at one end.

(実施例) 以下第1〜第3の発明の各実施例を第1図〜第4図に基
づいて説明する。
(Example) Each example of the first to third inventions will be described below based on FIGS. 1 to 4.

第1図は第1、第2の両発明の一実施例の正面図であり
、図において、磁場発生源の核磁気共鳴診断装置1は所
要の部屋の床2上に据付cノ固定され、その8IS屋の
天井3には放電灯装置の蛍光灯装置4が複数台取付は固
定されている。
FIG. 1 is a front view of an embodiment of both the first and second inventions, and in the figure, a nuclear magnetic resonance diagnostic apparatus 1 as a magnetic field generation source is installed and fixed on the floor 2 of a desired room, A plurality of fluorescent lamp devices 4, which are discharge lamp devices, are fixed to the ceiling 3 of the 8IS shop.

核磁気共鳴診断装置1は例えばヘルムホルツ−1イル等
を内蔵しており、人体収容部5内に人体6を収容した状
態で運転すると、ヘルムホルツコイル等により例えば5
000〜20000 Gauss (7)高磁場を発生
し、このヘルムホルツコイルが開放系であるので、装置
外部にも第1図J3よび第2図に示すように一点鎖線で
示す磁場Bが漏れ、天井3に段(プた複数台の蛍光灯装
置4の周辺には数百Gaussの磁場を生じる。
The nuclear magnetic resonance diagnostic apparatus 1 incorporates, for example, a Helmholtz coil, etc., and when operated with a human body 6 accommodated in the human body storage section 5, the Helmholtz coil or the like generates a
000 to 20,000 Gauss (7) Generates a high magnetic field, and since this Helmholtz coil is an open system, the magnetic field B shown by the dashed line leaks outside the device as shown in Figure 1 J3 and Figure 2, and the ceiling 3 A magnetic field of several hundred Gauss is generated around the plurality of fluorescent lamp devices 4.

−・方、各蛍光灯装置4は例えば2木の蛍光ランプ4a
の各左右一対の管端部を各蛍光灯器具4bにより着脱自
在に支持し、蛍光ランプ4a、4aを蛍光灯器具4bの
点灯回路(図示省略)により点灯、潤灯するようになっ
ている。
- On the other hand, each fluorescent lamp device 4 includes, for example, two fluorescent lamps 4a.
A pair of left and right tube ends are detachably supported by each fluorescent lamp fixture 4b, and the fluorescent lamps 4a, 4a are turned on and off by a lighting circuit (not shown) of the fluorescent lamp fixture 4b.

各蛍光ランプ4aは細長円管状のガラス製のバルブ内周
面に蛍光膜をほぼ全長に亘って被着し、左右一対の管端
部にそれぞれ封止した一対の電極により、バルブ内に封
入した水銀と希ガスの雰囲気で放電し、点灯させるよう
になっており、その点灯時、ずなわら、一対の電極の放
電時に放電プラズマの陽光柱を一対の電極間に発生させ
、蛍光膜を励起して発光させるようになっている。
Each fluorescent lamp 4a has a fluorescent film coated on the inner peripheral surface of an elongated circular glass bulb over almost its entire length, and is sealed inside the bulb by a pair of electrodes sealed at the left and right ends of the tube, respectively. It is designed to be lit by discharging in an atmosphere of mercury and rare gas, and when it is lit, a positive column of discharge plasma is generated between the pair of electrodes and the fluorescent film is excited. It is designed to emit light.

そして、第1図および第2図に示すように各蛍光灯装置
4はその各蛍光ランプ4aをランプ軸が磁場Bの方向に
平行になるように配胃している。
As shown in FIGS. 1 and 2, each fluorescent lamp device 4 has its respective fluorescent lamp 4a arranged so that the lamp axis is parallel to the direction of the magnetic field B. As shown in FIGS.

したがって、磁場Bが各蛍光灯装置4の各蛍光ランプ4
aに、そのランプ軸に対して平行にそれぞれ加わり、点
灯中の蛍光ランプ/laの放電プラズマに図示しない電
場の管径方向の成分が印加され、EXBドリフトを発生
ざける。
Therefore, the magnetic field B is applied to each fluorescent lamp 4 of each fluorescent lamp device 4.
a, parallel to the lamp axis, and a component of an electric field (not shown) in the tube diameter direction is applied to the discharge plasma of the fluorescent lamp/la while it is lit, thereby avoiding the generation of EXB drift.

電場の管径方向成分は電場が蛍光ランプ4E−1の管径
方向に作用する成分であり、蛍光ランプ4aの管軸方向
(ランプ軸方向)に作用づ−る電場の管軸方向成分より
も小ざいので、蛍光ランプ/Ia内のEXBドリフ1〜
も小さく、放電プラズマの拡散種が減少する。
The tube radial direction component of the electric field is a component in which the electric field acts in the tube radial direction of the fluorescent lamp 4E-1, and is larger than the tube axial direction component of the electric field that acts in the tube axis direction (lamp axis direction) of the fluorescent lamp 4a. Because it is small, EXB drift 1 in fluorescent lamp/Ia
is also small, reducing the number of diffused species in the discharge plasma.

このために、蛍光ランプ4aのランプ電圧の上昇が小幅
に抑制される。したがって、点灯中の蛍光ランプ4aの
ランプ電圧が太きく上背して消灯する立ち消えを防止す
ることができる。
For this reason, an increase in the lamp voltage of the fluorescent lamp 4a is suppressed to a small extent. Therefore, it is possible to prevent the lamp voltage of the fluorescent lamp 4a while it is being lit from rising too high to cause the fluorescent lamp 4a to go out.

第4図は磁JJj Bど各蛍光ランプ4aのランプ電圧
V[どの相関関係を示してd3す、図中、特性直線■で
示すように磁場Bが蛍光ランプ4aに、そのランプ軸に
平行に印加されると、特性直線工で示づ°にうに磁場B
がランプ’1111 +こ垂直方向に印加された場合に
比してランプ電圧V1−の上昇が小幅に抑制されること
を示している。
Figure 4 shows the relationship between the lamp voltage V of each fluorescent lamp 4a, such as magnetic JJj B, and the magnetic field B applied to the fluorescent lamp 4a parallel to its lamp axis, as shown by the characteristic line ■ in the figure. When applied, the magnetic field B
This shows that the increase in the lamp voltage V1- is suppressed to a small extent compared to the case where the lamp '1111+ is applied in the vertical direction.

第3図は第3の発明を蛍光ランプ11に適用した場合の
一実施例を示しており、本実施例の蛍光ランプ11は第
1図および第2図で示す第1、第2の発明の一実施例の
蛍光ランプ/Iaとほぼ同様に構成されているが、これ
と異なる点は、図中左右一対の電極12a、12bをそ
れぞれf1止する左右一対の管端部の外周を鉄またはパ
ーマロイ等の左右一対の磁気シールドvJ13a、13
bにJ:りそれぞれ被覆した点にある。
FIG. 3 shows an embodiment in which the third invention is applied to a fluorescent lamp 11, and the fluorescent lamp 11 of this embodiment is the same as that of the first and second inventions shown in FIGS. The structure is almost the same as that of the fluorescent lamp/Ia of the embodiment, but the difference is that the outer periphery of the left and right tube ends that stop the left and right pair of electrodes 12a and 12b, respectively, is made of iron or permalloy. A pair of left and right magnetic shields such as vJ13a, 13
B and J: are respectively covered points.

すなわち、磁気シールドU13a、13bは例えば2重
円筒状に形成されて、蛍光ランプ11の左右一対の管端
部外周に外嵌固着され、一対の電極12a、 12bの
周りに発1−する各負グロー14a、14bから、これ
らのグロー148.l11bと陽光柱15との間に発生
する各ファラデー暗部16a、16bまでの外周をそれ
ぞれ被覆しCいる。
That is, the magnetic shields U13a, 13b are formed, for example, in a double cylindrical shape, and are fitted and fixed to the outer periphery of the pair of left and right tube ends of the fluorescent lamp 11, and each negative 1- generated around the pair of electrodes 12a, 12b. From the glows 14a, 14b, these glows 148. The outer periphery up to each Faraday dark area 16a, 16b generated between 11b and the positive column 15 is coated.

したがって、本実施例にJ:れば、蛍光ランプ11の一
対の電極部12a、12bを配設する左右一対の極端部
外周を、各負グロー14a、14bから各ファラデー暗
部16a、16bまでを被覆するので、電極部12a、
12t)に印加される磁場Bが磁気シールド材13a、
13bにより殆どシールドされる。
Therefore, in this embodiment, the outer periphery of the pair of left and right extreme parts where the pair of electrode parts 12a, 12b of the fluorescent lamp 11 are arranged is covered from each negative glow 14a, 14b to each Faraday dark part 16a, 16b. Therefore, the electrode part 12a,
12t) The magnetic field B applied to the magnetic shielding material 13a,
13b, it is almost shielded.

このために、蛍光ランプ11に磁場Bが印加されると、
その磁場Bの方向がランプ軸に対し平行方向、あるいは
垂直方向であるか否かに拘らず、蛍光ランプ11のラン
プ電圧V、は印加磁場Bに対し第3図の特性直線■ま7
たは■Vに示すように変化し、磁場Bが蛍光ランプ4a
に、そのランプ軸に平行に印加された場合の特性直線■
により示すランプ電圧V よりもランプ電圧■、の上昇
幅を]− 小幅に抑制することができる。なお、第3図中符゛  
号17は蛍光膜である。
For this reason, when a magnetic field B is applied to the fluorescent lamp 11,
Regardless of whether the direction of the magnetic field B is parallel or perpendicular to the lamp axis, the lamp voltage V of the fluorescent lamp 11 is determined by the characteristic line
or ■V, the magnetic field B changes as shown in the fluorescent lamp 4a.
, the characteristic line when applied parallel to the lamp axis■
It is possible to suppress the increase in the lamp voltage V to a smaller amount than the lamp voltage V shown by ]-. In addition, in Figure 3, the middle mark ゛
No. 17 is a fluorescent film.

また、蛍光ランプ11の各端から各ファラデー暗部16
a、16bまでの長さは例えば50〜60 am 11
度であり、しかも、蛍光ランプ17の各端から各ファラ
デー暗部16a、16bまでの部分は陽光柱の部分に比
して発光効率が低いので、磁気シールド材13a、13
bにより被覆しても蛍光ランプ11の発光を大幅に低減
させることは4rい。なお、磁気シールド材13a’、
13bは蛍光ランプ11のガラス製バルブ内にて−・対
の電極12a、12bの外周をファラデー暗部16a、
16bまで被覆するように構成してもよい1゜したがっ
て本実施例によれば、その蛍光ランプ11のランプ電圧
V、の上昇幅を、第1図および第2図で示す第1、第2
の発明の一実施例の蛍光ランプ4aのランプ電圧■1の
上昇幅よりも一層小幅に抑制することができ、蛍光ラン
プ11の始動性の改善を図ることができるど共に、ラン
プ電圧V1を安定させることができるので、点灯中の蛍
光ランプ11の立ち消えを防止することができる。
Furthermore, from each end of the fluorescent lamp 11, each Faraday dark area 16 is
The length from a to 16b is, for example, 50 to 60 am 11
Furthermore, since the areas from each end of the fluorescent lamp 17 to the Faraday dark areas 16a and 16b have lower luminous efficiency than the positive column area, the magnetic shielding materials 13a and 13
Even if it is coated with b, it is difficult to significantly reduce the light emission of the fluorescent lamp 11. Note that the magnetic shielding material 13a',
13b is inside the glass bulb of the fluorescent lamp 11. The outer circumference of the pair of electrodes 12a and 12b is a Faraday dark area 16a,
Therefore, according to the present embodiment, the increase in the lamp voltage V of the fluorescent lamp 11 can be changed to the first and second portions shown in FIGS. 1 and 2.
The increase in the lamp voltage V1 of the fluorescent lamp 4a according to the embodiment of the present invention can be suppressed to a much smaller extent than the increase in voltage V1, and the startability of the fluorescent lamp 11 can be improved, and the lamp voltage V1 can be stabilized. Therefore, it is possible to prevent the fluorescent lamp 11 from going out while it is being lit.

なお、上記第1〜第3発明の各実施例では放電灯装置と
して蛍光ランプ4a、11について説明したが、本件の
第1〜第3発明はこれに限定されるものではなく、放電
灯装置全般に適用することができる。
Although the fluorescent lamps 4a and 11 have been described as discharge lamp devices in each of the embodiments of the first to third inventions, the first to third inventions of the present invention are not limited to these, and can be applied to discharge lamp devices in general. It can be applied to

〔発明の効果〕〔Effect of the invention〕

以上説明したJ:うに第1、第2の発明は、磁場発生源
と放電灯装置の放電ランプとを、磁場の方向とランプ軸
とが互いに平行になるように配「jしたので、放電ラン
プ内のプラズマの拡散損を低減し、ランプ電圧の上昇を
小幅に抑制して放電ランプの始動性の改善を図ることが
できる。
In the above-described first and second inventions, the magnetic field generation source and the discharge lamp of the discharge lamp device are arranged so that the direction of the magnetic field and the lamp axis are parallel to each other, so that the discharge lamp It is possible to improve the startability of the discharge lamp by reducing the diffusion loss of the plasma inside the discharge lamp and by suppressing the rise in lamp voltage to a small extent.

また、ランプ電圧の上昇を小幅に抑制することができる
ので、ランプ電圧を安定化でき、点灯中の放電ランプの
立ち消えを防止覆ることができる。
Further, since the increase in lamp voltage can be suppressed to a small extent, the lamp voltage can be stabilized, and it is possible to prevent the discharge lamp from going out during lighting.

また、第3の発明は放電灯装置の放電ランプの一対の電
極部外周をファラデー暗部まで磁気シールド拐により被
覆したので、これら−・対の電極部に印加される磁場を
シールドすることができる。
Further, in the third aspect of the invention, the outer periphery of the pair of electrode parts of the discharge lamp of the discharge lamp device is coated with a magnetic shield up to the Faraday dark area, so that the magnetic field applied to these pairs of electrode parts can be shielded.

このために、磁場による放電ランプのランプ電圧の上昇
をより一層小幅に抑制することができるので、放電ラン
プの始動性の改善を図ることができる。また、放電ラン
プのランプ電圧の−IX界をより一層小幅に抑制して安
定さけることができるので、点灯中の放電ランプの立ち
消えを防止することができる。
Therefore, the increase in lamp voltage of the discharge lamp due to the magnetic field can be suppressed to a much smaller extent, so that the startability of the discharge lamp can be improved. In addition, since the -IX field of the lamp voltage of the discharge lamp can be suppressed to a smaller extent and stabilized, it is possible to prevent the discharge lamp from going out during lighting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本件の第1、第2発明に係る放電灯照明システ
ムおよび磁場発生源の配置方法の一実施例を一部縦断面
で示づ−1面図、第2図は第1図の右側面図、第3図は
本件の第3の発明に係る放電灯装置の要部縦断面図、第
4図は第1〜第3発明の各実施例の磁場に対するランプ
市′圧の変化をそれぞれ示すグラフ、第5図はExBド
リフ1−を説明する模式図、第6図は蛍光ランプ内の°
吊子、イオーンのEXBドリフ1−による拡散損を示寸
模式図、第7図は蛍光ランプのプラズマ密度と電位の分
布を示すグラフである。 1・・・核磁気共鳴診断装置(磁場発生源)、4・・・
蛍光灯装置、48.11・・・蛍光ランプ、12a。 12b・・・電極、13a、13b・・・磁気シールド
祠、14a、14b・・・負グロー、15・・・陽光柱
、16a、16b・・・ファラデー暗部。 出願人代理人   波 多 野   久〉 〉 第6図
FIG. 1 shows an embodiment of the discharge lamp illumination system and the method of arranging the magnetic field generation source according to the first and second inventions of the present invention, partially in longitudinal section - a first view, and FIG. The right side view and FIG. 3 are longitudinal sectional views of essential parts of the discharge lamp device according to the third invention of the present invention, and FIG. 4 shows the changes in lamp market pressure with respect to the magnetic field of each embodiment of the first to third inventions. The graphs shown respectively, Fig. 5 is a schematic diagram explaining ExB drift 1-, and Fig. 6 is a schematic diagram explaining ExB drift 1-.
FIG. 7 is a schematic diagram showing the diffusion loss due to the EXB drift of ions, and FIG. 7 is a graph showing the plasma density and potential distribution of a fluorescent lamp. 1...Nuclear magnetic resonance diagnostic device (magnetic field generation source), 4...
Fluorescent lamp device, 48.11...Fluorescent lamp, 12a. 12b... Electrode, 13a, 13b... Magnetic shield shrine, 14a, 14b... Negative glow, 15... Positive column, 16a, 16b... Faraday dark area. Applicant's agent Hisashi Hatano 〉 〉 Figure 6

Claims (1)

【特許請求の範囲】 1、磁場発生源の磁場に設置される放電灯装置の放電ラ
ンプを、そのランプ軸が上記磁場発生源の磁場の方向に
対してほぼ平行になるように配置することを特徴とする
蛍光灯照明システム。 2、磁場発生源を、その磁場に設置される放電灯装置の
放電ランプのランプ軸に対して磁場の方向がほぼ平行に
なるように配置することを特徴とする磁場発生源配置方
法。 3、放電ランプの一対の電極と各負グローから各ファラ
デー暗部までの外周を磁気シールド材により被覆したこ
とを特徴とする放電灯装置。
[Claims] 1. A discharge lamp of a discharge lamp device installed in the magnetic field of a magnetic field generation source is arranged so that its lamp axis is substantially parallel to the direction of the magnetic field of the magnetic field generation source. Features a fluorescent lighting system. 2. A method for arranging a magnetic field source, which comprises arranging the magnetic field source so that the direction of the magnetic field is approximately parallel to the lamp axis of a discharge lamp of a discharge lamp device installed in the magnetic field. 3. A discharge lamp device characterized in that the pair of electrodes of the discharge lamp and the outer periphery from each negative glow to each Faraday dark area are covered with a magnetic shielding material.
JP4987288A 1988-03-04 1988-03-04 Discharge lamp lighting system, magnetic field generating source layout and discharge lamp device Pending JPH01225098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4987288A JPH01225098A (en) 1988-03-04 1988-03-04 Discharge lamp lighting system, magnetic field generating source layout and discharge lamp device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4987288A JPH01225098A (en) 1988-03-04 1988-03-04 Discharge lamp lighting system, magnetic field generating source layout and discharge lamp device

Publications (1)

Publication Number Publication Date
JPH01225098A true JPH01225098A (en) 1989-09-07

Family

ID=12843138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4987288A Pending JPH01225098A (en) 1988-03-04 1988-03-04 Discharge lamp lighting system, magnetic field generating source layout and discharge lamp device

Country Status (1)

Country Link
JP (1) JPH01225098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449639A2 (en) * 1990-03-29 1991-10-02 Hubbell Incorporated Biasing system for reducing ion loss in lamps

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449639A2 (en) * 1990-03-29 1991-10-02 Hubbell Incorporated Biasing system for reducing ion loss in lamps

Similar Documents

Publication Publication Date Title
JPS63141256A (en) Discharge lamp
KR950004365A (en) Phosphor for mercury vapor discharge lamp and mercury vapor discharge lamp using this phosphor and lighting device using this discharge lamp
JPS61226925A (en) Discharge reaction device
JPH01225098A (en) Discharge lamp lighting system, magnetic field generating source layout and discharge lamp device
JPS61185857A (en) Electrodeless discharge lamp
JPH02256150A (en) Short arc mercury lamp for exposing semi-conductor wafer
JPS6358752A (en) Aperture type area gas discharge lamp
JPH04284348A (en) Electrode-less type low pressure discharge lamp
JP3196535B2 (en) Electrodeless discharge lamp
TWI414208B (en) Mercury - free fluorescent tubes and their driving methods
JPH081800B2 (en) Electrodeless discharge lamp device
JPS62163253A (en) Fluorescent lamp
KR102081589B1 (en) Electrodeless discharge lamp
JPH044543A (en) Plasma display device
JPS6321891Y2 (en)
RU1814741C (en) Method of generation of radiation
KR101194788B1 (en) Electrodeless fluorescent lamp apparatus using a coil
JP2526635B2 (en) Electrodeless flat light source device
JPH11214184A (en) Lighting method for xenon fluorescent discharge lamp
JPS6177247A (en) Low pressure mercuric vapor electric-discharge lamp
KR0117447Y1 (en) Bulb-type fluorescent lamp with double wall
JPS581963A (en) Low pressure mercury-vapor discharge lamp
JP2005353350A (en) Vacuum fluorescent tube and luminescent panel device
JPH10134766A (en) Discharge lamp, lighting system, and display device
JPS5935147B2 (en) low pressure steam discharge lamp