JPH01225041A - Ion source device - Google Patents

Ion source device

Info

Publication number
JPH01225041A
JPH01225041A JP63051029A JP5102988A JPH01225041A JP H01225041 A JPH01225041 A JP H01225041A JP 63051029 A JP63051029 A JP 63051029A JP 5102988 A JP5102988 A JP 5102988A JP H01225041 A JPH01225041 A JP H01225041A
Authority
JP
Japan
Prior art keywords
plasma
electrode
magnetic field
source device
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63051029A
Other languages
Japanese (ja)
Inventor
Masashi Yamakawa
山川 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63051029A priority Critical patent/JPH01225041A/en
Publication of JPH01225041A publication Critical patent/JPH01225041A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the generation efficiency of plasma by preventing the flow away of electrons to the outside of a plasma forming chamber with the cusp magnetic field coordination formed near a plasma outlet. CONSTITUTION:The voltage is applied across the first electrode 14 and the second electrode 15 so that the first electrode 14 is made positive and the second electrode 15 is made negative, the first electrode 14 and a plasma forming chamber 1 are set to the same potential, the second electrode 15 and a film forming chamber 9 are set to the same potential. Magnetic lines of force generated by a permanent magnet 13 draw a star shape extending branches to the above and below and the right and left near a plasma outlet to form the so called cusp magnetic field coordination. Electrons flowing out from the plasma forming chamber 1 are suppressed by the cusp magnetic field coordination near the plasma outlet 8 to prevent the divergence. The plasma generation efficiency is thereby improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、マイクロ波と磁場により原料からプラズマ
を発生させ、イオンを取り出すtこめのイオン源装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion source device that generates plasma from a raw material using microwaves and a magnetic field and extracts ions.

〔従来の技術〕[Conventional technology]

第4図は例えば特開昭62−222074号公報lこポ
された装置と同様の薄膜形成のための従来のイオン源装
置を示す断面図であり、図において、(υはプラズマ形
成室、(2)はプラズマ形成室(υの土壁中央た導波管
、(4)は導波管接続口(2)をふさぐようプラズマ形
成室(υと導波管(3〕の間に設けらIた石英板、(5
)はプラズマ形成室(υに設けられた管状の導入口、(
6)はプラズマ形成室(1)の周囲をとりまくよう配置
された円筒状のコイル、(7)はプラズマ形成室(1)
の一部分、つまり下壁をなす仕切板、(8)は仕切板(
7)プラズマ形成室(1)と気密的に接合され、プラズ
マ導出口(8)を通して連通している。αGは成膜室(
9)の下壁中央部に開口して設けられた排気口である。
FIG. 4 is a cross-sectional view showing a conventional ion source device for thin film formation similar to the device disclosed in Japanese Patent Application Laid-Open No. 62-222074. In the figure, (υ is a plasma formation chamber, ( 2) is a waveguide located in the center of the earthen wall of the plasma formation chamber (υ), and (4) is an I quartz plate, (5
) is a tubular inlet provided in the plasma formation chamber (υ), (
6) is a cylindrical coil placed around the plasma formation chamber (1), and (7) is the plasma formation chamber (1).
A part of the partition plate (8), which forms the lower wall, is a part of the partition plate (
7) It is airtightly joined to the plasma formation chamber (1) and communicated through the plasma outlet (8). αG is the film formation chamber (
9) is an exhaust port provided in the center of the lower wall.

次に動作憂こついて説明する。成膜室(9)内のプラズ
マ導出口(3)の下方にあたる所に表面に成膜すべき母
材aυを置き、図示しない真窄ポンプにより排気口αO
から排気し、プラズマ形成室(1)へ導入口(5)から
蒸着原料ガスを入17、導波管(3)から石英板(4)
を通して2.45GH2のマイクロ波を入射し、コイル
(6)Iこ通電すると、プラズマ形成室(1)内lこプ
ラズマが発生する。コイル(6)によってプラズマ形成
室(υ内に発生する磁場の磁束密度が875ガウスのと
きに、プラズマ形成室(υ内の電子が電子サイクロトロ
ン共鳴作用によりサイクロトロン運動し、マイクロ波の
電場より運動エネルギーを得て効率よくプラズマを発生
することができる。石英板【4]により導波管(3)へ
のプラズマの流失が防止される。コイル(6)によって
発生するプラズマ導出口(8)近辺の磁力線側は下方に
向って発散する。この発散磁場およびプラズマ形成室(
1)と成膜室(9)との圧力差により、イオン、電子、
フリーラジカルがプラズマ導出口(8)から成膜室(1
)に流出し、母材圓の表面上に成膜が行われる。
Next, I will explain the operational issues. The base material aυ to be deposited on the surface is placed below the plasma outlet (3) in the deposition chamber (9), and the exhaust port αO is opened using a true pump (not shown).
17, and enter the vapor deposition raw material gas from the inlet (5) into the plasma formation chamber (1), and from the waveguide (3) to the quartz plate (4).
When microwaves of 2.45 GH2 are incident through the coil (6) and the coil (6) is energized, plasma is generated in the plasma forming chamber (1). When the magnetic flux density of the magnetic field generated within the plasma formation chamber (υ) by the coil (6) is 875 Gauss, the electrons within the plasma formation chamber (υ undergo cyclotron movement due to electron cyclotron resonance, and their kinetic energy is increased by the microwave electric field. The quartz plate [4] prevents the plasma from flowing into the waveguide (3).The plasma near the outlet (8) generated by the coil (6) The magnetic field lines diverge downward.This divergent magnetic field and the plasma formation chamber (
Due to the pressure difference between 1) and the film forming chamber (9), ions, electrons,
Free radicals flow from the plasma outlet (8) into the film forming chamber (1).
), and a film is formed on the surface of the base metal circle.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のイオン源装置は以上のようlζ構成されているの
で、プラズマ導出口近辺の磁場は下方に向って発散する
発散磁場となり、そのためプラズマ形成室(1〕外へエ
ネルギーを持った電子が流失しゃすく、プラズマ発生に
利用される電子が減少し、プラズマ発生効率が悪いなど
の問題があった。
Since the conventional ion source device is configured as described above, the magnetic field near the plasma outlet becomes a diverging magnetic field that diverges downward, which prevents energetic electrons from flowing out of the plasma formation chamber (1). However, there were problems such as a decrease in the number of electrons used for plasma generation and poor plasma generation efficiency.

この発明は上記のような問題点を解消するためになされ
たもので、プラズマの発生効率の良いイオン源装置を得
ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to obtain an ion source device with high plasma generation efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るイオン源装置は、プラズマ導出口近辺に
カスプ磁場配位を形成したものである。
The ion source device according to the present invention has a cusp magnetic field configuration formed near the plasma outlet.

〔作用〕[Effect]

この発明におけるイオン源装置は、プラズマ導出口近辺
lこ形成されたカスプ磁場配位Iこより、プラズマ形成
室(υ外への電子の流失を防止する。
The ion source device according to the present invention prevents electrons from flowing out of the plasma formation chamber (υ) by the cusp magnetic field configuration I formed near the plasma outlet.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例1こよる薄膜形成のためのイオ
ン源装置を示す断面図で、プラズマ形成室(1)、導波
管接続口(2)、導波管(3)、石英板(4)、導入口
(5)および排気口αOは第4図の従来のイオン源装置
と同様であるので説明を省略する。餞はプラズマ形成室
(1〕の周囲をとりまくよう配置された円筒状の永久磁
石で、円筒の両端部が二つの磁極となっている。a4は
プラズマ形成室(1)の一部分、つまり下壁をなす板状
の第1の電極、(8)は第1の電極側の中央部lこ開口
して設けられたプラズマ導出口、(ト)は第1の電極α
4の下方に設けられた板状の第2の電極、USは第2の
電極の中央部、即ち、プラズマ導出口(8)の下方Iこ
設けられた開口部、αηは第1の電極α4と第2の電極
頭の間に設けられ、画電極1141 、 C15それぞ
れに気密的に接合された円筒状の絶縁体、(9)は第2
の電極μsの下側に設けられた成膜室で、第2の電極(
ト)と気密的に接合さね、開口部QQおよびプラズマ導
出口(8)を通してプラズマ形成室(1〕と連通してい
る。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a cross-sectional view showing an ion source device for forming a thin film according to Embodiment 1 of the present invention, which includes a plasma formation chamber (1), a waveguide connection port (2), a waveguide (3), and a quartz plate. (4), the inlet port (5), and the exhaust port αO are the same as those of the conventional ion source device shown in FIG. 4, so their explanation will be omitted. The cylindrical permanent magnet is placed around the plasma formation chamber (1), and has two magnetic poles at both ends of the cylinder. A4 is a part of the plasma formation chamber (1), that is, the bottom wall. (8) is a plasma outlet opening provided at the center of the first electrode side; (G) is a first electrode α;
4, US is the central part of the second electrode, that is, the opening provided below the plasma outlet (8), and αη is the first electrode α4. (9) is a cylindrical insulator provided between the second electrode head and airtightly joined to each of the picture electrodes 1141 and C15.
In the film forming chamber provided below the electrode μs of the second electrode (
(g), and communicates with the plasma formation chamber (1) through the opening QQ and the plasma outlet (8).

次に動作について説明する。永久磁石Uにより第1図の
プラズマ形成室(υに磁場を発生させる。
Next, the operation will be explained. A permanent magnet U generates a magnetic field in the plasma formation chamber (υ) shown in Figure 1.

プラズマ形成室(1)にプラズマを発生させる過程は第
4図の従来のイオン源装置の場合と同様であるので説明
を省略する。第1の電極α4と第2の電極頭の間には、
第1の電極側が正、第2の電極(ト)が負になる電圧V
を印加し、第1の電極σ4とプラズマ形成室(υとは同
電位、第2の電極頭と成膜室(9]は同電位lこする。
The process of generating plasma in the plasma formation chamber (1) is the same as that of the conventional ion source device shown in FIG. 4, so the explanation will be omitted. Between the first electrode α4 and the second electrode head,
Voltage V at which the first electrode side is positive and the second electrode (G) is negative
is applied, and the first electrode σ4 and the plasma forming chamber (υ) are at the same potential, and the second electrode head and the film forming chamber (9) are at the same potential l.

第2図(a)は第1図と同じイオン源装置の断面図で、
説明に不要な部分は省略して筒路化している。図におい
て、永久磁石時によって発生する磁力線はプラズマ導出
口(8)近辺で、上下左右に枝を伸ばした星形を画き、
いわゆるカスプ磁場配位を形成する。星形の中心部分か
らは、まわりの全方向に向って磁界強度が大きくなるの
でこ\からの電子の発散が押えられる。第2図(b)は
イオン源装置の垂直な中心軸に沿った位置に対応した電
位を示すグラフであり、縦軸の位置は第2図(a)の断
面図に対応して画いている。プラズマ導出口(8〕から
開口部aQへ向って次第に電位が低くなっている。従っ
て、第1図で、プラズマ形成室(υから流出してくる電
子はプラズマ導出口(8)近辺のカスプ磁場配位によっ
て押えられ、発散が防止される。更lこ、電子はプラズ
マ導出口(8)から下方lこ向って低くなっている電位
lこよつぞ上方Eこ押し戻され、発散防止の効果を大き
くしている。正の電荷を持ったイオンは上記電位によっ
て下方に引き出され加速されて、また電荷を持たないフ
リーラジカルはプラズマ形成室(1)からの流出時の勢
いで、開口部aOを通過して成膜室(9)へ流入する。
Fig. 2(a) is a cross-sectional view of the same ion source device as Fig. 1;
Parts unnecessary for explanation have been omitted and shown as cylindrical. In the figure, the magnetic lines of force generated by the permanent magnet form a star shape with branches extending vertically and horizontally near the plasma outlet (8).
This forms a so-called cusp magnetic field configuration. The magnetic field strength increases from the center of the star in all directions around it, suppressing electron divergence from this point. FIG. 2(b) is a graph showing the potential corresponding to the position along the vertical central axis of the ion source device, and the position of the vertical axis is drawn corresponding to the cross-sectional view of FIG. 2(a). . The potential gradually decreases from the plasma outlet (8) toward the opening aQ. Therefore, in Fig. 1, the electrons flowing out from the plasma formation chamber (υ) are affected by the cusp magnetic field near the plasma outlet (8). The electrons are suppressed by the coordination and prevented from divergence.Furthermore, the electrons are pushed downwards from the plasma outlet (8) and then back upwards, where the potential is lower. Ions with a positive charge are pulled downward and accelerated by the above potential, and free radicals without a charge are forced into the opening aO by the momentum of flowing out from the plasma formation chamber (1). It passes through and flows into the film forming chamber (9).

成膜室(9)へ流入したこれらの材料により、成膜室(
9)内Iこ置かれた母材回の表面上lこ成膜が行われる
These materials flowing into the film forming chamber (9) cause the film forming chamber (
9) A film is formed on the surface of the base metal layer.

この実施例では磁場発生のためlこ永久磁石を用いてい
るのでコイルを用いる場合のように電流を流す必要はな
く、補助設備も含めて簡略化、小形化ができる。
In this embodiment, a permanent magnet is used to generate the magnetic field, so there is no need to run a current as in the case of using a coil, and the auxiliary equipment can be simplified and downsized.

第3図はこの発明の他の実施例による薄膜形成のための
イオン源装置を示す簡略化した断面図で、永久磁石時が
複数個用いられており、それ以外は第1図の実施例と同
様であるので説明を省略する。
FIG. 3 is a simplified cross-sectional view showing an ion source device for forming a thin film according to another embodiment of the present invention, in which a plurality of permanent magnets are used, and the other embodiments are the same as the embodiment of FIG. 1. Since they are similar, the explanation will be omitted.

図において、第1図の実施例のものと同様の円筒状の永
久磁石Qが上下方向に3個並べて設けられている。各々
隣合う永久磁石UはNまたはSの同じ極性の磁極が向い
合うよう配置されている。プ7 ラズマ導出口(8)近
辺1こカスプ磁場配位が形成されるので電子の発散が防
止され、第1図の実施例のイオン源装置と同様の動作が
行われる。
In the figure, three cylindrical permanent magnets Q similar to those of the embodiment shown in FIG. 1 are arranged in the vertical direction. Adjacent permanent magnets U are arranged so that the N or S magnetic poles of the same polarity face each other. Since a single cusp magnetic field configuration is formed near the plasma outlet (8), electron divergence is prevented, and the same operation as the ion source device of the embodiment shown in FIG. 1 is performed.

また、第3図の実施例では複数個の永久磁石日が用いら
れているが、永久磁石時に代えて、円筒状のコイルを用
いてもよい。この場合、各々隣合うコイルは、中心軸上
に発生する磁力線の向きが互lこ反対向きfこぶつかり
合う極性になるよう配置される。プラズマ導出口(8)
近辺lこカスプ磁場配位が形成されるので電子の発散が
防止され、第2図の実施例のイオン源装置と同様の動作
が行われる。
Furthermore, although a plurality of permanent magnets are used in the embodiment shown in FIG. 3, a cylindrical coil may be used instead of the permanent magnets. In this case, the adjacent coils are arranged so that the directions of the lines of magnetic force generated on the central axis are opposite to each other, and polarities collide with each other. Plasma outlet (8)
Since a nearby cusp magnetic field configuration is formed, electron divergence is prevented, and the same operation as the ion source device of the embodiment shown in FIG. 2 is performed.

〔発明の効果〕〔Effect of the invention〕

以上のようlこ、この発明によればプラズマ導出口近辺
にカスプ磁場を形成しているので、プラズマ導出口から
の電子の発散を防止でき、従って、プラズマ発生効率の
良いイオン源装置が得られる効果がある。
As described above, according to the present invention, since a cusp magnetic field is formed near the plasma outlet, it is possible to prevent electrons from dispersing from the plasma outlet, thereby providing an ion source device with high plasma generation efficiency. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるイオン源装置を示す
断面図、第2図(a)は第1図のイオン源装置の簡略化
した断面図、第2図(b)は電位を示すグ図において、
(1)はプラズマ形成室、(8)はプラズマ導出口、@
は磁力線、σ4は第1の電極である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing an ion source device according to an embodiment of the present invention, FIG. 2(a) is a simplified cross-sectional view of the ion source device of FIG. 1, and FIG. 2(b) shows the potential. In the diagram,
(1) is the plasma formation chamber, (8) is the plasma outlet, @
is the magnetic field line, and σ4 is the first electrode. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] マイクロ波と磁場によりプラズマを発生させるプラズマ
形成室を有するイオン源装置において、前記プラズマ形
成室に設けられたプラズマ導出口近辺にカスプ磁場配位
を形成して、前記プラズマ導出口からの電子の発散を防
止したことを特徴とするイオン源装置。
In an ion source device having a plasma formation chamber that generates plasma using microwaves and a magnetic field, a cusp magnetic field configuration is formed in the vicinity of a plasma outlet provided in the plasma generation chamber to cause electrons to diverge from the plasma outlet. An ion source device characterized by preventing.
JP63051029A 1988-03-03 1988-03-03 Ion source device Pending JPH01225041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051029A JPH01225041A (en) 1988-03-03 1988-03-03 Ion source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051029A JPH01225041A (en) 1988-03-03 1988-03-03 Ion source device

Publications (1)

Publication Number Publication Date
JPH01225041A true JPH01225041A (en) 1989-09-07

Family

ID=12875383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051029A Pending JPH01225041A (en) 1988-03-03 1988-03-03 Ion source device

Country Status (1)

Country Link
JP (1) JPH01225041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016723A1 (en) * 1990-04-25 1991-10-31 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Gaseous radical producing apparatus
WO2019239765A1 (en) * 2018-06-14 2019-12-19 株式会社エスイー Manufacturing device and manufacturing method for treating raw material with microwave surface wave plasma and obtaining product different from raw material
JP2021037511A (en) * 2018-06-14 2021-03-11 株式会社エスイー Manufacturing device and manufacturing method for providing product different from raw material by treating raw material with micro wave surface wave plasma

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016723A1 (en) * 1990-04-25 1991-10-31 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Gaseous radical producing apparatus
WO2019239765A1 (en) * 2018-06-14 2019-12-19 株式会社エスイー Manufacturing device and manufacturing method for treating raw material with microwave surface wave plasma and obtaining product different from raw material
JP2019214033A (en) * 2018-06-14 2019-12-19 株式会社エスイー Manufacturing device and manufacturing method for providing product different from raw material by treating raw material with micro wave surface wave plasma
JP2021037511A (en) * 2018-06-14 2021-03-11 株式会社エスイー Manufacturing device and manufacturing method for providing product different from raw material by treating raw material with micro wave surface wave plasma

Similar Documents

Publication Publication Date Title
US4960073A (en) Microwave plasma treatment apparatus
JP4491132B2 (en) Plasma processing equipment
US7116054B2 (en) High-efficient ion source with improved magnetic field
RU2344577C2 (en) Plasma accelerator with closed electron drift
EP0286132A2 (en) Plasma generating apparatus
US6246059B1 (en) Ion-beam source with virtual anode
JPH0812856B2 (en) Plasma processing method and apparatus
KR20090015392A (en) The ion beam generating apparatus with bias electrode and the method of the same
JPH0689446B2 (en) Thin film forming equipment
JP3246800B2 (en) Plasma equipment
JPH01225041A (en) Ion source device
RU2030134C1 (en) Plasma acceleration with closed electron drift
JPS6112866A (en) Plasma concentration type high-speed sputtering device
JP2567892B2 (en) Plasma processing device
JP3126405B2 (en) Sputter deposition equipment
JP3079802B2 (en) Plasma gun
JPS6386864A (en) Ion source
JPH09259781A (en) Ion source device
JPH089780B2 (en) Thin film forming equipment
RU2037562C1 (en) Device for application of coatings in vacuum
JPH0535537B2 (en)
JPH05159894A (en) Anion source
JP2894171B2 (en) Ion source device
JP4223143B2 (en) Plasma processing equipment
JPH09223474A (en) Acceleration type plasma gun