JPH01225040A - Electron emitting electrode and display device - Google Patents

Electron emitting electrode and display device

Info

Publication number
JPH01225040A
JPH01225040A JP63047489A JP4748988A JPH01225040A JP H01225040 A JPH01225040 A JP H01225040A JP 63047489 A JP63047489 A JP 63047489A JP 4748988 A JP4748988 A JP 4748988A JP H01225040 A JPH01225040 A JP H01225040A
Authority
JP
Japan
Prior art keywords
electron
display device
cathode
fine particles
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63047489A
Other languages
Japanese (ja)
Inventor
Keiichi Kanebori
恵一 兼堀
Susumu Sasaki
進 佐々木
Kazushige Imagawa
今川 一重
Akizo Toda
尭三 戸田
Masakazu Fukushima
正和 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63047489A priority Critical patent/JPH01225040A/en
Publication of JPH01225040A publication Critical patent/JPH01225040A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a display device for a large screen with the excellent voltage and current characteristics by providing fine grains covered with an electron emitting material on the surface on the electron emission surface of an electron emitting electrode. CONSTITUTION:This device is constituted of a substrate 1, a cathode wiring 2, a load resistor 3, a cathode holding layer 4, fine grains 5, bulkhead plates 6, an anode 7, a faceplate 8 and phosphors 9. For the portion on the substrate side of this device, a cathode holding layer 4 made of conducting paste is formed by the silk screen printing method, for example, on the substrate 1 formed with the cathode wiring, fine grains 5 forming a thin film made of an electron emitting material such as LaB6 are pressed by pressure on it, it is then baked in the inert gas. A display device for a large screen with the excellent voltage and current characteristics is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子放出用電極及びそれを用いた表示装置に
係り、特にガス放電表示装置及びそれに用いる電子放出
用電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron-emitting electrode and a display device using the same, and particularly to a gas discharge display device and an electron-emitting electrode used therein.

〔従来の技術〕[Conventional technology]

近年、テレビ等の表示装置の大画面化、薄型化が強く望
まれている。この要望に答える表示装置の有力なものが
ガス放電表示装置である。このガス放電表示装置には多
くの型式かあるが、いずれも基本的には、冷陰極と陽極
間に電圧を印加して冷陰極より電子を放出させてガス放
電を発生させ表示を行う。従って、ガス放電表示装置用
冷陰極は低い電圧で電子放射が可能である必要がある。
In recent years, there has been a strong desire for display devices such as televisions to have larger screens and be thinner. A gas discharge display device is a promising display device that meets this demand. There are many types of gas discharge display devices, but all basically perform display by applying a voltage between a cold cathode and an anode to cause the cold cathode to emit electrons to generate gas discharge. Therefore, a cold cathode for a gas discharge display needs to be capable of emitting electrons at a low voltage.

またさらに、冷陰極はガス放電中隔イオンが衝突し消耗
するため、ガス放電表示の長寿命化のためには冷陰極の
耐消耗性が高いことが必要である。
Furthermore, since the cold cathode is consumed by collision with gas discharge septum ions, it is necessary for the cold cathode to have high wear resistance in order to extend the life of the gas discharge display.

従来、低電圧で電子放出が可能であり、かつ耐消耗性が
高い高性能陰極材料としては、例えばLaB、のような
ランタン族金属の6ホウ化物が知られており、これをガ
ス放電表示装置の冷陰極として用いることも提案されて
いる。このLaB5等の冷陰極は、ガス放電表示装置の
基板上に、LaB6粒子を含むペーストを用いて厚膜印
刷により形成するか、直接電子線蒸着法やプラズマ溶射
法等で形成するかしていた(電気学会技術報告(II)
部第147号、66〜81頁(昭和58年))。
Hitherto, hexaborides of lanthanum group metals such as LaB have been known as high-performance cathode materials that can emit electrons at low voltage and have high wear resistance. It has also been proposed to use it as a cold cathode. This cold cathode such as LaB5 was formed on the substrate of the gas discharge display device by thick film printing using a paste containing LaB6 particles, or by direct electron beam evaporation, plasma spraying, etc. (IEEJ technical report (II)
Part No. 147, pp. 66-81 (1981)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、電圧電流特性に優れ、かつ大画面の表
示装置に好適な陰極及びこのような陰極を用いた表示装
置については配慮されていなかった。すなわち、厚膜印
刷法により形成された陰極は、La86粒子の表面が有
機物バインダーの焼成残留物により汚染されることは避
けられず、そのため電圧電流特性が悪化するという問題
があった。
The above-mentioned conventional technology does not give consideration to a cathode that has excellent voltage-current characteristics and is suitable for a large-screen display device, and a display device using such a cathode. That is, in the cathode formed by the thick film printing method, the surface of the La86 particles is inevitably contaminated with the firing residue of the organic binder, which causes a problem in that the voltage-current characteristics deteriorate.

また電子線蒸着法によって形成された陰極は、優れた電
圧電流特性を示すが、大型の基板を処理するには大型の
蒸着装置が必要であり、従って表示装置の大画面化が困
難であると゛いう問題があった。
In addition, cathodes formed by electron beam evaporation exhibit excellent voltage-current characteristics, but processing large substrates requires large evaporation equipment, which makes it difficult to increase the screen size of display devices. There was a problem.

さらにまたプラズマ溶射法によって形成された陰極は、
プラズマ溶射の際に局所的に歪が生じ、従ってこの場合
もまた表示装置の大画面化が困難であるという問題があ
った。
Furthermore, the cathode formed by plasma spraying method is
There is a problem in that distortion occurs locally during plasma spraying, and therefore, it is difficult to enlarge the screen of the display device in this case as well.

本発明の目的は、電圧電流特性に優れ、表示装置の大画
面化が可能な電子放出用電極及びそれを用いた表示装置
を提供することにある。
An object of the present invention is to provide an electron-emitting electrode that has excellent voltage-current characteristics and allows the screen of a display device to be enlarged, and a display device using the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、電子放出用電極の電子放出面に、電子放出
性材料で表面を被覆した微粒子を有することを特徴とす
る電子放出用電極又は電子数?IiJ’ll電極からな
る陰極と、これに相対する陽極をマI・リックス状に設
け、その間に放電ガスを有する表示装置において、」二
記電子放出用電極は、その電−:3− 子放出面に、電子放出性材料で表面を被覆した微粒子を
有することを特徴とする表示装置によって達成される。
The above object is an electron-emitting electrode or an electron-emitting electrode characterized in that the electron-emitting surface of the electron-emitting electrode has fine particles whose surface is coated with an electron-emitting material. In a display device in which a cathode consisting of an IiJ'll electrode and an anode facing the cathode are provided in a matrix shape, and a discharge gas is provided between them, the electron-emitting electrode is This is achieved by a display device characterized by having fine particles on its surface coated with an electron-emitting material.

上記微粒子としては例えばニッケルや他の金属の微粒子
、グラッシーカーボン微粒子、AQ20.等セラミック
スの微粒子等を用いることができる。
Examples of the above-mentioned fine particles include fine particles of nickel and other metals, glassy carbon fine particles, AQ20. Fine particles of ceramics, etc. can be used.

また電気導電性でなくともよいが、電気導電性微粒子の
方が陰極との導通をとるために好ましい。
Further, although the particles do not have to be electrically conductive, electrically conductive fine particles are preferable in order to establish electrical conduction with the cathode.

微粒子の大きさは、通常0.1〜0.01+nm程度の
粒径のものが好ましい。またその粒径分布が狭く、粒径
の揃ったものが好ましい。
The size of the fine particles is preferably about 0.1 to 0.01+ nm. Further, it is preferable that the particle size distribution is narrow and the particle size is uniform.

電子放出性材料は、1岬〜20岬程度の厚みに被覆する
のが好ましい。1//IN未満の厚みでは電極としての
寿命が短く、20#ff+を越える厚みでは微粒子から
はがれ易い。電子放出性材料は、必ずしも均一の厚みに
微粒子に付ける必要はない。例えば、酸化物等の非導電
性の電子放出材料を用いるときは、この材料を導電性の
微粒子に斑につけることが好ましい。
The electron-emitting material is preferably coated to a thickness of about 1 cape to 20 capes. If the thickness is less than 1//IN, the life as an electrode will be short, and if the thickness exceeds 20#ff+, it will easily peel off from the fine particles. The electron-emitting material does not necessarily need to be applied to the fine particles to a uniform thickness. For example, when using a non-conductive electron-emitting material such as an oxide, it is preferable to apply this material to the conductive particles in patches.

電子放出性材料が導電性であれば、微粒子の表面をほぼ
均一の厚みで被覆してもよい。この様な被覆の方法は、
例えば、電子線蒸着装置内の試料台を回転可能とし、試
料台上に粒子移動用方向板。
If the electron-emitting material is conductive, the surface of the fine particles may be coated with a substantially uniform thickness. This kind of coating method is
For example, the sample stage in an electron beam evaporation apparatus is made rotatable, and a direction plate for particle movement is placed on the sample stage.

いわゆるじゃま板を設けて粒子を攪拌しながら電子線蒸
着する等の方法で行なうことができる。
This can be carried out by a method such as providing a so-called baffle plate and performing electron beam evaporation while stirring the particles.

電子放出性材料としては、例えば一般式MB6(ここに
Mはランタン属金属を表わす)で表わされる六ホウ化物
、その他の金属六ホウ化物等が用いられる。例えばLa
B、、、 Y BG、CeB、。
As the electron emitting material, for example, a hexaboride represented by the general formula MB6 (where M represents a lanthanum group metal), other metal hexaborides, etc. are used. For example, La
B,, Y BG, CeB,.

5cBG、BaB6又はこれらの複合ホウ化物等である
。またBad、Cs2O,MgO,SrO等の金属酸化
物も用いられる。この場合は、導電材料を混合するか又
は電子導電性をもたせることが好ましい。また、導電性
微粒子を用い、電子放出性材料の膜厚を薄くしてその電
気抵抗を小さくするか、前述の如く電子放出性材料を微
粒子に斑につける方法も用いることができる。
5cBG, BaB6, or a composite boride thereof. Metal oxides such as Bad, Cs2O, MgO, and SrO can also be used. In this case, it is preferable to mix a conductive material or to provide electronic conductivity. Further, it is also possible to use conductive fine particles and reduce the thickness of the electron-emitting material to reduce its electrical resistance, or to apply the electron-emitting material to the fine particles in spots as described above.

本発明の表示装置は、公知のガス放電表示装置、すなわ
ち、電子放出用電極からなる陰極と、これに相対する陽
極をマトリックス状に設け、その間に放電ガスを有する
表示装置の陰極として前述の微粒子を電子放出面に有す
る陰極を用いればよい。
The display device of the present invention is a known gas discharge display device, that is, a cathode consisting of an electron-emitting electrode and an anode facing the cathode are provided in a matrix, and the above-mentioned fine particles are used as the cathode of the display device having a discharge gas between them. It is sufficient to use a cathode having an electron emitting surface.

ガス放電表示装置としては、例えば隔壁板上に蛍光体を
配置し、放電ガスによってこの蛍光体を発光させるもの
も、Ne等の様な放電ガス自体を発光させるものもある
が、本発明はどちらのものにも適用できる。
As gas discharge display devices, for example, there are devices in which a phosphor is placed on a partition plate and the phosphor is made to emit light by a discharge gas, and there is also a device in which a discharge gas such as Ne or the like itself is made to emit light. It can also be applied to things like

〔作  用〕[For production]

本発明の作用を第1図を用いて説明する。第1図は本発
明の冷陰極を用いたガス放電表示装置の一例の断面の模
式図で、1は基板、2は陰極配線、3は負荷抵抗、4は
陰極保持層、5は微粒子、6は隔壁板、7は陽極、8は
面板、9は蛍光体である。このような装置の基板側の部
分は、@極配線を作成した基板上に、例えばシルクスク
リーン印刷法によって導電性ペース1〜の陰極保持層を
作成し、その上にLaB、のような電子放出性材料の薄
膜を形成した微粒子を圧着し、その後不活性ガス中で焼
成することによって作成できる。ここで用いたシルクス
クリーン印刷法は1mm角度の面積でも使用可能であり
、その面積への微粒子の圧着も容易である。また、微粒
子5の固定も基板郡全体を不活性ガス中で熱処理するこ
とにより行うので、真空装置を用いる必要はなく、歪み
の発生もない。
The operation of the present invention will be explained using FIG. FIG. 1 is a schematic cross-sectional view of an example of a gas discharge display device using a cold cathode of the present invention, in which 1 is a substrate, 2 is a cathode wiring, 3 is a load resistor, 4 is a cathode holding layer, 5 is fine particles, 6 7 is a partition plate, 7 is an anode, 8 is a face plate, and 9 is a phosphor. In the substrate side part of such a device, a cathode holding layer of conductive paste 1 is formed on the substrate on which @ electrode wiring is formed, for example by silk screen printing, and an electron emitting layer such as LaB is placed on top of the cathode holding layer. It can be created by compressing fine particles on which a thin film of a reactive material has been formed, and then firing them in an inert gas. The silk screen printing method used here can be used even on an area of 1 mm angle, and it is easy to press the fine particles onto that area. Further, since the fixation of the fine particles 5 is also carried out by heat-treating the entire substrate group in an inert gas, there is no need to use a vacuum device and no distortion occurs.

〔実施例〕〔Example〕

以下、本発明を実施例をあげて説明する。 Hereinafter, the present invention will be explained by giving examples.

実施例 1 電子線蒸着装置を用い、真空度はIU”nnI(g、膜
成長速度は10人/秒の条件で、直径0.05m+の球
状ニッケル粒子表面上にLaB6薄膜を3/7mの厚さ
に形成した。この電子線蒸着装置では、第2図に原理を
示したように、ニッケル粒子21は時計方向に回る回転
台22上に置かれており、回転台直上に設置された粒子
移動用方向板23にあたり不規則に運動するようになっ
ている。これにより、ニッケル粒子表面はほぼ均一にL
aBGによって被覆される。
Example 1 Using an electron beam evaporation apparatus, a LaB6 thin film was deposited to a thickness of 3/7 m on the surface of spherical nickel particles with a diameter of 0.05 m+ under the conditions of a vacuum degree of IU"nnI (g) and a film growth rate of 10 persons/sec. In this electron beam evaporation apparatus, as shown in the principle in FIG. The nickel particles move irregularly as they hit the direction plate 23. As a result, the surface of the nickel particles is almost uniformly aligned with the direction plate 23.
Covered by aBG.

この微粒予冷@極を用いて、以下に述べる方法で、第1
図に示した構造のカス放電表示装置を作成した。すなわ
ち、面板となるソーダ石灰ガラス板上に金ペーストをス
クリーン印刷法で印刷し、大気中焼成(焼成温度620
℃)して陽極となる金配線を形成した。また、ソーダ石
灰ガラス製隔壁板の内壁にはトリクロルエチレンを分散
剤に用いてスプレー法により蛍光体を塗布した。そして
、基板となるソーダ石灰ガラス上に上記と同様の方法で
陰極用金配線を作成し、ついで、金配線上の所定位置に
抵抗ペーストをスクリーン印刷し、大気中焼成(焼成温
度610℃)して負荷抵抗を作成し、そしてさらに負荷
抵抗上に陰極保持膜としてニッケルペースト膜をスクリ
ーン印刷法で形成し、そのニッケルペースト膜上に微粒
子冷陰極をガス流吹きつけ法で接着し、610°Cで焼
成した。その後、冷陰極、負荷抵抗、陰極配線を形成し
た基板と蛍光体を塗布した隔壁板及び陽極配線を形成し
た面板を低融点ガラス(使用温度470℃)ではり合わ
せ、真空排気し、Xeを封入した。
Using this fine particle precooling@pole, the first
A dregs discharge display device with the structure shown in the figure was created. That is, gold paste was printed by screen printing on a soda lime glass plate that would serve as a face plate, and fired in the atmosphere (firing temperature 620°C).
℃) to form a gold wiring that will become an anode. In addition, a phosphor was applied to the inner wall of the soda-lime glass partition plate by a spray method using trichlorethylene as a dispersant. Gold wiring for the cathode was then created on soda lime glass as a substrate in the same manner as above, and then a resistive paste was screen printed on the gold wiring at a predetermined position and fired in the air (firing temperature 610°C). Then, a nickel paste film was formed as a cathode holding film on the load resistor using a screen printing method, and a particulate cold cathode was bonded onto the nickel paste film using a gas flow blowing method. It was fired in After that, the substrate on which the cold cathode, load resistor, and cathode wiring were formed, the partition plate coated with phosphor, and the face plate on which anode wiring was formed were glued together with low melting point glass (use temperature 470°C), evacuated, and Xe was sealed. did.

以上の方法で製造したガス放電表示装置の各部の寸法は
、放電セルのピッチが縦横とも1 、0 Im+、陰極
の大きさは0.8mm角、ニッケル膜の大きさは0 、
8 nun角、厚さは0.01mm、金配線の幅は0.
2+m+、陰極−陽極間距離は3 、 Onnであり、
負荷抵抗の値は1.7MΩ、放電セルの数は80 x 
60個であった。
The dimensions of each part of the gas discharge display device manufactured by the above method are as follows: the pitch of the discharge cells is 1.0 Im+ both vertically and horizontally, the size of the cathode is 0.8 mm square, the size of the nickel film is 0.
8 nun square, thickness is 0.01mm, width of gold wiring is 0.
2+m+, the cathode-anode distance is 3, Onn,
The value of the load resistance is 1.7MΩ, and the number of discharge cells is 80 x
There were 60 pieces.

一方、比較例として、上記と同様の方法により基板上に
陰極配線と負荷抵抗を作成したのち、電子線蒸着法によ
ってLaB6を負荷抵抗上に形成し、その後、これと上
記と同様の方法で蛍光体を塗布した隔壁板及び陽極配線
を作成した面板をはり合わせてガス放電表示装置を製造
した。1. a B 、の蒸着条件は真空度が10−’
mmm1(、膜成長速度が10人/秒であり、作成され
たLaB、の膜厚は3μm、大きさは0.8nu角であ
り、ガス放電表示装置の他の部分の寸法は上記の本発明
のものと同一とした。
On the other hand, as a comparative example, after creating a cathode wiring and a load resistor on a substrate by the same method as above, LaB6 was formed on the load resistor by electron beam evaporation method, and then fluorescent A gas discharge display device was manufactured by gluing together the partition plate coated with the film and the face plate coated with the anode wiring. 1. The vapor deposition conditions for a B are a vacuum degree of 10-'
mm1 (, the film growth rate is 10 people/second, the thickness of the created LaB film is 3 μm, the size is 0.8 nu square, and the dimensions of other parts of the gas discharge display device are as described in the present invention) It was made the same as that of .

本発明のLaB6被覆微粒子を冷陰極としたガス放電表
示装置と、比較例である基板上に作成したLaB6薄膜
を冷陰極としたガス放電表示装置の電圧・電流特性は第
3図の直線31.32のようになった。図に見られるよ
うに、本発明の表示装置の電圧・電流特性の電流値は、
比較例のそれよりごくわずか低下しているが、実用上は
ごくわずか電圧を上げれば同等の効果が得られ、実用上
はぼ同等の特性といえる。従って作成費用低減の効果が
大である。また、本発明のガス放電表示装置は4000
時間表示を続けても電圧−電流特性は変化せず、寿命特
性は良好であることが確認された。
The voltage/current characteristics of a gas discharge display device using the LaB6-coated fine particles of the present invention as a cold cathode and a comparative example gas discharge display device using a LaB6 thin film formed on a substrate as a cold cathode are shown by straight line 31 in FIG. It became like 32. As seen in the figure, the current value of the voltage-current characteristics of the display device of the present invention is
Although it is slightly lower than that of the comparative example, in practical terms, the same effect can be obtained by increasing the voltage only slightly, and in practical terms it can be said that the characteristics are almost the same. Therefore, the effect of reducing production costs is significant. Further, the gas discharge display device of the present invention has a 4000
It was confirmed that the voltage-current characteristics did not change even if the time display was continued, and the life characteristics were good.

実施例 2 実施例1と同じ方法、同じ装置で表面にLaB。Example 2 LaB was applied to the surface using the same method and equipment as in Example 1.

薄膜を形成した微粒子を作成した。そしてこの微粒子を
用い、実施例1と同じ方法で、放電セル数400 X 
300個のガス放電表示装置を作成した。
We created microparticles that formed a thin film. Then, using these fine particles and using the same method as in Example 1, the number of discharge cells was 400
Three hundred gas discharge display devices were created.

このガス放電表示装置の電圧−電流特性を測定したとこ
ろ、それは実施例1の80 X 60セルのガス放電表
示装置と一致しており、放電セル数を増大させる、すな
わち、大画面化しても電圧−電流特性は変化しないこと
が確かめられた。
When the voltage-current characteristics of this gas discharge display device were measured, they were consistent with the 80 x 60 cell gas discharge display device of Example 1, and even if the number of discharge cells was increased, that is, the screen was made larger, the voltage - It was confirmed that the current characteristics did not change.

本実施例で作成した表示装置の大きさは600x500
mnであり、この大きさの基板上にLaB6薄膜を作成
するには、真空槽の大きさがこれ以上の装置が必要とな
る。これに対して、本発明では使用する電子線蒸着装置
の真空槽は小型のもので良い。
The size of the display device created in this example is 600x500.
mn, and in order to create a LaB6 thin film on a substrate of this size, an apparatus with a vacuum chamber larger than this size is required. In contrast, in the present invention, the vacuum chamber of the electron beam evaporation apparatus used may be small.

実施例 3 実施例1と同じ球状ニッケル粒子の表面に高周波スパッ
タリング蒸着法によりLaB6薄膜を厚さ6廊形成した
。蒸着時の高周波電力はLOW/cJ、膜成長速度は2
廊/時とした。この冷陰極を用いて実施例2と同じ放電
セル数の400 X 300個のガス放電表示装置を作
成した。
Example 3 A LaB6 thin film having a thickness of 6 layers was formed on the surface of the same spherical nickel particles as in Example 1 by high frequency sputtering deposition. The high frequency power during vapor deposition was LOW/cJ, and the film growth rate was 2.
Corridor/Tokitoshi. Using this cold cathode, a gas discharge display device having the same number of discharge cells as in Example 2 (400×300) was fabricated.

このガス放電表示装置の電圧−電流特性は第4図の直線
41のようになった。この結果は、実施例1の電子線蒸
着法により作成したLaBG薄膜冷陰極の電圧−電流特
性直線42と実用上はぼ同等の効果を示している。この
ことから、高周波スパッタリング蒸着法により表面にL
aB、薄膜を形成した微粒子を冷陰極とするガス放電表
示装置は基板上にLaB6薄膜を作成したガス放電表示
装置と同等の特性を有することが分かる。
The voltage-current characteristics of this gas discharge display device were as shown by the straight line 41 in FIG. This result shows practically the same effect as the voltage-current characteristic line 42 of the LaBG thin film cold cathode produced by the electron beam evaporation method of Example 1. From this, it is possible to apply L on the surface by high-frequency sputtering deposition method.
It can be seen that the gas discharge display device in which the fine particles on which the aB thin film is formed is used as a cold cathode has the same characteristics as the gas discharge display device in which the LaB6 thin film is formed on the substrate.

実施例 4 実施例1と同じ粒状ニッケル粒子の表面に高周波スパッ
タリング蒸着法によりBaB、薄膜を厚さ6−形成した
。そして、この冷陰極を用い、実施例1と同じ放電セル
数80 X 60個のガス放電表示装置を作成した。
Example 4 A BaB thin film with a thickness of 6 mm was formed on the surface of the same granular nickel particles as in Example 1 by high-frequency sputtering deposition. Then, using this cold cathode, a gas discharge display device having the same number of discharge cells (80×60) as in Example 1 was created.

一方、比較例として、実施例1のLaB、薄膜冷陰極と
同じように基板上に陰極配線、負荷抵抗を作成したのち
、その上に高周波スパッタリング法でBaBG薄膜を作
成した。そして、放電セル数80X60個のガス放電表
示装置を作成した。
On the other hand, as a comparative example, a cathode wiring and a load resistor were formed on a substrate in the same manner as the LaB thin film cold cathode of Example 1, and then a BaBG thin film was formed thereon by high frequency sputtering. Then, a gas discharge display device having 80×60 discharge cells was produced.

本発明のBaB6薄膜を形成した微粒子を冷陰極とする
表示装置とBaB6薄膜自体を冷陰極とする表示装置の
電圧−電流特性は第5図の直線51と52のようになり
、実用上はぼ同等の効果を示した。
The voltage-current characteristics of a display device using fine particles formed with the BaB6 thin film of the present invention as a cold cathode and a display device using the BaB6 thin film itself as a cold cathode are as shown by straight lines 51 and 52 in FIG. It showed the same effect.

このことから、BaB6薄膜を形成した微粒子を冷陰極
にしたガス放電表示装置は基板上にBaBG薄膜を作成
したガス放電表示装置と同等の特性を有することが分か
る。
From this, it can be seen that a gas discharge display device in which fine particles formed with a BaB6 thin film are used as a cold cathode has characteristics equivalent to a gas discharge display device in which a BaBG thin film is formed on a substrate.

以上の実施例では、原料微粒子として球状ニッケル粒子
を、電子放出性材料としてL a B 、;とBaB、
を、微粒子の被覆法として電子線蒸着法、高周波スパッ
タリング蒸着法を、保持層への微粒子の担持法として圧
着法を用いた例を述べたが、本発明はこれらの材料やプ
ロセスによって限定されるものではない。
In the above examples, spherical nickel particles were used as the raw material fine particles, and L a B ; and BaB;
, examples have been described in which electron beam evaporation, high-frequency sputtering evaporation, and pressure bonding are used as a method for coating fine particles and a pressure bonding method as a method for supporting fine particles on a holding layer, but the present invention is limited by these materials and processes. It's not a thing.

例えば、原料微粒子として他の金属粒子、グラッシーカ
ーボン粒子、An20.粒子等を用いても良い。微粒子
の形状は薄膜を均一に作成し易く、圧着等による保持層
への担持が容易であることがら球形が望ましい。また微
粒子の大きさは保持層内に粒子が埋め込まれないよう、
保持層の厚さより大きいことが望ましい。
For example, other metal particles, glassy carbon particles, An20. Particles etc. may also be used. The shape of the fine particles is preferably spherical because it is easy to form a uniform thin film and it is easy to support the fine particles on the holding layer by pressure bonding or the like. In addition, the size of the fine particles is adjusted so that the particles do not become embedded in the retention layer.
It is desirable that the thickness be greater than the thickness of the retaining layer.

微粒子の被覆法としては、プラズマ溶射法、イオンブレ
ーティング法等も用いられる。微粒子の保持層への担持
法としては、ガス流による吹き付けによっても良い。
Plasma spraying, ion blasting, and the like can also be used as a coating method for fine particles. The fine particles may be supported on the holding layer by blowing with a gas stream.

また表示装置は、蛍光体を有するものでなく、ネオン等
の如く放電ガス自体が発光するものを用いても良い。
Furthermore, the display device does not have a phosphor, but may be one in which the discharge gas itself emits light, such as neon.

なお、LaB、などの高性能陰極の微粒子をその、 ま
ま使用して、本発明と同様の方法で陰極を作成すると、
これの微粒子の形状は複雑であるため、保持層への担持
が不均一となるという問題がある。
Note that if a cathode is made using the same method as in the present invention using fine particles of a high-performance cathode such as LaB,
Since the shape of these fine particles is complicated, there is a problem that the support on the retention layer becomes non-uniform.

また、形状が複雑なため、陰極として使用した際に、電
子放出が不均一となり性能が安定しないという問題も生
じる。
Furthermore, since the shape is complicated, when used as a cathode, electron emission becomes non-uniform and the performance becomes unstable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電圧・電流特性に優れ、大画面のガス
放電表示装置を小型の装置によって製造することができ
た。それ故、製造コストの低減、信頼性の向上が達成で
きる。
According to the present invention, a gas discharge display device with excellent voltage and current characteristics and a large screen can be manufactured using a small device. Therefore, reduction in manufacturing cost and improvement in reliability can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示すガス放電表示装置の一例の
模式図、第2図は本発明に用いる電子線蒸着装置の試料
台の模式図、第3図及び第4図はLaB6薄膜を形成し
た微粒子を陰極としたガス放電表示装置の電圧・電流特
性を示した図、第5図はBaB6薄膜を形成した微粒子
を陰極としたガス放電表示装置の電圧・電流特性を示し
た図である。 1・・・基板       2・・陰極配線3・・負荷
抵抗     4・・陰極保持層5・・微粒子    
  6・・隔壁板7・・陽極       8 ・面板 9・・・蛍光体      21  ニッケル粒子22
・回転台      23・・・粒子移動用方向板31
.41.51・・本発明の特性 32.42.52・比較例の特性
Fig. 1 is a schematic diagram of an example of a gas discharge display device showing the principle of the present invention, Fig. 2 is a schematic diagram of a sample stage of an electron beam evaporation device used in the present invention, and Figs. A diagram showing the voltage and current characteristics of a gas discharge display device using the formed fine particles as a cathode. FIG. 5 is a diagram showing voltage and current characteristics of a gas discharge display device using the formed fine particles as a cathode. . 1... Substrate 2... Cathode wiring 3... Load resistance 4... Cathode holding layer 5... Fine particles
6... Partition plate 7... Anode 8 - Face plate 9... Phosphor 21 Nickel particles 22
- Rotating table 23...Particle movement direction plate 31
.. 41.51・Characteristics of the present invention 32.42.52・Characteristics of comparative example

Claims (1)

【特許請求の範囲】 1、電子放出用電極の電子放出面に、電子放出性材料で
表面を被覆した微粒子を有することを特徴とする電子放
出用電極。 2、上記電子放出性材料は、一般式MB_6(ここにM
はランタン属金属を表わす)で表わされる材料である特
許請求の範囲第1項記載の電子放出用電極。 3、上記電子放出性材料は、スパッタリング蒸着、電子
線真空蒸着又はプラズマ溶射により上記微粒子表面に被
覆層として形成されてなるものである特許請求の範囲第
1項記載の電子放出用電極。 4、電子放出用電極からなる陰極と、これに相対する陽
極をマトリックス状に設け、その間に放電ガスを有する
表示装置において、上記電子放出用電極は、その電子放
出面に、電子放出性材料で表面を被覆した微粒子を有す
ることを特徴とする表示装置。 5、上記電子放出性材料は、一般式MB_6(ここにM
はランタン属金属を表わす)で表わされる材料である特
許請求の範囲第4項記載の表示装置。
[Scope of Claims] 1. An electron-emitting electrode comprising, on an electron-emitting surface of the electron-emitting electrode, fine particles whose surface is coated with an electron-emitting material. 2. The above electron-emitting material has the general formula MB_6 (here M
The electron-emitting electrode according to claim 1, which is a material represented by lanthanum group metal. 3. The electron-emitting electrode according to claim 1, wherein the electron-emitting material is formed as a coating layer on the surface of the fine particles by sputtering deposition, electron beam vacuum deposition, or plasma spraying. 4. In a display device in which a cathode consisting of an electron-emitting electrode and an anode facing the cathode are arranged in a matrix, and a discharge gas is provided therebetween, the electron-emitting electrode has an electron-emitting material on its electron-emitting surface. A display device characterized by having a surface coated with fine particles. 5. The above electron-emitting material has the general formula MB_6 (herein M
5. The display device according to claim 4, wherein the display device is made of a material represented by a metal of the lanthanum group.
JP63047489A 1988-03-02 1988-03-02 Electron emitting electrode and display device Pending JPH01225040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047489A JPH01225040A (en) 1988-03-02 1988-03-02 Electron emitting electrode and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047489A JPH01225040A (en) 1988-03-02 1988-03-02 Electron emitting electrode and display device

Publications (1)

Publication Number Publication Date
JPH01225040A true JPH01225040A (en) 1989-09-07

Family

ID=12776529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047489A Pending JPH01225040A (en) 1988-03-02 1988-03-02 Electron emitting electrode and display device

Country Status (1)

Country Link
JP (1) JPH01225040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0741402A2 (en) * 1995-05-02 1996-11-06 Philips Patentverwaltung GmbH Electric discharge tubes or discharge lamps, flat panel display, low-temperature cathode and method for their fabrication
EP0878829A2 (en) * 1997-05-16 1998-11-18 Osram Sylvania Inc. Discharge lamp electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0741402A2 (en) * 1995-05-02 1996-11-06 Philips Patentverwaltung GmbH Electric discharge tubes or discharge lamps, flat panel display, low-temperature cathode and method for their fabrication
EP0741402A3 (en) * 1995-05-02 1997-11-26 Philips Patentverwaltung GmbH Electric discharge tubes or discharge lamps, flat panel display, low-temperature cathode and method for their fabrication
EP0878829A2 (en) * 1997-05-16 1998-11-18 Osram Sylvania Inc. Discharge lamp electrode
EP0878829A3 (en) * 1997-05-16 1999-03-17 Osram Sylvania Inc. Discharge lamp electrode

Similar Documents

Publication Publication Date Title
US4393326A (en) DC Plasma display panel
US6489718B1 (en) Spacer suitable for use in flat panel display
US6409567B1 (en) Past-deposited carbon electron emitters
EP1596411B1 (en) Image display apparatus and method for manufacturing the same
JPH05500585A (en) How to form a field emission device
US6741017B1 (en) Electron source having first and second layers
KR930000380B1 (en) Manufacturing method of discharge indicating system
KR100367248B1 (en) Manufacturing method of spacer for electron-beam apparatus and manufacturing method of electron-beam apparatus
US6566794B1 (en) Image forming apparatus having a spacer covered by heat resistant organic polymer film
US6565403B1 (en) Ion-bombarded graphite electron emitters
US20050275335A1 (en) Image display apparatus
US4600397A (en) Method of producing discharge display device
JP2003323855A (en) Image formation device
CN102017051A (en) Under-gate field emission triode with charge dissipation layer
US7839071B2 (en) Vacuum container and method for manufacturing the same, and image display apparatus and method for manufacturing the same
JPH01225040A (en) Electron emitting electrode and display device
Kaneko et al. Wedge-shaped field emitter arrays for flat display
RU2210134C2 (en) Cold-emission cathode and flat-panel display
US6144145A (en) High performance field emitter and method of producing the same
JPH0794102A (en) Image forming device manufacturing method and image forming device manufactured in this method
JP2000251707A (en) Spacer for electron beam device, its manufacture, and electron beam device using it
JP2003223857A (en) Electron beam equipment and image forming system
JPH08315740A (en) Image display device and its manufacture
JP3478763B2 (en) Image forming device
JP2003229056A (en) Method of manufacturing structure support, structure support, and electron beam device having this structure support