JPH01224683A - Azimuth detecting and receiving device - Google Patents

Azimuth detecting and receiving device

Info

Publication number
JPH01224683A
JPH01224683A JP5222188A JP5222188A JPH01224683A JP H01224683 A JPH01224683 A JP H01224683A JP 5222188 A JP5222188 A JP 5222188A JP 5222188 A JP5222188 A JP 5222188A JP H01224683 A JPH01224683 A JP H01224683A
Authority
JP
Japan
Prior art keywords
signal
frequency
antennas
phase
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5222188A
Other languages
Japanese (ja)
Inventor
Mikio Funai
船井 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5222188A priority Critical patent/JPH01224683A/en
Publication of JPH01224683A publication Critical patent/JPH01224683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To obtain the device which need not be uniformized in phase characteristics of a mixer and an IF amplifier, the length of a signal path, etc., by providing a switch circuit which connects the outputs of two antennas and the input of a reception system in a parallel or crossing state on the output sides of the antennas. CONSTITUTION:The arrival signal from one signal source is received by the two antennas 1a and 1b which are so arrayed as to receive the signal according to an arithmetic expression having phase shift relation and the reception system, and the azimuth of the arrival signal is found by solving the arithmetic expression from the signal phases of the two antennas with the output of the reception system. Then, the transfer switch 11 is provided on the output sides of the antennas 1a and 1b to connect the two antennas 1a and 1b and the input of two reception systems in parallel or crossing relation. Consequently, phase errors that the reception systems have cancel each other, the signal paths of the reception systems need not be equal in length, and azimuth detection which use phases is easily performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、受信信号の到来方位をその位相差を用いて
探知しようとする方位探知受信装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an azimuth detection receiving device that attempts to detect the arrival direction of a received signal using its phase difference.

〔従来の技術〕[Conventional technology]

第6図は例えばスコルニク(SKOLNIK) =iF
“レーダ ハンドブック(RADARHANDBOOK
)  21−27頁に記載されている、レーダの位相比
較による方位探知受信装置の場合を送信系を除いて取り
上げた従来例である。この図において、1は空中線、2
はミキサ、3は局部発振器、4はIF増幅器、5は位相
検波器、6は演算回路である。
Figure 6 shows, for example, SKOLNIK = iF
“Radar Handbook”
) This is a conventional example that takes up the case of a direction finding receiver using radar phase comparison described on pages 21 to 27, excluding the transmission system. In this figure, 1 is an antenna, 2
3 is a mixer, 3 is a local oscillator, 4 is an IF amplifier, 5 is a phase detector, and 6 is an arithmetic circuit.

次に動作について説明する。2個の空中線1a及び1b
は距離:dだけ離れて並行に配置されており、両方の位
相パターンは揃っているものとする。空中線の正面方向
から電波を受信したときに両方の位相が等しくなるよう
に取り付けられているから、方位角:θだけ異なる方位
から信号を受げた場合には雨空中線出力の位相差:ψが
下式のように得られることはこの分野では周知の事実で
ある。
Next, the operation will be explained. Two antennas 1a and 1b
are arranged in parallel at a distance of d, and both phase patterns are aligned. Since the antenna is installed so that both phases are equal when receiving radio waves from the front direction, if the signal is received from a direction that differs by the azimuth angle θ, the phase difference ψ of the antenna output will decrease. It is a well-known fact in this field that the equation can be obtained as shown in the equation.

但し、λは受信信号の自由空間波長である。この関係は
第7図によって具体的に説明できる。空中線1aから目
標までの距離:R1と空中線1bから目標までの距離:
R2はそれぞれ目標までの距離が非常に遠く、はぼ並行
に、且つ波面は平面として到達すると考えられるので、
− R1= R+ −sinθ       ・(21R2
= R−−sinθ       ・(3)である。従
って、(11式の位相差:ψは距離R1とR2の差によ
って生じることから説明できる。
where λ is the free space wavelength of the received signal. This relationship can be concretely explained with reference to FIG. Distance from antenna 1a to target: R1 and distance from antenna 1b to target:
R2 is considered to reach the target at a very long distance, almost in parallel, and with a flat wavefront.
- R1= R+ -sinθ ・(21R2
= R--sin θ (3). Therefore, it can be explained by the fact that the phase difference in equation (11): ψ is caused by the difference between the distances R1 and R2.

第6図では、この位相差を2系列のミキサ2a。In FIG. 6, this phase difference is expressed by two series of mixers 2a.

2bで受けて局部発振器3から固定周波数の局部発振信
号を注入して混合し、中間周波数信号(以下IF倍信号
いう)に変換するいわゆるスーパヘテロダイン方式の受
信系を示している。局部発振器3からの信号は同相でミ
キサ2a、2bに注入されるので、IF倍信号変換され
た後も位相差:ψはそのまま保存されている。これはミ
キサの動作原理が乗算効果に基づくものであることから
導出して解析できる。
2b, a fixed frequency local oscillation signal is injected from the local oscillator 3, mixed, and converted into an intermediate frequency signal (hereinafter referred to as an IF multiplied signal). Since the signal from the local oscillator 3 is injected into the mixers 2a and 2b in the same phase, the phase difference: ψ is maintained as it is even after the signal is converted by IF times. This can be derived and analyzed since the operating principle of the mixer is based on the multiplication effect.

この後、IF増幅器4a、4bで一定の出力振幅になる
よう飽和増幅(振幅成分は不要である)を行い、位相検
波器5で位相差に比例した直流電圧が得られる位相検波
を行う。この位相検波器5の具体的モデルとしては同着
5−39頁及び5−42頁記載の平衡形ダイオード検波
器があり、これを第8図で説明する。この図において、
7は基準信号:Easin(ωt)の入力端、8は位相
差を検出したい信号: Es 5in(ωt+ψ)の入
力端、9は検波後の出力信号二Eoの出力端である。こ
れらの関係は、 E0=K(CO3−−cos2ωを十高次周波数成分)
 ・(4)である。但し、Kは検波効率を示す定数であ
る。
Thereafter, the IF amplifiers 4a and 4b perform saturation amplification (no amplitude component is required) so that the output amplitude is constant, and the phase detector 5 performs phase detection to obtain a DC voltage proportional to the phase difference. A specific model of this phase detector 5 is a balanced diode detector described on pages 5-39 and 5-42 of the same issue, which will be explained with reference to FIG. In this diagram,
7 is the input end of the reference signal: Easin (ωt), 8 is the input end of the signal whose phase difference is to be detected: Es 5in (ωt+ψ), and 9 is the output end of the detected output signal 2Eo. These relationships are: E0=K (CO3--cos2ω is the tenth higher-order frequency component)
- (4). However, K is a constant indicating detection efficiency.

従って、これを検波器として扱った場合、第2項以降の
成分は低域通過フィルタによって除去されて Eo=K −cosψ              ・
・・(5)となり、位相差:ψに相当する出力振幅が得
られる。なお、第8図において、10a〜10dは検波
用リングダイオードである。
Therefore, when this is treated as a detector, the components after the second term are removed by a low-pass filter, and Eo=K − cosψ ・
...(5), and an output amplitude corresponding to the phase difference: ψ is obtained. In addition, in FIG. 8, 10a to 10d are ring diodes for detection.

以上説明したように、位相検波された出力には到来信号
の位相差:ψの情報を含んでおり、ひいては到来信号方
位の情報を含んでいるので、これらを逆に演算してゆけ
ば方位を求めることができるのである。第6図における
演算回路6はこの働きを行っており、レーダのように自
分の送信周波数が判っていたり、または狭帯域の受信装
置などのように(1)式の波長:λが決まっていたりす
れば、容易に方位算出が行える。
As explained above, the phase-detected output contains information on the phase difference (ψ) of the arriving signal, and in turn contains information on the direction of the arriving signal, so by calculating these inversely, the direction can be determined. You can ask for it. The arithmetic circuit 6 in Fig. 6 performs this function, and the transmitting frequency is known as in a radar, or the wavelength λ in equation (1) is determined as in a narrow band receiving device. Then, you can easily calculate the direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の方位探知受信装置は以上のように構成されている
ので、2個の空中線で生じた位相差を位相検波器まで正
確に伝送する必要がある。しかし、ミキサやIF増幅器
の位相特性、及び信号経路の長さ等を全て揃えるのは大
変であるし、まして広い周波数範囲に渡って特性を揃え
ることは実用上非常に難しいという問題点があった。
Since the conventional direction finding receiver is configured as described above, it is necessary to accurately transmit the phase difference generated between the two antennas to the phase detector. However, it is difficult to match the phase characteristics of mixers and IF amplifiers, signal path lengths, etc., and it is even more difficult in practice to match the characteristics over a wide frequency range. .

この発明は上記のような問題点を解消するためになされ
たもので、ミキサやIF増幅器の位相特性、信号経路の
長さ等を揃える必要のない実用性の高い方位探知受信装
置を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a highly practical azimuth finding and receiving device that does not require matching the phase characteristics of mixers and IF amplifiers, the length of signal paths, etc. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る方位探知受信装置は、空中線の出力側に
、2系列の空中線の出力と2系列の受信系の入力とを並
行に、あるいは互いに交差して接続するためのスイッチ
回路を設けたものである。
The direction finding receiver according to the present invention is provided with a switch circuit on the output side of the antenna for connecting the outputs of the two systems of antennas and the inputs of the two systems of receiving systems in parallel or crossing each other. It is.

〔作用〕[Effect]

この発明においては、2系列の空中線の出力と2系列の
受信系の入力とを並行に、あるいは互いに交差して接続
するためのスイッチ回路を設けたことにより、空中線以
降の受信系で2系列9信号の位相誤差が生じても、これ
を演算によって消去できる。
In this invention, by providing a switch circuit for connecting the outputs of the two series of antennas and the inputs of the two series of reception systems in parallel or crossing each other, the two series of reception systems after the antenna are connected. Even if a signal phase error occurs, it can be eliminated by calculation.

〔実施例〕 以下、この発明の一実施例を図について説明する。第1
図において、11は空中線と受信系との間にあって2系
列の信号経路を切り替えるトランスファ・スイッチ、1
2は受信する高周波信号の周波数帯域を決める帯域通過
フィルタ、13は信号分配器、14は受信した到来信号
の搬送周波数を測定する周波数測定受信装置、15は一
連の動作シーケンスを制御したり、−時的なデータの記
憶を行うCPU回路、16は発振周波数を可変して到来
信号の同調を行う局部信号発生器である。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
In the figure, 11 is a transfer switch that is located between the antenna and the receiving system and switches the signal paths of two systems;
2 is a band pass filter that determines the frequency band of the high frequency signal to be received; 13 is a signal splitter; 14 is a frequency measuring receiver that measures the carrier frequency of the received incoming signal; 15 is a device that controls a series of operation sequences; A CPU circuit 16 stores temporal data, and a local signal generator 16 tunes an incoming signal by varying the oscillation frequency.

以下、動作について説明する。The operation will be explained below.

到来信号の対象周波数範囲が広いので、まず、未知の周
波数を測定して認識することが行われる。
Since the target frequency range of the incoming signal is wide, the unknown frequency is first measured and recognized.

空中線1aで受信した電波はトランスファ・スイッチ1
1の入力端11aから出力端11cへ、図に示す経路の
とおり伝送される。帯域通過フィルタ12a、12bは
対象とする周波数範囲(受信可能な周波数帯域幅とその
中心周波数との比は15%以上)を決定するためのもの
であり、これ以外の周波数成分の信号は除去される。こ
れを通った信号は信号分配器13で信号経路が分かれ、
周波数測定受信装置14へ至る。
Radio waves received by antenna 1a are transferred to transfer switch 1
The signal is transmitted from the input end 11a of No. 1 to the output end 11c along the route shown in the figure. The bandpass filters 12a and 12b are used to determine the target frequency range (the ratio of the receivable frequency bandwidth to its center frequency is 15% or more), and signals with frequency components other than this are removed. Ru. The signal passing through this is divided into signal paths by the signal splitter 13,
The frequency measurement receiving device 14 is reached.

ここでは非常に精度良い周波数測定が行われる。Very accurate frequency measurements are performed here.

この精度は最終的に方位を算出する際前記(11式の波
長:λ(=光速/周波数)に直接影響するが、現在実用
化されている程度のものを使えば無視できる程度の値で
ある。周波数測定受信装置14の具体的なモデルとして
は、例えば米国アナレン(ANAREN)社等から製品
化されているDIFM(Digital In5tan
taneous Frequency Measure
ment:デジタル出力瞬時周波数測定)装置を挙げる
ことができる。これは、一種のFM検波を広帯域のマイ
クロ波周波数帯に応用したものであり、性能の一例とし
ては周波数範囲が4〜8GHzに渡って1.25MHz
の周波数分解能でデジタル化した出力が得られるという
ことがある。
This accuracy directly affects the wavelength: λ (= speed of light/frequency) in Equation 11 (mentioned above) when calculating the final direction, but it is a value that can be ignored if the current practical level is used. A specific model of the frequency measurement receiving device 14 is, for example, DIFM (Digital In5tan), which is commercialized by ANAREN Co., Ltd. in the United States.
taneous Frequency Measure
ment: digital output instantaneous frequency measurement) device. This is a type of FM detection applied to a wide microwave frequency band, and an example of its performance is 1.25 MHz over a frequency range of 4 to 8 GHz.
It is possible to obtain a digitized output with a frequency resolution of .

このようにして測定された到来信号の周波数はCPU@
路■5へ送られ、CPU回路15は信号を受信してその
周波数がf、であることを認識する。CPU回路15は
、到来信号の方位を探知する場合、これを契機として一
連の動作シーケンスを実行する。
The frequency of the arriving signal measured in this way is CPU@
The CPU circuit 15 receives the signal and recognizes that the frequency is f. When detecting the direction of an incoming signal, the CPU circuit 15 uses this as an opportunity to execute a series of operation sequences.

動作シーケンスについて述べる前に、まずトランスファ
・スイッチ11の動作について説明する。
Before describing the operation sequence, the operation of the transfer switch 11 will be explained first.

トランスファ・スイッチ11には4個の信号端子があり
、いずれの端子からも信号の入出力が可能である。これ
を2つの異なる信号を扱う場合について説明すると、第
2図のようになる。第2図(a)では、例えば制御信号
が論理信号状態“0”のとき、2つの高周波信号人、B
をそれぞれ端子a。
The transfer switch 11 has four signal terminals, and signals can be input and output from any of the terminals. This will be explained in the case of handling two different signals as shown in FIG. 2. In FIG. 2(a), for example, when the control signal is in the logic signal state "0", two high-frequency signals, B
respectively to terminal a.

bに入力すると端子c、dに出力が表われる。これを仮
に“並行モード”と呼ぶ、第2図山)では、逆に制御信
号が“1”の状態であり、この場合は、高周波信号人、
Bはそれぞれ端子d、cに出力が表われる。この状態を
“交差モード”と呼ぶ。制御信号としては“0”か“1
”のいずれかであり、トランスファ・スイッチ11とし
ては“並行モード”か“交差モード”のいずれかになっ
ているものとする。
When input to terminal b, output appears at terminals c and d. This is tentatively called the "parallel mode" (Fig. 2), on the contrary, the control signal is "1", and in this case, the high frequency signal
Outputs of B appear at terminals d and c, respectively. This state is called "cross mode". The control signal is “0” or “1”
”, and the transfer switch 11 is assumed to be in either “parallel mode” or “cross mode”.

次に、第1図の装置の動作シーケンスについて述べる。Next, the operation sequence of the apparatus shown in FIG. 1 will be described.

空中線1a、lbで受信した到来信号はトランスファ・
スイッチ11に至る。スイッチ11は当初第1図の実線
で示すように“並行モード”になっている場合でも、図
の破線のように“交差モード”になっている場合でも、
いずれでも良く(但し、本実施例では並行モードから始
まる場合を説明する)、とにかく端子11Cに現われた
信号が帯域通過フィルタ12aを通り、信号分配器13
で周波数測定受信装置14に導かれる。動作シーケンス
の初期は、到来信号有無の認識とその搬送周波数の測定
が目的であり、方位探知は行っていない0周波数測定受
信装置14の出力をCPU回路15が受けて、この目的
が達せられる。この結果、CPU回路15が方位探知を
実行することになると、次の動作として、局部発振器1
6へ測定した周波数への同調を指示し、ミキサ2a及び
2b以降の受信系へ到来信号が取り込める状態になる。
The incoming signals received by the antennas 1a and lb are transferred to
The switch 11 is reached. Whether the switch 11 is initially in the "parallel mode" as shown by the solid line in FIG. 1 or in the "crossing mode" as shown by the broken line in the figure,
Either option may be used (however, in this embodiment, a case will be explained in which the case starts from the parallel mode); anyway, the signal appearing at the terminal 11C passes through the band pass filter 12a, and the signal splitter 13
and is guided to the frequency measurement receiving device 14. At the beginning of the operation sequence, the purpose is to recognize the presence or absence of an incoming signal and measure its carrier frequency, and this purpose is achieved when the CPU circuit 15 receives the output of the 0 frequency measurement receiver 14, which does not perform direction finding. As a result, when the CPU circuit 15 executes direction finding, as the next operation, the local oscillator 1
6 to tune to the measured frequency, and the incoming signal can be taken into the receiving system after mixers 2a and 2b.

そして従来の回路と同様にして到来信号があれば位相検
波器5から出力をCPU回路15へ送り、CPU回路1
5はその位相データ:ψ。
Then, in the same manner as in the conventional circuit, if there is an incoming signal, the output from the phase detector 5 is sent to the CPU circuit 15.
5 is its phase data: ψ.

を−時記憶する。次に、CPU回路15はトランスファ
・スイッチ11に制御信号“1“を送り“交差モード”
への切り替えを指示する。するとトランスファ・スイッ
チ11の接続は第1図の破線状態となり、空中線1aか
らの信号がトランスファ・スイッチの端子lidへ、ま
た、空中線1bからの信号が端子11cへ導かれるよう
になる。
- memorize at - time. Next, the CPU circuit 15 sends a control signal "1" to the transfer switch 11 to set the "crossing mode".
Instruct to switch to. Then, the connection of the transfer switch 11 becomes as shown by the broken line in FIG. 1, and the signal from the antenna 1a is guided to the terminal lid of the transfer switch, and the signal from the antenna 1b is guided to the terminal 11c.

そして上記と同様に、到来信号があれば位相検波器5か
ら出力をCPU回路15へ送り、cpu回路15はその
時の位相データ:ψ1を一時記憶する。
Similarly to the above, if there is an incoming signal, the output from the phase detector 5 is sent to the CPU circuit 15, and the CPU circuit 15 temporarily stores the phase data: ψ1 at that time.

ここで、位相データ:ψ。とψ、の持つ意味を分析する
。第7図において、目標から距離R1を経て空中線1a
で受信した時の信号位相をψ、とじ、同時に距離R2を
経て空中線1bで受信した信号の位相をψ、とし、(1
1式から求める方位:θをψ=ψ1−ψ5とすると °、゛λ、4(波長)=−(Cは光速) ・・・(7)
である。ここで実用上問題となるのは、空中線1a、l
bから後の受信系について物理的、電気的に位相特性を
広帯域周波数に渡って位相検波器5まで揃えることが困
難であることである。空中線la、lbからトランスフ
ァ・スイッチ11の出力端子11C,lidまでは位相
特性が揃っているとして、空中線以降の受信系によって
生じる位相をそれぞれψ□、ψ□とすると前記の一時記
憶された位相データ:ψ。、ψ1は ψ。=ψ、+ψ□−ψ1−ψ□    ・・・(8)ψ
、=ψゎ+ψ□−ψ、−ψ□    ・・・(91とな
り、これによって次式が成立する。
Here, phase data: ψ. Analyze the meaning of and ψ. In FIG. 7, the antenna 1a is located at a distance R1 from the target.
Let the phase of the signal received at the antenna 1b be ψ, and at the same time the phase of the signal received by the antenna 1b via the distance R2 be ψ, and (1
Direction found from equation 1: If θ is ψ = ψ1 - ψ5, °, ゛λ, 4 (wavelength) = - (C is the speed of light) ... (7)
It is. The practical problem here is that the antennas 1a, l
It is difficult to physically and electrically align the phase characteristics of the receiving system from b to the phase detector 5 over a wide frequency band. Assuming that the phase characteristics are the same from the antennas la and lb to the output terminals 11C and lid of the transfer switch 11, and the phases generated by the receiving system after the antenna are ψ□ and ψ□, respectively, the temporarily stored phase data :ψ. , ψ1 is ψ. =ψ, +ψ□−ψ1−ψ□ ... (8) ψ
,=ψゎ+ψ□−ψ, −ψ□ (91), and the following equation holds true.

つまり、受信系の持つ不揃いな位相:ψ□、ψ□が相殺
され、空中線で受信した位相差情報のみを取り出し得る
わけである。従ってCPU回路15では位相データ:ψ
。、ψ1からαω式の演算を行い、位相差:ψを求めた
後、これを演算回路6へ送り方位:θを算出する。
In other words, the uneven phases of the receiving system: ψ□, ψ□ are canceled out, and only the phase difference information received by the antenna can be extracted. Therefore, in the CPU circuit 15, the phase data: ψ
. , ψ1 to calculate the phase difference ψ, which is then sent to the calculation circuit 6 to calculate the azimuth θ.

これら一連の動作シーケンスについてのフローチャート
を第2図に示す。
A flowchart of these operational sequences is shown in FIG.

このような方位探知受信装置では、空中線以降の受信系
で2系列の信号の位相誤差が生じても、これを演算によ
り消去できるので、ミキサやIF増幅器の位相特性、信
号経路の長さ等を揃える必要がない。また、到来周波数
の探知手段を設け、この情報に基づいて一連の動作を行
うようにしたので、周波数が広帯域に渡る場合や未知で
あるような場合にも、位相を用いた方位探知を容易に行
える。
In such a direction finding receiver, even if a phase error occurs between the two series of signals in the reception system after the antenna, this can be canceled by calculation, so the phase characteristics of the mixer and IF amplifier, the length of the signal path, etc. There is no need to arrange them. In addition, we have provided a means to detect the incoming frequency and perform a series of operations based on this information, making it easy to find the direction using phase even when the frequency spans a wide band or is unknown. I can do it.

なお、上記実施例では周波数測定受信装置14は帯域通
過フィルタ12の帯域幅と同等の非常に広帯域に渡って
周波数′測定できるものについて示したが、これはある
程度狭帯域のものであっても実現可能である。第4図は
IF周波数の帯域幅を中程度に狭くした例であって、こ
のIF帯域幅はIF帯域フィルタ17によって決められ
る。このIF周波数の下限をf IL+上限をflMと
すると、このf IL””’ f I)I内の周波数が
判ればCPU回路15から局部発振器16へ同調指示す
る周波数;f、。との関係から受信周波数;fMが求ま
る。つまり、局部発振器16の周波数を常に受信周波数
より低く(rto<rH)設定した場合を考えると、中
程度の周波数帯域幅を持つ周波数測定受信装置18で測
定したIF周波数がf+  (f+t≦fl ≦f+H
)のとき、受信周波数:fHは下式で求まる。
In the above embodiment, the frequency measuring receiver 14 is capable of measuring frequencies over a very wide band equivalent to the bandwidth of the bandpass filter 12, but this can also be achieved even with a somewhat narrow band. It is possible. FIG. 4 shows an example in which the IF frequency bandwidth is moderately narrowed, and this IF bandwidth is determined by the IF band filter 17. If the lower limit of this IF frequency is f IL + the upper limit is flM, then this f IL""' f I) If the frequency within I is known, the CPU circuit 15 instructs the local oscillator 16 to tune to the frequency; f. The receiving frequency; fM can be found from the relationship. In other words, if we consider the case where the frequency of the local oscillator 16 is always set lower than the reception frequency (rto<rH), the IF frequency measured by the frequency measurement receiver 18 with a medium frequency bandwidth is f+ (f+t≦fl≦ f+H
), the receiving frequency: fH is determined by the following formula.

fH=fL、+f、            ・・・α
ωこの方式では、周波数測定受信装置を安価にすること
ができるが、代りに狭いIF帯域フィルタを通ってくる
信号しか確認できないので、全周波数帯域の監視ができ
なくなる。また、動作の初期に到来周波数の認識を行っ
てから、位相検出へ移行するというようなシーケンスで
はなく、同時に実行される。
fH=fL, +f, ...α
ω In this method, the frequency measurement receiving device can be made inexpensive, but instead, only the signal passing through the narrow IF band filter can be confirmed, making it impossible to monitor the entire frequency band. In addition, the sequence is not such that the incoming frequency is recognized at the beginning of the operation and then the phase is detected, but they are executed simultaneously.

第5図は更に極端な例であり、周波数測定受信装置を無
くす方式である。IF周波数帯域幅を十分狭くできる場
合は、 f+@f+t(ぐf IN)         ・・・
亜であるため、周波数測定機能を省略することができる
。具体的には、(6)式でf、4の誤差として方位精度
に影響するが、これが許容範囲であれば第5図の方式に
示すごとく非常に単純化できるメリットが生じる。従っ
て、第5図のIF帯域フィルタ19は狭帯域通過特性(
受信可能な周波数帯域幅とその中心周波数との比は15
%以下)のフィルタである点が前記の例と異なる。
FIG. 5 is an even more extreme example, in which the frequency measurement receiver is eliminated. If the IF frequency bandwidth can be made narrow enough, f+@f+t (gf IN)...
Since it is a subwoofer, the frequency measurement function can be omitted. Specifically, the azimuth accuracy is affected by the error of f, 4 in equation (6), but if this is within an allowable range, there is an advantage that it can be greatly simplified as shown in the system shown in FIG. Therefore, the IF band filter 19 in FIG. 5 has a narrow band pass characteristic (
The ratio between the receivable frequency bandwidth and its center frequency is 15
% or less) is different from the previous example.

また、以上の実施例では空中線で電波を受信する場合に
ついて述べたが、音波や超音波をマイクロホンや音響セ
ンサ等で電気信号に変換できるものがあれば、その場合
も上記実施例と同様の効果を奏する。
In addition, although the above embodiment describes the case where radio waves are received by an antenna, if there is a device that can convert sound waves or ultrasonic waves into electrical signals using a microphone or an acoustic sensor, the same effect as in the above embodiment can be obtained. play.

さらに、上記実施例では空中線及び受信系は2系列で構
成する場合について示したが、3系列以上の空中線と2
系列以上の受信系を用いてマトリクス的に空中線と受信
系を選択できるように構成しても良(、この場合も上記
実施例と同様に“並行モード”と“交差モード”を−回
の位相比較結果として扱い、これを複数回実行すれば可
能である。
Furthermore, in the above embodiment, the antenna and the receiving system are configured with two systems, but the antenna and the receiving system are configured with three or more systems.
It is also possible to configure the antenna and the receiving system to be selected in a matrix using receiving systems of more than one series (in this case, as in the above embodiment, the "parallel mode" and the "crossing mode" are This can be done by treating it as a comparison result and executing it multiple times.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る方位探知受信装置によれ
ば、空中線の出力側に、2系列の空中線の出力と2系列
の受信系の入力とを並行に、あるいは互いに交差して接
続するためのスイッチ回路を設けたので、受信系で生じ
る位相誤差を相殺でき、受信系の信号経路は必ずしも等
長である必要がなくなり、位相を用いた方位探知が簡単
にできる効果がある。
As described above, according to the direction finding receiver according to the present invention, the outputs of the two systems of antennas and the inputs of the two systems of reception systems are connected to the output side of the antenna in parallel or in a manner that they cross each other. Since the switch circuit is provided, phase errors occurring in the receiving system can be canceled out, and the signal paths in the receiving system do not necessarily have to be of equal length, which has the effect of simplifying azimuth detection using phase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による方位探知受信装置を
示すブロック図、第2図はその空中線の出力と受信系の
人力との切り替えを説明するための図、第3図はその動
作シーケンスのフローチャートを示す図、第4図、第5
図はそれぞれこの発明の他の実施例による方位探知受信
装置を示すブロック図、第6図は従来の方位探知受信装
置を示すブロック図、第7図は2系列の空中線への到来
電波の関係を示す図、第8図は代表的位相検波器の構成
を示す図である。 1は空中線、5は位相検波器、6は演算回路、11はト
ランスファ・スイッチ、14は周波数測定受信装置、1
6は局部発振器。 なお、図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a block diagram showing a direction finding receiver according to an embodiment of the present invention, Fig. 2 is a diagram illustrating switching between the output of the antenna and the human power of the receiving system, and Fig. 3 is its operation sequence. Figures 4 and 5 showing flowcharts of
The figures are block diagrams showing direction finding receivers according to other embodiments of the present invention, FIG. 6 is a block diagram showing a conventional direction finding receiver, and FIG. 7 shows the relationship between incoming radio waves to two series of antennas. The figure shown in FIG. 8 is a diagram showing the configuration of a typical phase detector. 1 is an antenna, 5 is a phase detector, 6 is an arithmetic circuit, 11 is a transfer switch, 14 is a frequency measurement receiver, 1
6 is a local oscillator. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)一信号源からの到来信号を、その位相関係がある
算式に従って受信できるよう配列した2系列の空中線と
受信系とで受け、該受信系の出力で2系列の信号位相か
ら上記算式の演算を行って上記到来信号の方位を求める
方位探知受信装置において、 上記空中線の出力側に設けられ、上記2系列の空中線の
出力と上記2系列の受信系の入力とを並行に、あるいは
互いに交差して接続するためのスイッチ回路を備えたこ
とを特徴とする方位探知受信装置。
(1) An incoming signal from one signal source is received by a receiving system and two series of antennas arranged so that the phase relationship can be received according to the formula, and the output of the receiving system is based on the signal phase of the two series according to the formula above. In the direction finding/receiving device for calculating the direction of the incoming signal, the device is provided on the output side of the antenna, and the output of the two systems of antennas and the input of the two systems of receiving systems are connected in parallel or crossing each other. A direction finding/receiving device characterized by comprising a switch circuit for connection.
JP5222188A 1988-03-04 1988-03-04 Azimuth detecting and receiving device Pending JPH01224683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5222188A JPH01224683A (en) 1988-03-04 1988-03-04 Azimuth detecting and receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5222188A JPH01224683A (en) 1988-03-04 1988-03-04 Azimuth detecting and receiving device

Publications (1)

Publication Number Publication Date
JPH01224683A true JPH01224683A (en) 1989-09-07

Family

ID=12908693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5222188A Pending JPH01224683A (en) 1988-03-04 1988-03-04 Azimuth detecting and receiving device

Country Status (1)

Country Link
JP (1) JPH01224683A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164830A (en) * 1991-12-17 1993-06-29 Teac Corp Automatic tracking system
JP2011237359A (en) * 2010-05-13 2011-11-24 Seiko Epson Corp Device and method for detecting radio wave arrival angle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164830A (en) * 1991-12-17 1993-06-29 Teac Corp Automatic tracking system
JP2011237359A (en) * 2010-05-13 2011-11-24 Seiko Epson Corp Device and method for detecting radio wave arrival angle

Similar Documents

Publication Publication Date Title
US4481519A (en) Radio frequency signal direction finding apparatus
US6348804B1 (en) Vector network analyzer
US4918684A (en) Device for the measurement of intermodulation products of a receiver system
EP0265073B1 (en) Test arrangement
JPH05312869A (en) Frequency-range polarized wave meter
JP2002043957A (en) High frequency signal transmitting apparatus
US20100007548A1 (en) Method and device for determining a distance to a target object
US3003147A (en) Speed measuring system
US4812849A (en) Nonquadrature correction circuit
JPH01224683A (en) Azimuth detecting and receiving device
US5255000A (en) Transmission signal direction finding apparatus and method
EP3796041B1 (en) Distance measuring apparatus and distance measuring system
JP2634259B2 (en) High frequency signal direction finder
US7058377B1 (en) Dual channel downconverter for pulsed radio frequency measurements
JPH08166443A (en) Two frequency cw radar sensor
JP3271277B2 (en) Standing wave ratio measurement device
JP2708550B2 (en) Direction measuring method, direction measuring system, transmitting device and receiving device
US4415852A (en) Single hybrid junction frequency discriminator
JPS63196875A (en) Bearing detecting receiver
JP2930044B2 (en) Radio wave arrival direction measurement device
JPH11160407A (en) Receiving apparatus
JPH07159524A (en) Cw doppler measuring radar
Scheiner et al. Low-cost six-port for high-volume frequency measurement systems in the 2.4 GHz ISM-band
JP2000055605A (en) Body detecting method and body detector using same
JPH11271435A (en) Monopulse receiver