JPH01224027A - Steam permselective membrane - Google Patents

Steam permselective membrane

Info

Publication number
JPH01224027A
JPH01224027A JP63045935A JP4593588A JPH01224027A JP H01224027 A JPH01224027 A JP H01224027A JP 63045935 A JP63045935 A JP 63045935A JP 4593588 A JP4593588 A JP 4593588A JP H01224027 A JPH01224027 A JP H01224027A
Authority
JP
Japan
Prior art keywords
membrane
water vapor
ion exchange
water
tables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63045935A
Other languages
Japanese (ja)
Inventor
Yoshio Sugaya
良雄 菅家
Makoto Nakao
真 中尾
Hirofumi Horie
堀江 浩文
Hirokazu Wakabayashi
浩和 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63045935A priority Critical patent/JPH01224027A/en
Publication of JPH01224027A publication Critical patent/JPH01224027A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only

Abstract

PURPOSE:To selectively permeate steam by using a hydrocarbonic ion-exchange membrane having >=40wt.% water absorption, <=6N fixed ion concn., and 0.1-150mum thickness, and contg. 1.5-5.0mm equiv./g resin. CONSTITUTION:When a hydrocarbonic ion-exchange membrane consisting of the sulfonate of a copolymer of aromatic polysulfone/polythioether, etc., expressed by formula I is used, for example, as a steam permselective membrane, the water absorption is controlled to >=40wt.% from the standpoint of the membrane strength and steam permeation rate, the fixed ion concn. to <=6N, the membrane thickness to 0.1-150mum, and the ion exchange capacity to 1.5-5.0mm equiv./g resin from the standpoint of the steam permeation rate and selectivity. When the membrane fulfilling said conditions is used, excellent steam permselectively, namely >=50 or preferably >=80m<3>/m<2>.hr.atm. steam permeation rate and >=500 or preferably >=1,000 steam/nitrogen permselectivity coefficient, is exhibited.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、混合流体より特定成分を、膜を用いて透過分
離せしめる分離膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a separation membrane that permeates and separates specific components from a mixed fluid using the membrane.

更に詳しくは、建物の空気調和や計装用圧縮空気等の湿
度を低減させた空気の製造や、天然ガス中の水分除去、
ならびに化学工業をはじめ、電気・電子産業、精密機械
工業1食品工業、繊維工業等、広い分野で使用される湿
度をコントロールされた気体の製造において、水分を含
有する気体から、水、水蒸気を選択的に透過せしめる分
離膜に関する。
More specifically, we manufacture air with reduced humidity such as air conditioning for buildings and compressed air for instrumentation, remove moisture from natural gas,
In addition, water and steam are selected from gases containing moisture in the production of humidity-controlled gases used in a wide range of fields, including the chemical industry, electrical and electronic industries, precision machinery industry, food industry, and textile industry. This invention relates to a separation membrane that allows water to pass through the membrane.

[従来の技術] 気体中の水蒸気を除去する方法として大別して、(1)
圧縮法、(2)冷却法、(3)吸着法。
[Prior art] Methods for removing water vapor from gas can be broadly classified into (1)
Compression method, (2) cooling method, (3) adsorption method.

(4)膜分離法の4法が知られている。(4) Four membrane separation methods are known.

膜分離法は、水蒸気を含有する気体を隔膜の一面に接触
させ、もう−面から水蒸気を選択的に透過分離せしめる
方法であり、原理的に他の3法に比べ、ランニングコス
トが安価、装置構造が簡単、気体を汚染することなく連
続的に乾燥気体が得れる等の利点を持つが、従来、水蒸
気透過性の優れた隔膜がないため、はとんど実用化され
ていない。
The membrane separation method is a method in which a gas containing water vapor is brought into contact with one side of a diaphragm, and water vapor is selectively permeated and separated from the other side.In principle, compared to the other three methods, running costs are lower and equipment is required. Although it has advantages such as a simple structure and the ability to continuously obtain dry gas without contaminating the gas, it has rarely been put into practical use because there is currently no diaphragm with excellent water vapor permeability.

例えば、特開昭53−97246.特開昭54−1)4
81゜特開昭54−152679.特開昭60−183
025.特開昭61−1951)7.特開昭52−42
723に吸水性高分子膜や、酸素分離、水素分離に使用
された気体透過性の大きな膜素材による除湿膜が記載さ
れているが、水蒸気透過量が少なく、また水蒸気・気体
との分離係数も充分でない。
For example, JP-A-53-97246. Japanese Unexamined Patent Publication No. 54-1) 4
81° Japanese Patent Publication No. 54-152679. JP-A-60-183
025. 7. Japanese Unexamined Patent Publication No. 61-1951) Japanese Patent Publication No. 52-42
723 describes dehumidifying membranes made of water-absorbing polymer membranes and membrane materials with high gas permeability used for oxygen separation and hydrogen separation, but the amount of water vapor permeation is small, and the separation coefficient between water vapor and gas is also low. Not enough.

また水蒸気透過量と膜強度を改良する目的で上記膜素材
を薄膜として、ポリスルホン多孔膜、ポリプロピレン多
孔膜、ポリテトラフルオロエヂレン多孔膜との複合膜が
、特開昭53−86684、特開昭60−257819
.特開昭60−261503゜特開昭62−42772
等に記・依されているが、これらは膜強度の改良はなさ
れているが、水蒸気透過量が充分ではなく、また水蒸気
選択透過係数も小さい。
In addition, for the purpose of improving water vapor permeation and membrane strength, composite membranes using the above membrane materials as thin films, such as polysulfone porous membranes, polypropylene porous membranes, and polytetrafluoroethylene porous membranes, have been proposed in JP-A-53-86684 and JP-A-Sho. 60-257819
.. JP-A-60-261503° JP-A-62-42772
Although the membrane strength of these membranes has been improved, the water vapor permeation rate is not sufficient and the water vapor selective permeability coefficient is also small.

一方、燃料電池用隔膜や電解用隔膜に使用されている、
側鎖にスルホン酸基を含有するパーフルオロイオン交換
膜は、吸水性が高く、ポリマー中の水の透過速度が大き
いことから除湿膜素材として有効と考えられ、パーフル
オロスルホン酸ポリマーの中空チューブを用いた除湿器
が、CI S P 3735558に記載され、パーマ
ピュアドライ8として入手できる。しかしながら、これ
は水蒸気透過量が小さいため、多量の気体を処理する工
業用用途では、従来の冷凍法や吸着法に代替できない欠
点がある。
On the other hand, it is used in diaphragms for fuel cells and diaphragms for electrolysis.
Perfluoro ion exchange membranes containing sulfonic acid groups in their side chains are considered effective as dehumidifying membrane materials because of their high water absorption and high water permeation rate through the polymer. The dehumidifier used is described in CI SP 3735558 and is available as Perma Pure Dry 8. However, since this method has a small amount of water vapor permeation, it has the disadvantage that it cannot be used as a substitute for conventional refrigeration or adsorption methods in industrial applications that process large amounts of gas.

更に、特開昭62−7417では、パーフルオロスルホ
ン酸ポリマーからなる中空糸を加熱処理することで、露
点温度が低い気体を製造する除湿膜が記載されているが
、加熱処理により膜内の水分が除去されるため水蒸気透
過速度が著しく低下する欠点がある。加えて、これらの
パーフルホロスルホン酸ポリマーは、その製法の困難さ
や、特殊性から非常に高価な重合体であるため、得られ
る分離膜も高価なものにならざるを得す、安価な分離膜
が要求される汎用的な除湿用途に使用できない欠点もあ
る。
Furthermore, JP-A-62-7417 describes a dehumidifying membrane that produces a gas with a low dew point temperature by heat-treating hollow fibers made of perfluorosulfonic acid polymer. has the disadvantage that the water vapor transmission rate is significantly reduced because of the removal of In addition, these perfluorosulfonic acid polymers are very expensive due to their difficult manufacturing process and special characteristics, so the separation membranes obtained must also be expensive. It also has the disadvantage that it cannot be used for general-purpose dehumidification applications that require membranes.

[水明の解決しようとする問題点] 本発明は、従来技術が有していた前述の欠点を解消する
ものであり、更に大きい水蒸気透過速度、水蒸気選択透
過係数を有し、しかも安価な水蒸気選択透過性膜を提供
することを目的とする。
[Problems to be solved by Suimei] The present invention solves the above-mentioned drawbacks of the prior art, and provides an inexpensive water vapor that has a higher water vapor permeation rate and water vapor selective permeability coefficient. The purpose is to provide a selectively permeable membrane.

本発明は、従来技術による空気調和装置や計装用圧縮空
気の製造に代替できる他、天然ガスの除湿、従来技術で
は使用できない腐食性ガスの除湿等に使用できる除湿膜
を提供することを目的とする。
An object of the present invention is to provide a dehumidifying membrane that can replace the production of compressed air for air conditioners and instrumentation using conventional techniques, and can also be used for dehumidifying natural gas, dehumidifying corrosive gases that cannot be used with conventional techniques, etc. do.

[問題点を解決するための手段] 本発明の上記目的は、吸水率が40重量%以上1.固定
イオン濃度が6N以下、膜厚が0.1〜100μm、イ
オン交換容量が1.5〜4.5ミリ当量/g樹脂の炭化
水素系イオン交換膜からなることを特徴とする水蒸気選
択透過性膜によって達成せしめられる。
[Means for Solving the Problems] The above object of the present invention is to achieve a water absorption rate of 40% by weight or more.1. Water vapor selective permeability characterized by comprising a hydrocarbon-based ion exchange membrane with a fixed ion concentration of 6N or less, a membrane thickness of 0.1 to 100 μm, and an ion exchange capacity of 1.5 to 4.5 milliequivalents/g resin. This is accomplished by a membrane.

本発明の水蒸気選択透過性膜は、基本的には上記特定の
イオン交換膜によって構成されているが、これは従来に
ない新規な発想と知見に基づくものである。
The water vapor selectively permeable membrane of the present invention is basically constituted by the above-mentioned specific ion exchange membrane, and is based on novel ideas and knowledge that have not existed before.

即ち、従来知られているイオン交換基を含有する水蒸気
選択透過膜としては、前述したtJsP 373555
8.特開昭62−7417などに見られるように、側鎖
にスルホン酸基を有するパーフルオロビニルエーテルと
テトラフルオロエチレンの共重合膜がある。これらのパ
ーフルオロスルホン酸膜は、吸水性が大きい上にポリマ
ー内の水の拡散速度が大きいので、この特性を利用して
種々のガスの乾燥を行なうことができるとされている。
That is, as a conventionally known water vapor selective permeation membrane containing an ion exchange group, the above-mentioned tJsP 373555
8. As seen in JP-A No. 62-7417, there is a copolymer film of perfluorovinyl ether and tetrafluoroethylene having a sulfonic acid group in the side chain. These perfluorosulfonic acid membranes have high water absorption and a high diffusion rate of water within the polymer, so it is said that these properties can be used to dry various gases.

(里用孝臣著“機能性台ふっ崇高分子”日刊工業新聞社
出版p1391 一方、炭化水素系イオン交換膜としては、代表的には、
スチレン−ジビニルベンゼン共重合体のスルホン化膜や
、クロルメチル化−四級アンモニュウ塩化膜が知られて
おり、海水濃縮。
(Takaomi Satoyo, “Functional Polymers” published by Nikkan Kogyo Shimbun, p1391) On the other hand, typical hydrocarbon-based ion exchange membranes include:
Sulfonated membranes of styrene-divinylbenzene copolymer and chloromethylated quaternary ammonium chloride membranes are known for seawater concentration.

かん水の脱塩などの電気透析用隔膜や拡散透析用隔膜と
して使用されているが、これらは、元来、イオンの選択
透過性が大きく、水の透過性が小さい膜として開発され
たものであり、水蒸気選択透過性膜として使用できるも
のではない。
It is used as a diaphragm for electrodialysis and diffusion dialysis for brine desalination, etc., but these were originally developed as membranes with high selective permeability for ions and low permeability for water. , it cannot be used as a water vapor selectively permeable membrane.

本発明者は、水蒸気透過速度1選択透過性の大きな膜に
ついて鋭意研究した結果、特定の炭化水素系イオン交換
膜により、パーフルオロスルホン酸膜と同等の水蒸気透
過性が得られることを見い出した。
As a result of extensive research into membranes with a high water vapor permeation rate and selective permselectivity, the present inventors discovered that a specific hydrocarbon-based ion exchange membrane can provide water vapor permeability equivalent to that of a perfluorosulfonic acid membrane.

本発明の水蒸気選択透過膜としては、固定イオン濃度が
1〜6Nのイオン交換膜が使用される。固定イオン濃度
は、膜に給水した水1000 gあたりのイオン交換基
当量で表示したものである。従来のイオン選択性イオン
交換膜においては、イオン選択性がドナンの平衡式から
固定イオン濃度が高い膜が使用され、通常、固定イオン
濃度が6N以上が好ましく使用されている。
As the water vapor selective permeation membrane of the present invention, an ion exchange membrane having a fixed ion concentration of 1 to 6N is used. The fixed ion concentration is expressed in ion exchange group equivalents per 1000 g of water fed to the membrane. In conventional ion-selective ion-exchange membranes, membranes with a high fixed ion concentration are used based on Donnan's equilibrium ion selectivity, and usually, a fixed ion concentration of 6N or more is preferably used.

本発明者の研究から水蒸気選択透過性膜としては、固定
イオン濃度が6Nを超えると水蒸気透過速度が著しく低
下し、またIN以下では例えば、高吸水性高分子として
使用されているスチレンスルホン酸グラフトセルロース
やポリアクリロニトリルのケン化膜なども含め、水蒸気
透過速度と水蒸気選択性が低下するので、固定イオン濃
度が1〜6N、特には、2〜5Nの固定イオン濃度を有
するイオン交換膜が水蒸気透過速度と選択透過性のバラ
ンスから好ましい。ここで水蒸気の選択透過性とは、水
蒸気の透過速度と、他の気体、例えば、窒素、酸素、メ
タン等の透過速度の比aとして表わしたものである。
The present inventor's research shows that when the fixed ion concentration exceeds 6N, the water vapor permeation rate decreases significantly, and when the fixed ion concentration exceeds 6N, the water vapor permeation rate decreases significantly. Ion exchange membranes with a fixed ion concentration of 1 to 6N, especially 2 to 5N, have a lower water vapor permeation rate and water vapor selectivity, including saponification membranes made of cellulose or polyacrylonitrile. Preferred from the viewpoint of balance between speed and permselectivity. Here, the selective permselectivity of water vapor is expressed as the ratio a of the permeation rate of water vapor to the permeation rate of other gases such as nitrogen, oxygen, methane, etc.

固定イオン濃度が何故、水蒸気の透過性に重要であるか
は、解明されていないが、おそらく以下の理由と考えら
れる。
It is not clear why the fixed ion concentration is important for water vapor permeability, but it is probably due to the following reasons.

イオン交換膜内の水は、イオン交換基との相互作用によ
り、通常の水とは異なった性質を有しており、相互作用
の強さで、不凍水、拘束水、自由水が存在していると考
えられている。
The water in the ion exchange membrane has different properties from normal water due to the interaction with the ion exchange groups, and depending on the strength of the interaction, unfreeze water, restricted water, and free water can exist. It is believed that

固定イオン濃度が6N以上では、吸着した水がイオン交
換基に強固に結合され、水の膜内移動が低下し、一方、
固定イオン濃度がIN以下では自由水が多く、自由水層
を、他の気体が透過するため、水蒸気分離係数が低下す
るものと説明される。更に後に実施例で述べるが、イオ
ン交換基を含有しない吸水性高分子、例えば、ビニロン
フィルム、アクリルマミドービスアクリルアミド膜は、
吸水性が高いにもかかわらず、水の透過速度が小さいこ
とから、イオン交換基の存在が、水の拡散速度を促進さ
せていると考えられる。しかし、かかる説明は、本発明
の理解の助けのために述べたものであり、何ら本発明を
限定するものではない。
When the fixed ion concentration is 6N or more, the adsorbed water is tightly bound to the ion exchange group, and the movement of water within the membrane is reduced.
It is explained that when the fixed ion concentration is below IN, there is a large amount of free water and other gases permeate through the free water layer, resulting in a decrease in the water vapor separation coefficient. As will be described later in Examples, water-absorbing polymers that do not contain ion exchange groups, such as vinylon film and acrylamide bisacrylamide membrane,
Although the water absorption is high, the water permeation rate is low, so it is thought that the presence of ion exchange groups promotes the water diffusion rate. However, such explanations are provided to aid understanding of the present invention, and are not intended to limit the present invention in any way.

本発明の水蒸気選択透過性膜において固定イオン濃度が
1〜6Nに加えて、吸水率が40重量%以上と、膜厚が
特定の範囲にあることが、水蒸気透過量が大きく、選択
透過性が高い膜を得るために必要である。吸水率が40
重量%以下では水蒸気透過速度が充分でなく、また50
0重量%を超えると膜強度が低下するため吸水率は、4
0〜500重量%、特には、50〜250重量%がモジ
ュールの製作上や使用上の実用的な強度を有する水蒸気
選択透過性膜が得られるので好ましい。膜厚は、水蒸気
透過速度を増加せしめるため、可及的に薄くせしめるこ
とが可能であるが、本発明の水蒸気透過性膜は水蒸気透
過速度が膜厚に反比例せず、次式の関係がある。
In addition to the fixed ion concentration of 1 to 6N in the water vapor selectively permeable membrane of the present invention, the water absorption rate is 40% by weight or more and the membrane thickness is in a specific range. Necessary to obtain high film thickness. Water absorption rate is 40
If the water vapor transmission rate is less than 50% by weight, the water vapor transmission rate is insufficient.
If it exceeds 0% by weight, the film strength decreases, so the water absorption rate is 4.
A content of 0 to 500% by weight, particularly 50 to 250% by weight, is preferable because a water vapor permselective membrane having practical strength for module production and use can be obtained. The membrane thickness can be made as thin as possible in order to increase the water vapor permeation rate, but in the water vapor permeable membrane of the present invention, the water vapor permeation rate is not inversely proportional to the membrane thickness, and there is a relationship as shown in the following equation. .

Q、=A+B/l ここでQ:水蒸気透過速度、t:膜厚 A、Bは膜の固有値 一方、水蒸気以外の窒素、酸素、メタン等の気体透過速
度は、膜厚に反比例するので、膜厚の低減は、水蒸気選
択透過性の低下を招くので、過度の膜厚低減は好ましく
ない。また膜厚を過度に厚くすると、水蒸気透過速度は
、あまり低下してないのにもかかわらず、湿潤気体を除
湿しても、乾燥度の高い気体が得られないという欠点が
ある。かくして水蒸気選択透過性膜の膜厚は、好ましく
は、0.1〜150μm、特には1〜80μmが水蒸気
透過速度9選択透過性、低湿度の気体製造の観点から望
ましい。
Q, = A + B/l where Q: Water vapor permeation rate, t: Film thickness A and B are the characteristic values of the membrane.On the other hand, the permeation rate of gases other than water vapor, such as nitrogen, oxygen, and methane, is inversely proportional to the membrane thickness. Excessive reduction in film thickness is not preferable, since reduction in thickness leads to a reduction in water vapor selective permselectivity. Furthermore, if the film thickness is excessively thick, there is a drawback that even if humid gas is dehumidified, a highly dry gas cannot be obtained, although the water vapor transmission rate is not significantly reduced. Thus, the thickness of the water vapor permselective membrane is preferably from 0.1 to 150 μm, particularly from 1 to 80 μm, from the viewpoint of water vapor permeation rate, permselectivity, and low humidity gas production.

以下に本発明を更に詳しく説明すると、本発明の水蒸気
選択透過性膜としては、固定イオン濃度、吸水率、膜厚
が、前述した物性を有する膜であれば、なんら制限なく
使用できる。
To explain the present invention in more detail below, the water vapor permselective membrane of the present invention can be used without any restrictions as long as it has the above-mentioned physical properties in fixed ion concentration, water absorption rate, and membrane thickness.

イオン交換基の型としては、スルホン酸、スルホン酸塩
、カルボン酸、カルボン酸塩、リン酸、リン酸塩、酸性
水酸基、酸性水酸塩等のカチオン交換基の他、1〜3級
アミン基、4級アンモニウム基等のアニオン交換基が例
示できるが、なかでも、スルホン酸が、吸水性が高く、
また水蒸気透過性が大きいことから、イオン交換容量が
1.5〜5.0ミリ当量/g樹脂のスルホン酸含有膜が
好ましく使用される。
Types of ion exchange groups include cation exchange groups such as sulfonic acid, sulfonate, carboxylic acid, carboxylate, phosphoric acid, phosphate, acidic hydroxyl, and acidic hydroxyl, as well as primary to tertiary amine groups. Examples include anion exchange groups such as , quaternary ammonium groups, among others, sulfonic acids have high water absorption,
Further, since the water vapor permeability is high, a sulfonic acid-containing membrane having an ion exchange capacity of 1.5 to 5.0 meq/g resin is preferably used.

スルホン酸含有膜の材質としては、セルロース系、ポリ
オレフィン系、アクリル系、酢酸ビニル系、ポリスチレ
ン系、ポリスルホン系などなんら制限さく使用される。
The material for the sulfonic acid-containing membrane may be cellulose, polyolefin, acrylic, vinyl acetate, polystyrene, polysulfone, etc. without any restrictions.

これらの材質にスルホン酸基を導入する方法としては、
濃硫酸。
The method for introducing sulfonic acid groups into these materials is as follows:
Concentrated sulfuric acid.

発煙硫酸、クロルスホン酸、無水硫酸/トリエチルホス
フェート錯体等のスルホン化剤により直接スルホン酸基
を導入する方法、スルホン酸基を含有するか、またはス
ルホン酸基が導入できるモノマーを、含浸重合、グラフ
ト重合等で導入する方法が適用され、例えば、スチレン
スルホン酸のグラフトセルロース膜、クロルスルホン化
ポリエチレン膜、スルホン化ポリエチレン−プロピレン
共重合膜、スチレン−ジビニルベンセン共重合膜のスル
ホ化物、スチレン系モノマーのポリ塩化ビニル含浸重合
膜のスルホン化膜、スチレン系モノマーのポリオレフィ
ン系グラフト重合膜のスルホン化膜、スルホン化ポリス
ルホン系膜などが例示されるが、機械的強度、耐熱性、
耐薬品性、成形加工性の点からスルホン化ポリスルホン
系膜が好ましく使用され特に一般式 異なる炭素1〜8の炭化水素基、a−dは0〜4、eは
0〜3、f+gは0〜7、h+lはO〜5、RIO,R
1)は、水素、炭素数1〜6の炭化水素基、Xはハロゲ
ン又は−S II、m/n = 100/l 〜l/1
0を示す。)で表わされる芳香族ポリスルホン/ポリチ
オエーテル共重合体のスルホン化膜が、前述した固定イ
オン濃度と吸水率、膜厚が容易に制御し製造できる理由
から使用される。
A method of directly introducing a sulfonic acid group using a sulfonating agent such as fuming sulfuric acid, chlorsulfonic acid, or anhydrous sulfuric acid/triethyl phosphate complex, impregnation polymerization, graft polymerization using a monomer containing a sulfonic acid group or into which a sulfonic acid group can be introduced. For example, sulfonated styrene sulfonic acid grafted cellulose membranes, chlorosulfonated polyethylene membranes, sulfonated polyethylene-propylene copolymer membranes, sulfonated styrene-divinylbenzene copolymer membranes, and styrene monomer polyethylene membranes are applied. Examples include sulfonated membranes of vinyl chloride-impregnated polymer membranes, sulfonated membranes of polyolefin-based graft polymerization membranes of styrene-based monomers, and sulfonated polysulfone-based membranes.
From the viewpoint of chemical resistance and moldability, sulfonated polysulfone membranes are preferably used, and in particular, carbon 1-8 hydrocarbon groups with different general formulas, a-d are 0-4, e are 0-3, f+g are 0- 7, h+l is O~5, RIO, R
1) is hydrogen, a hydrocarbon group having 1 to 6 carbon atoms, X is halogen or -S II, m/n = 100/l to l/1
Indicates 0. The sulfonated membrane of aromatic polysulfone/polythioether copolymer represented by ) is used because the above-mentioned fixed ion concentration, water absorption rate, and membrane thickness can be easily controlled and manufactured.

即ち、上記共重合体は、芳香族ポリスルホン樹脂の機械
的強度、耐熱性、耐薬品性と芳香族ポリチオエーテル樹
脂の成形加工性を兼ね備えているのみならず、分子内に
少なくとも一つ以上の−S H基を含有するため、この
反応性基を利用し、高分子量化や架橋物を得ることがで
き、加えて、スルホン化時に、スルホン酸基が一0Ar
O−のベンゼン核に導入されやすい結果イオン交換容量
の制御が容易なことと、イオン交換基が導入された親水
性セグメントと、イオン交換基が導入されない疎水性セ
グメントからなるブロック共重合体が得られ、吸水率が
高くとも、機械的強度の大きな強靭な膜が得られるとい
う特徴があることが見い出された。
That is, the above copolymer not only has the mechanical strength, heat resistance, and chemical resistance of an aromatic polysulfone resin and the moldability of an aromatic polythioether resin, but also has at least one - Since it contains a S H group, this reactive group can be used to increase the molecular weight and obtain crosslinked products.In addition, during sulfonation, the sulfonic acid group
As a result of easy introduction into the benzene nucleus of O-, the ion exchange capacity can be easily controlled, and a block copolymer consisting of a hydrophilic segment into which an ion exchange group is introduced and a hydrophobic segment without an ion exchange group is obtained. It was discovered that the film has the characteristic that even if the water absorption rate is high, a strong film with high mechanical strength can be obtained.

そのような芳香族ポリスルホン−ポリチオエーテルスル
ホン共重合体は、本出願人による特開昭61−7202
0.特開昭61−76523および特開昭61−168
629に記載されている方法によって得ることができる
Such an aromatic polysulfone-polythioethersulfone copolymer is disclosed in Japanese Patent Application Laid-Open No. 61-7202 by the present applicant.
0. JP-A-61-76523 and JP-A-61-168
It can be obtained by the method described in No. 629.

本発明における水蒸気選択透過性膜を得る方法としては
、例えば次の方法が使用される。
As a method for obtaining a water vapor permselective membrane in the present invention, for example, the following method is used.

(1)前記ポリスルホン共重合体を成形した後、必要に
応じ架橋せしめた後スルホン化せしめる方法 (2)前記ポリスルホン共重合体を成形した後、スルホ
ン化後、硬化せしめる方法 (3)前記ポリスルホン共重合体をスルホン化後成形、
必要により硬化せしめる方法 なかでも、スルホン化反応、硬化反応の制御が容易な(
3)が好ましく、特には、スルホン化ポリスルホンと必
要に応じ硬化剤を加えた混合物を溶液とした後、キャス
ト製膜する方法が、薄膜成形性や、他の多孔性支持体と
の複合膜が得やすい理由から好ましく使用される。
(1) A method in which the polysulfone copolymer is molded, then crosslinked if necessary, and then sulfonated. (2) A method in which the polysulfone copolymer is molded, then sulfonated, and then cured. (3) The polysulfone copolymer is Molding after sulfonating the polymer,
Among the methods for curing if necessary, methods that allow easy control of the sulfonation reaction and curing reaction (
3) is preferable, and in particular, a method in which a mixture of sulfonated polysulfone and a curing agent is added as necessary is made into a solution, and then cast film is formed is suitable for improving thin film formability and composite film formation with other porous supports. It is preferably used because it is easy to obtain.

ポリスルホン共重合体のスルホン化方法としては、濃硫
酸9発煙硫酸、クロロスルホン酸。
Methods for sulfonating polysulfone copolymers include concentrated sulfuric acid, 9 fuming sulfuric acid, and chlorosulfonic acid.

無水硫酸、無水硫酸−トリエチルホスフェート錯体など
のスルホン化剤とポリスルホン共重合体とを接触せしめ
て行うことが出来る。例えばポリスルホン共重合体をト
リクロロエタンやテトラクロロエタン如きハロゲン化炭
化水素類に溶解し、該溶液にスルホン化剤を添加せしめ
、反応温度9反応時間を便宜選定することにより、所望
するイオン交換容量を有するスルホン化ポリスルホン共
重合体が得られる。しかしながらイオン交換容量が1.
0ミリ当N/g樹脂以下では、吸水性が小さく、水蒸気
透過速度が低い。また3、5ミリ当ril/g以上では
、得られる膜の機械的強度が著しく低下するため、好ま
しくはイオン交換容量が1.0〜3.5ミリ当量/g樹
脂特には、 1.5〜3.0ミリ当量ミリ/g樹脂のス
ルホン化ポリスルホン共重合体が得られるように反応せ
しめる。
This can be carried out by bringing the polysulfone copolymer into contact with a sulfonating agent such as sulfuric anhydride or sulfuric anhydride-triethyl phosphate complex. For example, by dissolving a polysulfone copolymer in a halogenated hydrocarbon such as trichloroethane or tetrachloroethane, adding a sulfonating agent to the solution, and conveniently selecting the reaction temperature and reaction time, a sulfone having a desired ion exchange capacity can be obtained. A polysulfone copolymer is obtained. However, the ion exchange capacity is 1.
Below 0 N/g resin, the water absorption is low and the water vapor transmission rate is low. Further, if the ion exchange capacity is 3.5 to 3.5 milliequivalent/g or more, the mechanical strength of the obtained membrane will be significantly reduced. The reaction is carried out in such a way that a sulfonated polysulfone copolymer of 3.0 meq mm/g resin is obtained.

本発明の水蒸気選択透過性膜として、上記スルホン化ポ
リスルホン共重合体を用いる場合、かかる共重合体単独
で、膜状、中空糸に成形して使用することが出来るが、
必要に応じ硬化物を加え、固定イオン濃度、吸水率を変
え、水蒸気透過速度、選択透過性を制御するとともに、
機械的強度や耐薬品性を改善した水蒸気選択透過性膜を
得ることも出来る。
When using the above-mentioned sulfonated polysulfone copolymer as the water vapor permselective membrane of the present invention, the copolymer can be used alone in the form of a membrane or hollow fiber.
Add a cured product as necessary, change the fixed ion concentration and water absorption rate, and control the water vapor permeation rate and permselectivity.
It is also possible to obtain a water vapor selectively permeable membrane with improved mechanical strength and chemical resistance.

かかる硬化剤としては、ポリスルホン共重合体に含有す
る官能基と反応して、安定な架橋構造を有するものであ
ればなんら支障なく使用できるが、特にポリスルホン分
子の末端にある− S H基と反応する硬化剤を使用す
ることが、ポリスルホン樹脂の機械的性質を損うことな
く高分子量化あるいは、架橋された膜が得られるので好
ましい。
Such a curing agent can be used without any problem as long as it reacts with the functional group contained in the polysulfone copolymer and has a stable crosslinked structure. It is preferable to use a curing agent that has a high molecular weight or a crosslinked film without impairing the mechanical properties of the polysulfone resin.

そのような硬化剤としては、ビスフェノールAジグリシ
ジルエーテルに代表されるエポキシ基を2個以上有する
エポキシ化合物、ヘキサメトキシメチルメラミンに代表
されるアミノブラスト樹脂、 Fe(アセチルアセトネ
ート)3に代表される金属アセチルアセトネート、ヘキ
サメチレンジイソシアネートイソシアヌレート変性体に
代表されるイソシアネートを2個以上有する化合物、 
FeCl3.CuC1zに代表される第1族または第1
B族の金属ハロゲン化物、ビスマレイミドに代表される
2個以上のマレイミド基を含有する多官能性マレイミド
化合物を使用することができる。
Examples of such curing agents include epoxy compounds having two or more epoxy groups such as bisphenol A diglycidyl ether, aminoblast resins such as hexamethoxymethyl melamine, and Fe (acetylacetonate)3. Compounds having two or more isocyanates such as metal acetylacetonate and modified hexamethylene diisocyanate isocyanurate;
FeCl3. Group 1 or group 1 represented by CuC1z
A polyfunctional maleimide compound containing two or more maleimide groups, typified by Group B metal halides and bismaleimide, can be used.

スルホン化ポリスルホン重合体100重量部に対し硬化
剤0〜100重量部、好ましくは、0〜50重量部添加
された混合物は、ジメチルアセトアミド、ジメチルホル
マイド、ジメチルスルホキシド、トリエチルホスフェー
ト、N−メチルピロリドン等の極性溶媒やそれらを含有
する混合溶媒に溶解せしめ、かかる重合体溶液を、便宜
形状に流延した後、溶媒を除去せしめ、平膜状9袋状、
中空糸状、多孔性基材との複合膜等の多様形態の水蒸気
選択透過性膜を得ることができる。
The mixture in which 0 to 100 parts by weight, preferably 0 to 50 parts by weight, of a curing agent is added to 100 parts by weight of the sulfonated polysulfone polymer includes dimethylacetamide, dimethylformide, dimethyl sulfoxide, triethyl phosphate, N-methylpyrrolidone, etc. The polymer solution was dissolved in a polar solvent or a mixed solvent containing them, and the polymer solution was cast into a convenient shape, and the solvent was removed to form a flat film-like nine-bag shape,
Water vapor selectively permeable membranes can be obtained in various forms, such as hollow fiber-like membranes and composite membranes with porous substrates.

また溶媒の除去が、加熱処理によって実施される時は、
均一な緻密構造の水蒸気選択透過性膜が、一方、表面の
み乾燥せしめた状態にて、残存する溶媒を抽出、特に好
ましくは重合体の貧溶媒を抽出することで、表面が緻密
なスキン構造を有する多孔性の水蒸気選択透過性膜を得
ることもできる。
Also, when the solvent is removed by heat treatment,
On the other hand, while only the surface of the water vapor selectively permeable membrane is dried, the remaining solvent is extracted, particularly preferably the poor solvent of the polymer is extracted, so that the surface has a dense skin structure. It is also possible to obtain a porous water vapor permselective membrane having the following properties.

本発明の水蒸気選択透過性膜が、上述した特定な炭化水
素系イオン交換膜の薄膜と、孔径0、旧〜100μm、
厚みが10〜500μmの多孔性基材と複合化されるこ
とは、水蒸気透過性が優れ、機械的強度の大きな膜を得
る方法として極めて好ましい形態である。かかる複合膜
において多孔性基材の表面および孔内壁が親水性を有し
ていることが重要である。多孔性基材の孔内壁が何故に
親水性を有しなければならないかの理由は、必ずしも明
確でないが、親水性を有しない多孔性基材を用いた場合
、イオン交換膜単独の水蒸気透過速度と比較して、1/
3〜1/4に低下し、一方、親水層を被覆した多孔性基
材を用いた場合は、イオン交換膜の単独と比べ、水蒸気
透過速度が逆に一層向上するという事実を見い出した。
The water vapor selectively permeable membrane of the present invention has a thin film of the above-mentioned specific hydrocarbon-based ion exchange membrane,
Composite formation with a porous base material having a thickness of 10 to 500 μm is an extremely preferable method for obtaining a membrane with excellent water vapor permeability and high mechanical strength. In such a composite membrane, it is important that the surface of the porous substrate and the inner walls of the pores have hydrophilicity. The reason why the pore inner walls of a porous substrate must be hydrophilic is not necessarily clear, but when using a porous substrate that does not have hydrophilicity, the water vapor permeation rate of the ion exchange membrane alone compared to 1/
On the other hand, it has been found that when a porous substrate coated with a hydrophilic layer is used, the water vapor permeation rate is further improved compared to using an ion exchange membrane alone.

多孔性基材としては、基材表面の平滑性、耐熱性、耐湿
性、耐薬品性および機械的強度等の諸性質のバランスか
ら選定され、ポリブロビレン不織布、ポリエステル不織
布および、微細繊維によって相互に結合された節よりな
る微細構造を有する延伸して作られた、多孔性ポリエチ
レン、多孔性ポリプロピレン、多孔性ポリテトラフルオ
ロエチレンが好ましい。また微孔質多孔膜と織布、また
は微孔質多孔膜と不織布との積層型多孔性基材は、イオ
ン交換薄膜との成型性が良好で、また機械的性質特に耐
圧性に優れているので特に好ましい。
The porous base material is selected based on the balance of various properties such as smoothness of the base material surface, heat resistance, moisture resistance, chemical resistance, and mechanical strength, and is made of polypropylene nonwoven fabric, polyester nonwoven fabric, and mutually bonded by fine fibers. Preference is given to porous polyethylene, porous polypropylene, porous polytetrafluoroethylene, which are made by stretching and have a microstructure consisting of separated knots. In addition, laminated porous substrates of microporous membranes and woven fabrics, or microporous membranes and nonwoven fabrics, have good moldability with ion-exchange thin membranes, and have excellent mechanical properties, especially pressure resistance. Therefore, it is particularly preferable.

かかる多孔性基材は、イオン交換膜との積層前または積
層後に、好ましくは親水層を付着せしめる。親水層とし
ては、界面活性剤、水溶性高分子、吸水性高分子などが
例示できるが、特に、親水層の被覆耐久性と親水層付与
による水蒸気透過速度の向上効果が大きい。吸水率40
重里%以上のイオン交換樹脂が好ましい。
A hydrophilic layer is preferably attached to such a porous substrate before or after lamination with an ion exchange membrane. Examples of the hydrophilic layer include surfactants, water-soluble polymers, water-absorbing polymers, etc., and the effect of improving the coating durability of the hydrophilic layer and the water vapor transmission rate by providing the hydrophilic layer is particularly large. Water absorption rate 40
An ion exchange resin containing % Shigesato or more is preferable.

該親水性層は、多孔性基材にイオン交換樹脂モノマーを
含浸、重合し、多孔性基材の孔内壁を被覆するか、また
は、イオン交換樹脂の溶液を多孔内に含浸、乾燥する方
法が、製造上の容易さから好ましい。かかる孔内壁に被
覆する親水性層は、多孔性基材の空隙容積の0.1〜5
0容積%、好ましくは、0.5〜lO容積%付着せしめ
る。
The hydrophilic layer can be formed by impregnating a porous base material with an ion exchange resin monomer and polymerizing it to coat the inner walls of the pores of the porous base material, or by impregnating a solution of an ion exchange resin into the pores and drying it. , is preferred from the viewpoint of ease of manufacture. The hydrophilic layer coated on the inner walls of the pores has an amount of 0.1 to 5 of the pore volume of the porous base material.
0% by volume, preferably 0.5-10% by volume.

多孔性基材とイオン交換膜との複合方法としては、イオ
ン交換樹脂を膜状とした後、多孔性基材と積層するか、
イオン交換樹脂を溶液、懸濁溶液、または乳化重合ラテ
ックスあるいは乳化重合ラテックスの水を有機溶媒と置
換せしめた有機ディスバージョン等を多孔質基材に含浸
、乾燥する方法、更には、イオン交換樹脂に変換できる
千ツマ−を、多孔性基材の表面に塗布重合する方法が例
示される。
The method of combining a porous base material and an ion exchange membrane is to form an ion exchange resin into a membrane and then laminate it with a porous base material.
A method of impregnating a porous substrate with an ion exchange resin as a solution, a suspension solution, an emulsion polymerization latex, or an organic dispersion in which the water of the emulsion polymerization latex is replaced with an organic solvent, and drying the ion exchange resin. An example of the method is to apply and polymerize a convertible material onto the surface of a porous substrate.

特に、中空状多孔性基材を使用する場合には、上記した
イオン交換樹脂溶液を中空糸に含浸、乾燥する方法によ
り、透過性の大きな水蒸気選択透過性中空糸を得ること
ができる。
In particular, when a hollow porous substrate is used, a water vapor selectively permeable hollow fiber with high permeability can be obtained by impregnating the hollow fiber with the above-described ion exchange resin solution and drying it.

かくして得られた膜は、イオン交換基が導入されてない
場合には、好ましくはスルホン酸基を導入し、特に好ま
しくは、−SO,l(型とする。
In the membrane thus obtained, if no ion exchange group is introduced, a sulfonic acid group is preferably introduced, particularly preferably -SO,l (type).

本発明において、得られる水蒸気選択透過性膜のイオン
交換体層を、特定の固定イオン濃度、吸水率とするには
、得られた膜を、ある特定な処理を行なうことが重要に
なる場合が多い。
In the present invention, in order to make the ion exchanger layer of the obtained water vapor permselective membrane have a specific fixed ion concentration and water absorption rate, it may be important to perform a certain specific treatment on the obtained membrane. many.

例えば、スルホン化ポリスルホン重合膜が、重合体溶液
からキャスト・加熱処理によって得る場合、70℃以上
の熱水処理が好ましい。
For example, when a sulfonated polysulfone polymer membrane is obtained from a polymer solution by casting and heat treatment, hot water treatment at 70° C. or higher is preferred.

いずれにせよ、イオン交換体層が本発明の固定イオン濃
度、吸水率になるように、便宜、処理条件を選定するこ
とにより、水蒸気透過速度が50rrf’ / rrl
’ 、 hr、 atm好ましくは、80rrl’ /
 rn” 。
In any case, by conveniently selecting the treatment conditions so that the ion exchanger layer has the fixed ion concentration and water absorption rate of the present invention, the water vapor permeation rate can be increased to 50rrf'/rrl.
', hr, atm preferably 80rrl'/
rn”.

hr、 arm以上、水蒸気/窒素の選択透過係数が5
000  好ましくは 10000以上の水蒸気選択透
過性膜が得られる。
hr, arm or more, selective permeability coefficient of water vapor/nitrogen is 5
000, preferably 10,000 or more, is obtained.

次に本発明を実施例により説明するが、本発明はかかる
実施例に限定されるものではない。
Next, the present invention will be explained with reference to examples, but the present invention is not limited to these examples.

実施例に先たち、以下の実施例に用いた各種測定法に関
して、まとめて述べる。
Prior to the examples, various measurement methods used in the following examples will be summarized.

(1)吸水率Wの測定 透過性を測定する膜と同一条件下で製作したイオン交換
体層、若くは測定膜の一部から採取したイオン交換体層
を純水中、25℃に浸漬した膜重i’it W 1.該
イオン交換体層を真空乾燥した乾燥膜重量W2より、次
式より求める。
(1) Measurement of water absorption W An ion exchanger layer manufactured under the same conditions as the membrane to be measured for permeability, or an ion exchanger layer sampled from a part of the membrane to be measured, was immersed in pure water at 25°C. Membrane weight i'it W 1. It is determined from the following formula based on the dry membrane weight W2 obtained by vacuum drying the ion exchanger layer.

W=  100(W、−Wa )/W2(2)固定イオ
ン濃度Awの算出 イオン交換容量(meq/g樹脂)ARと、上記の吸水
率Wから、次式により求める。
W = 100 (W, -Wa)/W2 (2) Calculation of fixed ion concentration Aw From the ion exchange capacity (meq/g resin) AR and the above water absorption rate W, it is determined by the following formula.

A、 =A、 / (W/+00 ) (3)水蒸気透過速度Q (rn’ (STP) / 
m”、hr、aLm)の測定 図・lの装置により、純度100%の水蒸気透過速度を
算出する。
A, =A, / (W/+00) (3) Water vapor transmission rate Q (rn' (STP) /
Calculate the water vapor permeation rate with 100% purity using the device shown in Figure 1.

(4)水蒸気選択透過性a 気体Aの透過速度QAを製科研式ガス透過測定機で求め
、次式により算出する。
(4) Water vapor selective permeability a The permeation rate QA of gas A is determined using a Seikagaku-style gas permeation measuring device, and calculated using the following formula.

QA =Q/QA [実施例] 実施例1 特開昭61−168629に記載された合成法と同様に
して、 4.4′−ジフェノールとジハロジフェニルス
ルホンと反応せしめ、芳香族ポリスルホンのユニットか
らなるプリカーサ−を合成し、次いで該プリカーサ−と
ジハロジフェニルスルホンと硫酸ナトリウムとを反応し
、次式で示される芳香族ポリスルホン−ポリチオエーテ
ルスルホン共重合体Aを得た。
QA = Q/QA [Example] Example 1 4,4'-diphenol and dihalodiphenylsulfone were reacted in the same manner as the synthesis method described in JP-A-61-168629 to form an aromatic polysulfone unit. Then, the precursor was reacted with dihalodiphenylsulfone and sodium sulfate to obtain an aromatic polysulfone-polythioethersulfone copolymer A represented by the following formula.

m/n = ] / 1 固有粘度0,65 次に、該共重合体Aは、1,1.2−トリクロロエタン
に溶解した後、無水硫酸/トリエチルホスフェートが2
/1モル比の錯体を含有するトリクロロエタン溶液と、
共重合体Aの1ユニツトあたり25景分の錯体と接触せ
しめるようにして25℃、43時間反応せしめ、次いで
、洗浄、乾燥させた。得られたスルホン化共重合体Aの
イオン交換容量は、1.85ミリ当量/g樹脂であった
m/n = ] / 1 Intrinsic viscosity 0.65 Next, the copolymer A was dissolved in 1,1.2-trichloroethane, and then sulfuric anhydride/triethyl phosphate was dissolved in 2
/1 molar ratio of the complex in a trichloroethane solution;
One unit of copolymer A was brought into contact with 25 parts of the complex and reacted at 25°C for 43 hours, followed by washing and drying. The ion exchange capacity of the obtained sulfonated copolymer A was 1.85 meq/g resin.

かくして得られたスルホン化共重合体AをN−メチルピ
ロリドンに溶解し、固形分濃度20重量%の溶液を得た
。次いで該ポリマー溶液をガラス板上流延し、乾燥した
後、 170℃、2時間9加熱処理せしめ、膜厚70μ
mの膜を得た。
The thus obtained sulfonated copolymer A was dissolved in N-methylpyrrolidone to obtain a solution with a solid content concentration of 20% by weight. Next, the polymer solution was spread on a glass plate, dried, and then heated at 170°C for 2 hours to form a film with a thickness of 70μ.
A film of m was obtained.

次いで、上記膜を4分割し、各々、純水中にて、70℃
、100℃、120℃、140℃の熱水処理を行なった
Next, the above membrane was divided into four parts and each part was heated at 70°C in pure water.
, 100°C, 120°C, and 140°C.

かくして得た4種類の膜は、風乾後、吸水率、水蒸気透
過速度、水蒸気/窒素選択透過係数を求めた。結果を表
−1,及び図−2に示す。
After air-drying the four types of membranes thus obtained, the water absorption rate, water vapor permeation rate, and water vapor/nitrogen selective permeation coefficient were determined. The results are shown in Table 1 and Figure 2.

比較例1 実施例1において、得られた膜の熱水処理を行わない以
外は、全く同様にして、吸水率、水蒸気透過性を測定し
た。結果を表−1及び図−2に示す。
Comparative Example 1 The water absorption rate and water vapor permeability were measured in exactly the same manner as in Example 1, except that the obtained membrane was not subjected to hot water treatment. The results are shown in Table 1 and Figure 2.

表−1 実施例2 実施例1で得た芳香族ポリスルホン−ポリチオエーテル
スルホン共重合体Aを、スルホン化し、イオン交換容量
が1.05ミリ当辺/g樹脂のスルホン化共重合体A2
.イオン交換容Iが1.52ミリ当1it/g樹脂のス
ルホン化共重合体A3およびイオン交換容ff12.−
05ミリ当fit/g樹脂のスルホン化共重合体A4を
得た。
Table 1 Example 2 The aromatic polysulfone-polythioethersulfone copolymer A obtained in Example 1 was sulfonated to produce a sulfonated copolymer A2 with an ion exchange capacity of 1.05 mm/g resin.
.. Sulfonated copolymer A3 with an ion exchange capacity I of 1.52 milliliter/g resin and an ion exchange capacity ff12. −
A sulfonated copolymer A4 of 0.05 mm fit/g resin was obtained.

上記3FJ類のNa塩塩型スルホン化共重合体1ロ部を
N−メチルピロリドンに溶解し、該溶液をガラス板上に
流延し、300℃.1時間.加熱せしめ、膜厚70μm
の膜を得た9次いで詰腹を、0、5N塩酸溶液に浸漬し
、酸型化せしめた後、純水中で熱水処理せしめた。
One part of the Na salt type sulfonated copolymer of the above 3FJs was dissolved in N-methylpyrrolidone, the solution was cast on a glass plate, and the solution was heated at 300°C. 1 hour. Heat, film thickness 70μm
The membrane thus obtained was then immersed in a 0.5N hydrochloric acid solution to form an acid form, and then treated with hot water in pure water.

かくして得た膜の吸水率.水蒸気透過速度。Water absorption rate of the membrane thus obtained. Water vapor transmission rate.

を求めた。結果を表−2に示す。I asked for The results are shown in Table-2.

比較例2 イオン交換容量0.6ミリ当量/g樹脂のスルホン化ポ
リスルホン共重合体を使用した以外は、実施例・2と全
く同様にして、吸水率.水蒸気透過速度を求めた。結果
を表−2に示す。
Comparative Example 2 The water absorption rate was determined in the same manner as in Example 2, except that a sulfonated polysulfone copolymer with an ion exchange capacity of 0.6 meq/g resin was used. The water vapor transmission rate was determined. The results are shown in Table-2.

比較例−2 イオン交換容量0.6ミリ当量/g樹脂のスルホン化ポ
リスルホン共重合体を使用した以外は、実施例・2と全
く同様にして、吸水率.水蒸気透過速度を求めた。結果
を表−2に示す。
Comparative Example 2 The water absorption rate was determined in the same manner as in Example 2, except that a sulfonated polysulfone copolymer with an ion exchange capacity of 0.6 meq/g resin was used. The water vapor transmission rate was determined. The results are shown in Table-2.

表−2 実施例3 実施例1で得た、スルホン化ポリスルホン共重合体のN
−メチルピロリドン溶液を、孔径0、1μ,気孔率70
%,膜厚70μmのポリテトラフルオロエチレン多孔質
膜の片面に塗布、加熱処理し、10μm厚さのスルホン
化ポリスルホン膜を被覆せしめた。
Table 2 Example 3 N of the sulfonated polysulfone copolymer obtained in Example 1
-Methylpyrrolidone solution with pore size of 0 and 1μ and porosity of 70
%, was coated on one side of a polytetrafluoroethylene porous membrane having a film thickness of 70 μm, and was heat-treated to cover it with a sulfonated polysulfone film having a thickness of 10 μm.

詰腹を2分割し、1枚はそのままとし残こり1枚のPT
FE側に、スルホン化ポリスルホンのN−メチルピロリ
ドン、イソプロパツール水混合液からなる固形分濃度1
重量%溶液を含浸せしめ、乾燥し、PTFE多孔体の孔
内壁にスルホン化ポリスルホン共重合体を被覆せした。
Divide the stuffed belly into two, leave one piece as is, and use the remaining 1 piece of PT.
On the FE side, a solid content concentration of 1 consisting of a mixture of sulfonated polysulfone, N-methylpyrrolidone, and isopropanol water is added.
The solution was impregnated with the PTFE porous material and dried to coat the inner walls of the pores of the PTFE porous material with the sulfonated polysulfone copolymer.

付着量は0.6g/rn’であった。The amount of adhesion was 0.6 g/rn'.

かくして得られた、2種類の膜を、100℃の熱水にて
処理した後、水蒸気透過速度.水蒸気/メタンの選択係
数を求めた。結果を表−3に示す。
After treating the two types of membranes thus obtained with hot water at 100°C, the water vapor permeation rate. The water vapor/methane selectivity coefficient was determined. The results are shown in Table-3.

表−3 実施例4 50μm厚の炊質ポリ塩化ビニルフィルムに、シヒニル
ベンセン3重量%、スチレン97重量%のモノマーとア
ゾビスイソブチルニトリル1重量%のモノマー溶液を含
浸せしめ、70℃にて重合せしめた。含浸m台率は、塩
化ビニルフィルムに対し 1)0重量%であった。
Table 3 Example 4 A 50 μm thick high-quality polyvinyl chloride film was impregnated with a monomer solution of 3% by weight of shihinylbenzene, 97% by weight of styrene, and 1% by weight of azobisisobutylnitrile, and polymerized at 70°C. . The impregnation ratio was 1) 0% by weight based on the vinyl chloride film.

上記、含浸重合膜を98重量%の濃硫酸中にてスルホン
化せしめ、イオン交換容量2.16ミリ当量/g膜を得
た。
The above-mentioned impregnated polymer membrane was sulfonated in 98% by weight concentrated sulfuric acid to obtain a membrane with an ion exchange capacity of 2.16 meq/g.

かくして得た膜は、吸水率55重量%、固定イオン濃度
5ON、水蒸気透過速度Qは、72ゴ/m’、hr、a
tmであった。
The membrane thus obtained had a water absorption rate of 55% by weight, a fixed ion concentration of 5ON, and a water vapor permeation rate Q of 72g/m', hr, a.
It was tm.

比較例3 イオン交換基を含有しないが、吸水率が高いポリビニル
アルコールのアセタール膜である膜厚65μmのビニロ
ンフィルムの吸水率と水蒸気透過速度を測定した結果、
各々 151%、 +4rrf’/m”、hr、atm
であった。
Comparative Example 3 As a result of measuring the water absorption rate and water vapor permeation rate of a vinylon film with a thickness of 65 μm, which is a polyvinyl alcohol acetal film that does not contain ion exchange groups but has a high water absorption rate,
Each 151%, +4rrf'/m", hr, atm
Met.

【図面の簡単な説明】 図−1は、水蒸気透過速度の測定装置の概略図9図−2
は、実施例1及び比較例1における水蒸気透過速度と固
定イオン濃度、水蒸気透過速度と吸水率の関係を示す。 図面の注力 第 1 図 1−−−  y’I<香、気21ゼf剥jリヒ ノし 
        1l−−−りjし)王(しkh1\2
−7(<こ気1f!J丘刀計       l2−−一
 渭す定呵4氏叶硯3−−− テε廿」j二側カシη針
               /3−A<ざ、支(4
−A<乙ト1累慴六集用Lランプ       /4−
1暑t、>1<勇も  ど  じ口 国定にオン環7¥OJ) ひJJJJ≦(Wし5) 手続ネ巾正書(力謁 1、事件の表示 昭和63年特許願第45935号 2発明の名称 水蒸気選択透過性膜 3袖正をする者 事件との関係  特許出願人 住 所  東京都千代田区丸の内二丁目1番2号名称 
(004)旭硝子株式会社 昭和63年5月31日(発送日)付拒絶理由通知に基づ
く自発補正 6補正により増加する発明の数   なし7袖正の対象
[Brief explanation of the drawings] Figure-1 is a schematic diagram of the water vapor transmission rate measuring device. Figure-2
shows the relationship between water vapor permeation rate and fixed ion concentration, and between water vapor permeation rate and water absorption rate in Example 1 and Comparative Example 1. Drawing focus No. 1 Figure 1--Y'I < Incense, Qi 21ze f peeling
1l---Rijshi) King (shikh1\2
-7 (<Koki 1f!J hill sword meter l2--1 椭摵 4 連 Gand inkstone 3--- teε廿''j 2 side kashi η needle /3-A<za, support (4
-A<Oto 1 Cumulative Rokushu L lamp /4-
1 summer t, > 1 < Yumo Dojiguchi Kunisada on ring 7 yen OJ) hi JJJJ ≦ (W shi 5) Procedure book (forced audience 1, case indication 1988 Patent Application No. 45935 2) Name of the invention Relationship to the case of a person who corrects water vapor selectively permeable membrane 3 sleeves Patent applicant address 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Name
(004) Asahi Glass Co., Ltd. Number of inventions increased by 6 spontaneous amendments based on the notice of reasons for refusal dated May 31, 1988 (shipment date) None 7 Subjects of sleeve correction

Claims (4)

【特許請求の範囲】[Claims] (1)吸水率が、40重量%以上、固定イオン濃度が6
N以下、膜厚が0.1〜150μm、イオン交換容量が
1.5〜5.0ミリ当量/g樹脂の炭化水素系イオン交
換膜からなることを特徴とする水蒸気選択透過性膜
(1) Water absorption rate is 40% by weight or more, fixed ion concentration is 6
A water vapor selectively permeable membrane comprising a hydrocarbon-based ion exchange membrane containing N or less, a membrane thickness of 0.1 to 150 μm, and an ion exchange capacity of 1.5 to 5.0 milliequivalents/g resin.
(2)炭化水素系イオン交換膜が、スルホン化ポリスル
ホン系膜からなることを特徴とする特許請求の範囲(1
)の水蒸気選択透過性膜
(2) Claim (1) characterized in that the hydrocarbon-based ion exchange membrane is composed of a sulfonated polysulfone-based membrane.
) Water vapor selectively permeable membrane
(3)炭化水素系イオン交換膜が、一般式 ▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼ (但し、式中Arは▲数式、化学式、表等があります▼
、▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼、Yは、単結合、−
O−、−S−、−SO_2−、▲数式、化学式、表等が
あります▼、▲数式、化学式、表等があります▼、R_
1〜R_9は互いに同一または異なる炭素1〜8の炭化
水素基、a〜dは0〜4、eは0〜3、f+gは0〜7
、h+iは0〜5、R_1_0、R_1_1は、水素、
炭素数1〜6の炭化水素基、Xはハロゲン又は−SH、
m/n=100/1〜1/10を示す。)で表わされる
芳香族ポリスルホン/ポリチオエーテル共重合体のスル
ホン化物からなることを特徴とする特許請求の範囲(1
)又は(2)の水蒸気選択透過性膜
(3) Hydrocarbon-based ion exchange membranes have a general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, Ar in the formula ▲ There are mathematical formulas, chemical formulas, tables, etc.)
, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ▲There are mathematical formulas, chemical formulas, tables, etc.▼, Y is a single bond, -
O-, -S-, -SO_2-, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, R_
1 to R_9 are the same or different carbon 1 to 8 hydrocarbon groups, a to d are 0 to 4, e is 0 to 3, f + g is 0 to 7
, h+i is 0 to 5, R_1_0, R_1_1 are hydrogen,
A hydrocarbon group having 1 to 6 carbon atoms, X is halogen or -SH,
Indicates m/n=100/1 to 1/10. Claims 1.
) or water vapor selectively permeable membrane of (2)
(4)炭化水素系イオン交換膜が、孔径0.01〜10
0μm、厚みが10〜500μmで親水性を有する多孔
性基材からなる多孔体層と積層された複合膜からなるこ
とを特徴とする特許請求の範囲(1)〜(3)の水蒸気
選択透過性膜
(4) The hydrocarbon-based ion exchange membrane has a pore size of 0.01 to 10
0 μm, thickness of 10 to 500 μm, and a water vapor selective permselectivity according to claims (1) to (3), characterized by comprising a composite membrane laminated with a porous layer made of a porous base material having hydrophilic properties. film
JP63045935A 1988-03-01 1988-03-01 Steam permselective membrane Pending JPH01224027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045935A JPH01224027A (en) 1988-03-01 1988-03-01 Steam permselective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045935A JPH01224027A (en) 1988-03-01 1988-03-01 Steam permselective membrane

Publications (1)

Publication Number Publication Date
JPH01224027A true JPH01224027A (en) 1989-09-07

Family

ID=12733127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045935A Pending JPH01224027A (en) 1988-03-01 1988-03-01 Steam permselective membrane

Country Status (1)

Country Link
JP (1) JPH01224027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193126A (en) * 1989-10-31 1991-08-22 Union Carbide Ind Gases Technol Corp Sulfonated hexafluorobisphenol-a polysulfone film and fluid separation process
JP2004504928A (en) * 2000-07-28 2004-02-19 ダイス アナリティック コーポレーション Water and ion conductive membranes and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193126A (en) * 1989-10-31 1991-08-22 Union Carbide Ind Gases Technol Corp Sulfonated hexafluorobisphenol-a polysulfone film and fluid separation process
JP2004504928A (en) * 2000-07-28 2004-02-19 ダイス アナリティック コーポレーション Water and ion conductive membranes and uses thereof

Similar Documents

Publication Publication Date Title
US4765897A (en) Polyamide membranes useful for water softening
US4812270A (en) Novel water softening membranes
US4262041A (en) Process for preparing a composite amphoteric ion exchange membrane
Ge et al. Monovalent cation perm-selective membranes (MCPMs): New developments and perspectives
US4909810A (en) Vapor permselective membrane
US5620500A (en) Dehumidifying method
Mizutani Structure of ion exchange membranes
US5180750A (en) Anion exchanger
KR100999048B1 (en) Method for preparing anion-exchange composite membrane containing styrene-based and vinylbenzene-based copolymer
US4075093A (en) Process of separating citric acid and/or isocitric acid or their salts from aqueous solutions
US4824574A (en) Novel water softening process using membranes
JPH01199625A (en) Improved dehumidification film
WO1989005182A1 (en) Hydrolyzed membrane and process for its production
JPH01215348A (en) Cation exchanger
JPH01224027A (en) Steam permselective membrane
KR101102472B1 (en) Anion exchange composite membrane using fabric supports and method for manufacturing the same
JPH0747655B2 (en) Reinforced ion exchange membrane
JPH082414B2 (en) Water vapor selective permeable membrane
JPH06218251A (en) Humidifying membrane
JPH0271829A (en) Novel method for recovering acid
JPH02265929A (en) Bilayer ion exchange membrane
JPH01189326A (en) Membrane to be used for dehumidification
KR101170971B1 (en) Cation exchange composite membrane using fabric supports and method for manufacturing the same
JPH084705B2 (en) Multi-layer dehumidification membrane
JP2918137B2 (en) Porous membrane surface-treated with modified nylon and method for producing the same