JPH01222492A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH01222492A
JPH01222492A JP63048048A JP4804888A JPH01222492A JP H01222492 A JPH01222492 A JP H01222492A JP 63048048 A JP63048048 A JP 63048048A JP 4804888 A JP4804888 A JP 4804888A JP H01222492 A JPH01222492 A JP H01222492A
Authority
JP
Japan
Prior art keywords
wavelength
semiconductor laser
refractive index
resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63048048A
Other languages
Japanese (ja)
Other versions
JPH0793474B2 (en
Inventor
Masahiro Kume
雅博 粂
Masaru Wada
優 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63048048A priority Critical patent/JPH0793474B2/en
Publication of JPH01222492A publication Critical patent/JPH01222492A/en
Publication of JPH0793474B2 publication Critical patent/JPH0793474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/02234Resin-filled housings; the housings being made of resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable the manufacture of a device at a low cost by a method wherein a silicon film whose thickness is 7/100-8/100 of a wavelength is coated on an aluminum film coated on an end face whose thickness corresponds to one-fourth of a wavelength, which are sealed with a transparent plastic resin of a refractive index of 1.3-1.6. CONSTITUTION:A semiconductor laser element 1 and a photodiode 3 are buried in a transparent plastic resin 2 in place of a cap provided with a window glass. In this process, an aluminum film 7 1/4 as thick as a wavelength and a silicon film 8 7/100-8/100 as thick as a wavelength are laminated on both the end faces of the passivation film of the laser element 1, whereby the refrectivity of both the end faces decreases to about 32% when the element 1 is buried in the resin of a refractive index of 1.3-1.6. Therefore, a laser oscillating threshold current and a differential quantum efficiency of the element 1 are made equal to those of a conventional element, so that the element 1 does not vary in characteristic. By these processes, a package can be decreased in cost, a divergence angle can be controlled, and the element is also excellent in heat dissipation and hermetic sealing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コンパクトディスクを始めとする光デイスク
装置や、レーザプリンタなどの光情報処理装置のレーザ
光源に用いる半導体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device used as a laser light source for optical disk devices such as compact disks and optical information processing devices such as laser printers.

従来の技術 ]ンパクトディスクに用いられている半導体レーザを例
にとり、その断面構造図を第3図に示す。
2. Description of the Related Art] Taking a semiconductor laser used in a compact disc as an example, a cross-sectional structural diagram thereof is shown in FIG.

半導体レーザ素子1は、その両県振器端面から光出力が
得られるように端面反射率を同じにしている。即ち通常
は、結晶物開時と同じ約32%の反射率となるように、
アルミナを二分の一波長相当の膜厚で端面にパシベーシ
ヨンしている。一方の端面からの出射光はホトダイオー
ド3で受光し、光出力のモニタ信号を得る。半導体レー
ザ素子1及びホトダイオード3はベース4にマウントさ
れ、リード線6を通して外部と接続される。ベース4は
、窓ガラス1oを持つキャップ9によって密封され、キ
ャップ内には、乾燥窒素ガスが封入されている。
The semiconductor laser device 1 has the same end face reflectance so that optical output can be obtained from both end faces. That is, normally, the reflectance is about 32%, which is the same as when the crystal is open.
Alumina is passivated on the end face with a film thickness equivalent to half a wavelength. The light emitted from one end face is received by a photodiode 3 to obtain a monitor signal of optical output. The semiconductor laser element 1 and photodiode 3 are mounted on a base 4 and connected to the outside through lead wires 6. The base 4 is sealed with a cap 9 having a window glass 1o, and dry nitrogen gas is sealed in the cap.

発明が解決しようとする課題 半導体レーザ装置はコンパクトディスクに用いられるよ
うになり、て量産が開始され、今日ではその生産個数は
年間−千万個に達している。量産に伴い、素子自体のコ
ストはどんどん低下してきた。
Problems to be Solved by the Invention Semiconductor laser devices have come to be used in compact disks, and mass production has begun, and today the number of devices produced has reached 10 million units per year. As mass production progresses, the cost of the elements themselves has steadily declined.

これは他の半導体素子と同様、量産効果が期待できるた
めである。しかし、素子をマウントするベースやキャッ
プ自体は低コスト化が進んでいない。
This is because, like other semiconductor devices, mass production effects can be expected. However, the costs of the bases and caps on which the elements are mounted have not been reduced.

即ち金メツキしたベースを使用し、面精度の高い窓ガラ
スを持つキャップを使用している。マウント方法での低
コスト化を図るには、発光ダイオードで既に行なわれて
いる樹脂封止の方法がある。
That is, it uses a gold-plated base and a cap with a window glass with high surface precision. In order to reduce the cost of mounting, there is a resin sealing method that is already used for light emitting diodes.

この場合、プラスチック樹脂の屈折率が1.3から1.
6程度であるので、臂開面をそのまま持つレーザ素子を
樹脂に埋め込んだ場合、端面反射率は16〜22%に落
ちてしまう。すると、レーザ発振のしきい電流が増加し
、信頼性も悪くなる。従って樹脂に埋め込んでも、反射
率が32%となる端面パシベーシヨンを行なう必要があ
る。
In this case, the refractive index of the plastic resin is 1.3 to 1.
6, so if a laser element with the arm opening as it is is embedded in resin, the end face reflectance will drop to 16 to 22%. As a result, the threshold current for laser oscillation increases and reliability deteriorates. Therefore, even if it is embedded in resin, it is necessary to perform end face passivation so that the reflectance is 32%.

課題を解決するだめの手段 本発明の半導体レーザ装置は、端面にアlレミナ膜が四
分の一波長に相当する膜厚(波長をλ、屈折率をnとす
ると、膜厚d=λ/4n)だけコーティングされた上に
、百分の七から百分の八波長膜厚のシリコン嘆がコーテ
ィングされ、屈折率が1.3から1.6の透明プラスチ
ック樹脂で封止されて構成されている。
Means for Solving the Problems The semiconductor laser device of the present invention has an alumina film on the end face having a film thickness corresponding to a quarter wavelength (where λ is the wavelength and n is the refractive index, the film thickness d=λ/ 4n), is coated with silicone with a thickness of 7 to 8 hundred wavelengths, and is sealed with a transparent plastic resin with a refractive index of 1.3 to 1.6. There is.

作  用 プラスチック樹脂の屈折率が1.3の場合、2層目のシ
リコン膜の膜厚が百分の七波長で、反射率は約32%と
なり、百分の八波長で32%より少し大きくなる。また
、プラスチックの屈折率が1.6の場合は、2層目のシ
リコン膜の膜厚が百分の八波長で、反射率が約32%と
なシ、百分の七波長で32%より少し小さくなる。した
がって、百分の七から百分の八波長の膜厚で、約32%
の反射率が得られる。
Function When the refractive index of the plastic resin is 1.3, the reflectance is approximately 32% when the thickness of the second layer silicon film is 7/100 wavelengths, and slightly greater than 32% at 8/100 wavelengths. Become. In addition, if the refractive index of plastic is 1.6, the reflectance of the second layer silicon film is approximately 32% at 8/100 wavelengths, and 32% at 7/100 wavelengths. It becomes a little smaller. Therefore, at a film thickness of 7% to 8% wavelength, approximately 32%
A reflectance of

実施例 本発明の一実施例による半導体レーザ装置の断面図を第
1図に示す。第3図に示す従来の半導体レーザ装置と異
なり、窓ガラスを有するキャップのかわりに透明プラス
チック樹脂2で半導体レーザ素子1とホトダイオード3
を埋め込んでいる。
Embodiment FIG. 1 shows a sectional view of a semiconductor laser device according to an embodiment of the present invention. Unlike the conventional semiconductor laser device shown in FIG. 3, a transparent plastic resin 2 is used instead of a cap with a window glass to connect the semiconductor laser element 1 and photodiode 3.
is embedded.

半導体レーザ素子1のパンベージ目ン膜の拡大図を第2
図に示す。両端面に、四分の一波長膜厚のアルミナ嘆7
と百分の七から百分の八波長膜厚のシリコン膜8が積層
されることによシ、両端面の反射率は、屈折率が1.3
から1.6の樹脂に埋め込んだ時に約32%になる。従
って、レーザ発振のしきい電流や、微分量子効率は従来
の素子と同じになり、レーザ特性は変わらない。但し、
樹脂と空気との界面で屈折角が小さくなるため、平面の
樹脂形状だと、ビームの広がυ角が狭くなる。
The second enlarged view of the panbage eye film of semiconductor laser device 1 is
As shown in the figure. Alumina coating with a quarter wavelength film thickness is applied to both end faces.
By laminating the silicon film 8 with a thickness of 7% to 8% of the wavelength, the reflectance of both end faces has a refractive index of 1.3.
It becomes about 32% when embedded in 1.6 resin. Therefore, the threshold current for laser oscillation and the differential quantum efficiency are the same as those of conventional elements, and the laser characteristics remain unchanged. however,
The angle of refraction becomes small at the interface between the resin and air, so if the resin has a flat shape, the beam spread υ angle becomes narrower.

そこで、樹脂2の先端に適当な曲率を持たせることで、
半導体レーザ素子1からの出射光の広がυ角や、広がυ
角の縦横比を変えることも可能である。
Therefore, by giving the tip of resin 2 an appropriate curvature,
The spread υ angle and spread υ of the emitted light from the semiconductor laser element 1
It is also possible to change the aspect ratio of the corners.

発明の効果 本発明の半導体レーザ装置によれば、パッケージのコス
トを下げることが可能となるばかりでなく、広がり角の
制御も可能で、熱放散や気密シールの点からも優れてお
シ、コンパクトディスク等の応用に際して大なる効果を
有する。
Effects of the Invention According to the semiconductor laser device of the present invention, it is possible not only to reduce the cost of the package, but also to control the divergence angle, which is excellent in terms of heat dissipation and airtight sealing, and is compact and compact. This has great effects when applied to disks, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体レーザ装置の断面図、第2図は
レーザ素子の端面パシペーシッンを示す図、第3図は従
来の半導体レーザ装置の断面図である。 1・・・・・・半導体レーザ素子、2・・・・・・透明
プラスチック樹脂、3・・・・・・ホトダイオード、4
・・・・・・ペース、6・・・・・・リード線、6・・
・・・・半導体レーザ結晶、7・・・・・・アルミナ膜
、8・・・・・・シリコン膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−一牛」14レーア衆子 2−・−透明プラスチックお1驕 3−・ホトグイオード 肇・−ベース 6・−半薄俸5レーfs@轟 l−・−午導りドレープ素子 3−−−ホトタンオード 4−・−へ−ス δ−・ソー)殊 デ・−キャップ
FIG. 1 is a sectional view of a semiconductor laser device of the present invention, FIG. 2 is a diagram showing end face percipation of a laser element, and FIG. 3 is a sectional view of a conventional semiconductor laser device. 1...Semiconductor laser element, 2...Transparent plastic resin, 3...Photodiode, 4
...Pace, 6...Lead line, 6...
... Semiconductor laser crystal, 7 ... Alumina film, 8 ... Silicon film. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
- One cow' 14 Leah Shuko 2 - - Transparent plastic 1 3 - Photothane ode Hajime - Base 6 - Semi-thin 5-ray fs @ Todoroki 1 - Meridian drape element 3 --- Photothane ode 4 −・−Heas δ−・So)Special de−cap

Claims (1)

【特許請求の範囲】[Claims] 共振器端面の少なくとも一方に、アルミナ膜が、発振波
長の四分の一に相当する厚さに形成され、さらにその上
に、シリコン膜が、発振波長の百分の七から百分の八に
相当する厚さに形成された半導体レーザ素子が、屈折率
が1.3から1.6の透明樹脂で封止されていることを
特徴とする半導体レーザ装置。
An alumina film is formed on at least one of the end faces of the resonator to a thickness corresponding to one-fourth of the oscillation wavelength, and a silicon film is formed on top of the alumina film to a thickness corresponding to one-fourth of the oscillation wavelength. A semiconductor laser device characterized in that a semiconductor laser element formed to a corresponding thickness is sealed with a transparent resin having a refractive index of 1.3 to 1.6.
JP63048048A 1988-03-01 1988-03-01 Semiconductor laser device Expired - Fee Related JPH0793474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048048A JPH0793474B2 (en) 1988-03-01 1988-03-01 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048048A JPH0793474B2 (en) 1988-03-01 1988-03-01 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH01222492A true JPH01222492A (en) 1989-09-05
JPH0793474B2 JPH0793474B2 (en) 1995-10-09

Family

ID=12792445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048048A Expired - Fee Related JPH0793474B2 (en) 1988-03-01 1988-03-01 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0793474B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109362U (en) * 1990-02-26 1991-11-11
EP0845839A1 (en) * 1996-11-27 1998-06-03 Lucent Technologies Inc. Tantalum-aluminum oxide coatings for semiconductor devices
US5905750A (en) * 1996-10-15 1999-05-18 Motorola, Inc. Semiconductor laser package and method of fabrication
WO2000079659A1 (en) * 1999-03-24 2000-12-28 Cielo Communications, Inc. Encapsulated optoelectronic devices with controlled properties
FR2798518A1 (en) * 1998-09-08 2001-03-16 Fujitsu Ltd METHOD OF MANUFACTURING A REFLECTION FILM AND LASER AND OPTICAL DEVICES USING THE REFLECTION FILM
US6845118B1 (en) 1999-01-25 2005-01-18 Optical Communication Products, Inc. Encapsulated optoelectronic devices with controlled properties
JP2010045404A (en) * 1999-03-16 2010-02-25 Fujitsu Ltd Laser device, and manufacturing method of reflection film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109362U (en) * 1990-02-26 1991-11-11
US5905750A (en) * 1996-10-15 1999-05-18 Motorola, Inc. Semiconductor laser package and method of fabrication
EP0845839A1 (en) * 1996-11-27 1998-06-03 Lucent Technologies Inc. Tantalum-aluminum oxide coatings for semiconductor devices
FR2798518A1 (en) * 1998-09-08 2001-03-16 Fujitsu Ltd METHOD OF MANUFACTURING A REFLECTION FILM AND LASER AND OPTICAL DEVICES USING THE REFLECTION FILM
US6845118B1 (en) 1999-01-25 2005-01-18 Optical Communication Products, Inc. Encapsulated optoelectronic devices with controlled properties
JP2010045404A (en) * 1999-03-16 2010-02-25 Fujitsu Ltd Laser device, and manufacturing method of reflection film
WO2000079659A1 (en) * 1999-03-24 2000-12-28 Cielo Communications, Inc. Encapsulated optoelectronic devices with controlled properties

Also Published As

Publication number Publication date
JPH0793474B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US6025213A (en) Semiconductor light-emitting device package and method of manufacturing the same
US8022520B2 (en) System for hermetically sealing packages for optics
US10581219B2 (en) Semiconductor laser device
US5068866A (en) Semiconductor laser apparatus
JPH09102650A (en) Semiconductor laser device and optical pickup device
US5637885A (en) Method for producing a microsystem and forming a microsystem laser therefrom
US20220209499A1 (en) Laser device
CA2376907C (en) Hermetically sealing package for optical semiconductor and optical semiconductor module
JPH01222492A (en) Semiconductor laser device
US20220329039A1 (en) Micromechanical optical component and manufacturing method
JPS62163001A (en) Reflecting mirror assembly
US11984698B2 (en) Light emitting device
US20230067786A1 (en) Hermetically packaged scanning mirror in low humidity environment and manufacturing method thereof
JP2579317B2 (en) Semiconductor laser device
JP3074112B2 (en) Semiconductor device and manufacturing method thereof
JPH08186327A (en) Sealing structure of semiconductor element
JPS59208886A (en) Light emitting semiconductor device
JP2542746B2 (en) Laser diode
JPH0818165A (en) Semiconductor laser
JPH04346281A (en) Semiconductor laser device
JPS5925284A (en) Photosemiconductor device
JPH10107371A (en) Semiconductor laser device
JPH06334269A (en) Semiconductor laser device
JP2542747B2 (en) Laser diode
JPS6366985A (en) Semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees